

Liberté Égalité Fraternité

Demande d'examen au cas par cas préalable à la réalisation éventuelle d'une évaluation environnementale Article R. 122-3-1 du code de l'environnement

Ce formulaire sera publié sur le site internet de l'autorité chargée de l'examen au cas par cas. Avant de remplir cette demande, lire attentivement la notice explicative.

Ce document est émis par le ministère en charge de l'écologie.

Ce formulaire peut se remplir facilement sur ordinateur. Si vous ne disposez pas du logiciel adapté, vous pouvez télécharger Adobe Acrobat Reader gratuitement via ce lien 🔀

Date de réception : 0 7 0 5 2 0 2 4	
Dossier complet le : $\frac{1}{2}$ $\frac{3}{1}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{0}{2}$ $\frac{2}{4}$	
N° d'enregistrement : F-024-24-C-101	ne zanavis 256 sandada v arskous uzvenin al a
Intitulé du projet	
Réouverture de la halte-ferroviaire de Fondettes-Saint-Cy	r dans le cadre du SERM de la métropole de Tours
Identification du (ou des) maître(s) d'	ouvrage ou du (ou des) pétitionaire(
Identification du (ou des) maître(s) d'	ouvrage ou du (ou des) pétitionaire(
Identification du (ou des) maître(s) d'	ouvrage ou du (ou des) pétitionaire(
	ouvrage ou du (ou des) pétitionaire(
Personne physique	
Personne physique Nom	
Personne physique	
Personne physique Nom	
Personne physique Nom Personne morale	Prénom(s)
Personne physique Nom Personne morale Dénomination	Prénom(s) Raison sociale
Personne physique Nom Personne morale Dénomination SNCF Gares & Connexions	Prénom(s) Raison sociale SNCF Gares & Connexions
Personne physique Nom Personne morale Dénomination SNCF Gares & Connexions N° SIRET	Prénom(s) Raison sociale SNCF Gares & Connexions Type de société (SA, SCI)
Personne physique Nom Personne morale Dénomination SNCF Gares & Connexions N° SIRET 5 0 7 5 2 3 8 0 1 0 2 1 5 7	Prénom(s) Raison sociale SNCF Gares & Connexions Type de société (SA, SCI) SA à conseil d'administration

Catégorie(s) applicab	ole(s) du tableau des seuils et critères annexé à l'artic
R. 122-2 du code de l' du projet	'environnement et dimensionnement correspondant
N° de catégorie et sous-catégorie	Caractéristiques du projet au regard des seuils et critères de la catégorie (Préciser les éventuelles rubriques issues d'autres nomenclatures (ICPE, IOTA, etc.
5°b	Réouverture de la halte-ferroviaire de Fondettes-Saint-Cyr avec une mise en accessibilité.
Aconomic menter	e nother transmitted by the common delication of
	un examen au cas par cas dans le cadre du dispositif prévu au code de l'environnement ? (clause-filet) ?
Le projet fait-il l'objet d'ularticle R.122-2-1 ? Oui Non	une soumission volontaire à examen au cas par cas au titre du
Caractéristiques géne	érales du projet
Doivent être annexées au préser	nt formulaire les pièces énoncées à la rubrique 8.1 du formulaire.
Nature du projet, y comp	oris les éventuels travaux de démolition
	e d'un point d'arrêt ferroviaire dans un objectif de transition écologique des la métropole de Tours, dans le cadre du développement du SERM (Service
Objectifs du projet	
Projet de réouverture de halte fe de rampes et d'escalier) et amé Il s'agit d'un projet à maîtrise d'o	
SNCF Gares & Connexions pou	ır la partie quais, mobiliers et escaliers d'accès au quais
	our le reste, à savoir création de voiries, parking végétalisé et perméable, rampe erte cyclable depuis les axes structurants (en accompagnement du projet).
Aucune modification des infrasti exploitation).	ructures ferroviaires n'est prévue (ligne 561.000 Tours - Le Mans déjà en

4.3 Décrivez sommairement le projet

4.3.1 Dans sa phase travaux

Les travaux sont les suivants, en fonction de leur maîtrise d'ouvrage.

Pour les travaux sous MOA SNCF Gares & Connexions :

Rehaussement des quais à 55cm

Mise au normes PMR des éclairages extérieurs

Démolition des abris de quais existant

Pose d'abris voyageurs et de mobiliers de quais (poubelles, bancs)

Pose d'écrans d'information voyageurs

Pose de barrières défensives et de signalétique de sécurité

Pose de bandes d'éveils à la vigilances

Pose d'escaliers

Pour les travaux sous MOA Tours Métropole Val de Loire :

Création de rampes PMR

Dépose des garde-corps existant,

Création d'un local vélo sécurisé,

Création de voiries d'accès depuis le boulevard périphérique à l'est et depuis les villes à l'ouest.

Création d'une aire de stationnements en lieu et place d'un terrain en friche ex-plateforme de travaux.

Requalification de l'aire de stationnement Ouest en désimpermabilisant et en végétalisant l'espace public et avec la création d'un parvis.

4.3.2	Dans	sa p	ohase	d'explo	oitation	et	de	déma	antè	leme	nt
-------	-------------	------	-------	---------	----------	----	----	------	------	------	----

Le projet permet la création d'un point d'arrêt ferroviaire qui sera explo Gares & Connexions pour la desserte de trains de voyageurs pour une	
Il n'est pas prévu de phase de démantèlement.	

4.4	À quelle(s) procédure(s)	administrative(s)	d'autorisation le	projet a-t-il	été ou sera-t-il soumis ?

i La décision de l'autorité chargée de l'examen au cas par cas devra être jointe au(x) dossier(s) d'autorisation(s).

autorisation environnementale (AEU); permis d'aménager

4.5 Dimensions et caractéristiques du projet et superficie globale de l'opération - préciser les unités de mesure utilisées

Grandeurs caractéristiques du projet	Valeurs		
Création de parking est paysager	2000 m²		
Création d'un parvis Ouest	300 m ²		
Création d'un local vélo	50 m ²		
Création d'une rampe PMR	350 m		
Création de voiries	550 m ²		
Création d'escaliers	50 m		

4.6	Local	lisation	dυ	proj	et

	tion du projet	
Adresse e	et commune d'implantation	
Numéro : 1	1 Voie : des Trois Maries	
		•••
	FONDETTES	
	tal: 3 7 2 3 0 BP: Cedex:	
Coordoné	ées géographiques ^[1]	
Long. : 0	o 3 8 , 4 3 " E Lat.: 4 7 o 2 3 , 5 4 "	N
	catégories 5° a), 6° a), b) et c), 7°a), 9°a), 10°,11°a) b),12°,13°, 22° 'annexe à l'article R. 122-2 du code de l'environnement	°, 32°, 33°, 34°, 35°, 36°, 37°, 38°, 4
Point de d	départ : Long. : ° ° ' " Lat. : ° °	, 11
Point de d	d'arrivée : Long. : ° ° ' " Lat. : ° °	, , , , , , , , , , , , , , , , , , , ,
	es traversées :	
		- projet set seumin i
Précisez I	le document d'urbanisme en vigueur et les zonages auxquels l	e projet est soums .
Précisez I	le document d'urbanisme en vigueur et les zonages auxquels l	e projet est soums .
	le document d'urbanisme en vigueur et les zonages auxquels le	e projet est soums .
(i) Joignez		
(i) Joignez	z à votre demande les annexes n°2 à 6.	
i Joignez S'agit-il ✓ Oui 4.7.1 Si o	z à votre demande les annexes n°2 à 6. d'une modification/extension d'une installation ou Non Dui, cette installation ou cet ouvrage avait-il fait l'ob	d'un ouvrage existant ?
i Joignez S'agit-il ✓ Oui 4.7.1 Si coenvironi	z à votre demande les annexes n°2 à 6. d'une modification/extension d'une installation ou Non Dui, cette installation ou cet ouvrage avait-il fait l'ob	d'un ouvrage existant ?
i Joignez S'agit-il ✓ Oui 4.7.1 Si o	z à votre demande les annexes n°2 à 6. d'une modification/extension d'une installation ou Non Dui, cette installation ou cet ouvrage avait-il fait l'ob	d'un ouvrage existant ?
i Joignez S'agit-il ✓ Oui 4.7.1 Si coenvironi	z à votre demande les annexes n°2 à 6. d'une modification/extension d'une installation ou Non Dui, cette installation ou cet ouvrage avait-il fait l'ob	d'un ouvrage existant ?

Sansibilitá anvirann	am ar	atalo	e de la zone d'implantation envisagée
n de réunir les informations néo es instructeurs, et vous référer e direction régionale. e Internet du ministère de l'envi	cessair notam ronner	es pou ment à nent v	r remplir le tableau ci-dessous, vous pouvez vous rapprocher des à l'outil de cartographie interactive Géo-IDE, disponible sur le site dous propose, dans la rubrique concernant la demande de cas par nvironnementales par région utiles pour remplir le formulaire.
Le projet se situe-t-il :	Oui	Non	Lequel/Laquelle ?
Dans une zone naturelle d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
En zone de montagne ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
Dans une zone couverte par un arrêté de protection de biotope ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
Sur le territoire d'une commune littorale ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
Dans un parc national, un parc naturel marin, une réserve naturelle (nationale ou régionale), une zone de conservation halieutique ou		V	MOA SNCF G&C : néant MOA Tours Métropole : néant

4.7.2 Si oui, décrivez sommairement les différentes composantes de votre projet et indiquez à quelle date il a été autorisé ? En cas de modification du projet, préciser les

caractéristiques du projet « avant /après ».

Le projet se situe-t-il :	Oui	Non	Lequel/Laquelle ?
Sur un territoire couvert par un plan de prévention du bruit, arrêté ou le cas échéant, en cours d'élaboration ?		V	En cours d'élaboration par la métropole de Tours
Dans un bien inscrit au patrimoine mondial ou sa zone tampon, un monument historique ou ses abords ou un site patrimonial remarquable ?	V		Zone Tampon du bien UNESCO "Val de Loire entre Sully-sur-Loire et Chalonnes" pour les deux périmètres SNCF G&C et Tours Métropole
Dans une zone humide ayant fait l'objet d'une délimitation ?		·	MOA SNCF G&C : néant MOA Tours Métropole : néant
Dans une commune couverte par un plan de prévention des risques naturels prévisibles (PPRN) ou par un plan	V		Les deux périmètres SNCF G&C et Tours Métropole sont concernés par les zones d'expansion des crues du PPRI "Val de Tours - Val de Luynes" (arrêté préfectoral du 18 juillet 2016)
de prévention des risques technologiques (PPRT) ? Si oui, est-il prescrit ou approuvé ?	V		Approuvé le 18 juillet 2016 par arrêté préfectoral
Dans un site ou sur des sols pollués ?			MOA SNCF G&C : néant MOA Tours Métropole : néant Aucune données du Géorisques.gouv.fr
Dans une zone de répartition des eaux ?	V		Le site se trouve dans le secteur "1 - Tours Amboise" de la "Zone de répartition des eaux de la nappe du Cénomanien"
Dans un périmètre de protection rapprochée d'un captage d'eau destiné à la consommation humaine ou d'eau minérale naturelle ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
Dans un site inscrit ?			MOA SNCF G&C : néant MOA Tours Métropole : néant

Le projet se situe-t-il dans ou à proximité :	Oui	Non	Lequel et à quelle distance ?
D'un site Natura 2000 ?	V		Vallée de la Loire d'Indre-et-Loire
D'un site classé ?	•		Zone Tampon du bien UNESCO "Val de Loire entre Sully-sur-Loire et Chalonnes" + proche du site 1907236048 "La Gruette - St Cyr-sur-Loire"

6 Caractéristiques de l'impact potentiel du projet sur l'environnement et la santé humaine au vu des informations disponibles

6.1 Le projet est-il <u>susceptible</u> d'avoir les incidences notables suivantes ?

Veuillez compléter le tableau suivant :

Inc	idences potentielles	Oui	Non	De quelle nature ? De quelle importance ? Appréciez sommairement l'impact potentiel
	Engendre-t-il des prélèvements d'eau ? Si oui, dans quel milieu ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
urces	Impliquera-t-il des drainages/ou des modifications prévisibles des masses d'eau souterraines ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant
Ressources	Est-il excédentaire en matériaux ?	V		MOA SNCF G&C : travaux de terrassement avec des déblais pour les travaux MOA Tours Métropole : idem
	Est-il déficitaire en matériaux ?	V		MOA SNCF G&C : nécessité de matériaux pour refaire l'enrobé des quais notamment et construire des escaliers MOA Tours Métropole : nécessité de matériaux pour le cheminement PMR, les parkings végétalisés, la voirie
	Si oui, utilise-t-il les ressources naturelles du sol ou du sous-sol?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant

Incidences potentielles		Oui Non		De quelle nature ? De quelle importance ? Appréciez sommairement l'impact potentiel	
Ressources	Est-il en adéquation avec les ressources disponibles, les équipements d'alimentation en eau potable/ assainissement ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	
	Est-il susceptible d'entraîner des perturbations, des dégradations, des destructions de la biodiversité existante : faune, flore, habitats, continuités écologiques ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	
Si le projet est situé MOA SNCF G&C : néant	MOA SNCF G&C : néant MOA Tours Métropole : néant				
	Engendre-t-il la consommation d'espaces naturels, agricoles, forestiers, maritimes ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	
	Est-il concerné par des risques technologiques ?		v	MOA SNCF G&C : néant MOA Tours Métropole : néant	
Risques	Est-il concerné par des risques naturels ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	
	Engendre-t-il des risques sanitaires ?			MOA SNCF G&C : néant MOA Tours Métropole : néant	
	Est-il concerné par des risques sanitaires ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	

Incidences potentielles		Oui Non		De quelle nature ? De quelle importance ? Appréciez sommairement l'impact potentiel		
	Engendre-t-il des déplacements/des trafics ?	V		MOA SNCF G&C : augmentation de l'offre ferroviaire avec l'arrêt de trains en gare de Fondettes Saint Cyr pour offrir un mode de déplacement alternatif à la voiture individuel MOA Tours Métropole : rabattement des véhicules motorisés du boulevard périphérique (la route métropolitaine 37) vers le parking côté Est		
	Est-il source de bruit ?	V		MOA SNCF G&C : arrêt et annonce des trains MOA Tours Métropole : rabattement des véhicules motorisés du boulevard périphérique vers le parking		
	Est-il concerné par des nuisances sonores ?		•	Non puisque les voies sont déjà exploitées et qu'il n'est pas prévu à ce jour d'augmenter le trafic De plus, le site est déjà à proximité d'un boulevard périphérique avec un trafic routier déjà important		
seou	Engendre-t-il des odeurs ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		
Nuisances	Est-il concerné par des nuisances olfactives ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		
	Engendre-t-il des vibrations ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		
	Est-il concerné par des vibrations ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		
	Engendre-t-il des émissions lumineuses ?	V		MOA SNCF G&C : Ajout d'éclairage public sur les quais et les escaliers MOA Tours Métropole : Ajout d'éclairage public cheminement PMR et aires de stationnement (extinction nocturne)		
	Est-il concerné par des émissions lumineuses ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		
Su	Engendre-t-il des rejets dans l'air ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		
Émissions	Engendre-t-il des rejets liquides ?		2	MOA SNCF G&C : néant MOA Tours Métropole : néant		
	Si oui, dans quel milieu ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant		

Incidences potentielles		Oui Non		De quelle nature ? De quelle importance ? Appréciez sommairement l'impact potentiel	
Suc	Engendre-t-il des effluents ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	
Engendre-t-il la production de déchets non dangereux, inertes, dangereux? MOA SNCF G&C : des déchets MOA Tours Métropole : des déchet	MOA SNCF G&C : des déchets (déblais de terrassement) MOA Tours Métropole : des déchets (déblais de terrassement)				
e/Cadre pulation	Est-il susceptible de porter atteinte au patrimoine architectural, culturel, archéologique et paysager ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	
Patrimoine/Cadre de vie/Population	Engendre-t-il des modifications sur les activités humaines (agriculture, sylviculture, urbanisme, aménagements), notamment l'usage du sol ?		V	MOA SNCF G&C : néant MOA Tours Métropole : néant	

	dences du projet id ojets existants ou ap	lles susceptik	oles d'être cumulées av	ec
Oui Si oui, dé	✓ Non crivez lesquelles :			
	CF G&C : néant rs Métropole : néant			

6.3 Les incidences du projet identifiées au 6.1 sont-elles susceptibles en nature transfrontière ?	d'avoir des effets de
□ Oui ☑ Non	
Si oui, décrivez lesquelles :	
MOA SNCF G&C : néant MOA Tours Métropole : néant	
6.4 Description des principaux résultats disponibles issus des évaluati incidences sur l'environnement requises au titre d'autres législations :	
Faible impact négatif puisque les quais et parking ouest notamment sont déjà existan Fort impact positif (décarbonation des mobilités)	ts
And the construction of the contract of the co	
The Court of the Court of the South Court of the Court of	Control of Responsible
6.5 Description, le cas échéant, des mesures et caractéristiques du pretenues ou mises en œuvre pour éviter ou réduire les effets négatifs l'environnement ou la santé humaine (en y incluant les scénarios alte étudiés) et permettant de s'assurer de l'absence d'impacts résiduels préciser et de détailler ces mesures (type de mesures, contenu, mise	notables du projet sur rnatifs éventuellement notables. <u>Il convient de</u>

7 Auto-évaluation (facultatif)

(i) Au regard du formulaire rempli, estimez-vous qu'il est nécessaire que votre projet fasse l'objet d'une évaluation environnementale ou qu'il devrait en être dispensé ? Expliquez pourquoi.

Au regard des bénéfices attendus, il nous semble que les impacts environ	onnementaux restent faibles

8 Annexes

8.1 Annexes obligatoires

	Objet Programme	
1	Document CERFA n°14734 intitulé « informations nominatives relatives au maître d'ouvrage ou pétitionnaire » - non publié.	V
2	Si le projet fait l'objet d'un examen au cas par cas dans le cadre du dispositif prévu aux I et II de l'article R.122-2-1 du code l'environnement (clause filet), la décision administrative soumettant le projet au cas par cas.	
3	Un plan de situation au 1/25 000 ou, à défaut, à une échelle comprise entre 1/16 000 et 1/64 000 (Il peut s'agir d'extraits cartographiques du document d'urbanisme s'il existe).	V
4	Au minimum, 2 photographies datées de la zone d'implantation, avec une localisation cartographique des prises de vue, l'une devant permettre de situer le projet dans l'environnement proche et l'autre de le situer dans le paysage lointain.	V
5	Un plan du projet ou, pour les travaux, ouvrages ou aménagements visés aux catégories 5° a), 6°a), b) et c), 7°a), 9°a),10°,11°a), b), 12°, 13°, 22°, 32°, 33°, 34°, 35°, 36, 37°, 38°, 43° a) et b) de l'annexe à l'article R. 122-2 du code de l'environnement un projet de tracé ou une enveloppe de tracé	V
6	Sauf pour les travaux, ouvrages ou aménagements visés aux 5° a), 6°a), b) et c), 7° a), 9°a), 10°,11°a), b), 12°, 13°, 22°, 32°, 33°, 34°, 35°, 36, 37°, 38°, 43° a) et b) de l'annexe à l'article R. 122-2 du code de l'environnement : plan des abords du projet (100 mètres au minimum) pouvant prendre la forme de photos aériennes datées et complétées si nécessaire selon les évolutions récentes, à une échelle comprise entre 1/2 000 et 1/5 000. Ce plan devra préciser l'affectation des constructions et terrains avoisinants ainsi que les canaux, plans d'eau et cours d'eau	V
7	Si le projet est situé dans un site Natura 2000, un plan de situation détaillé du projet par rapport à ce site. Dans les autres cas, une carte permettant de localiser le projet par rapport aux sites Natura 2000 sur lesquels le projet est susceptible d'avoir des effets.	V

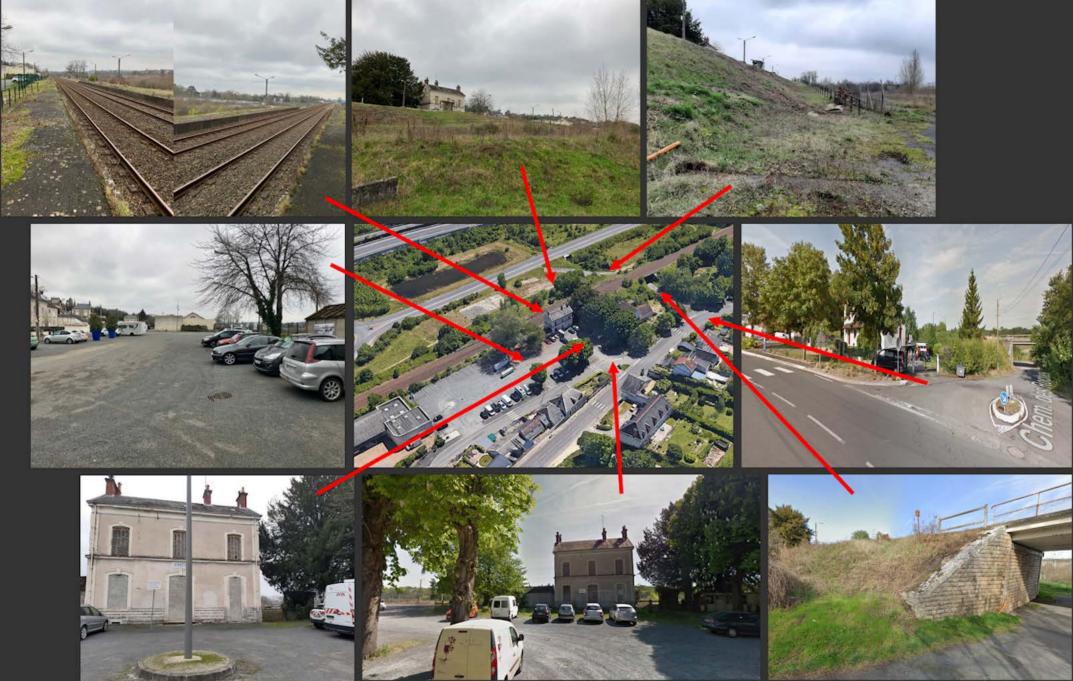
8.2 Autres annexes volontairement transmises par le maître d'ouvrage ou petitionaire

(i) Veuillez compléter le tableau ci-joint en indiquant les annexes jointes au présent formulaire d'évaluation, ainsi que les parties auxquelles elles se rattachent.

	Objet Control of the				
1					
2					
3					
4					
5					

Engagement et signature

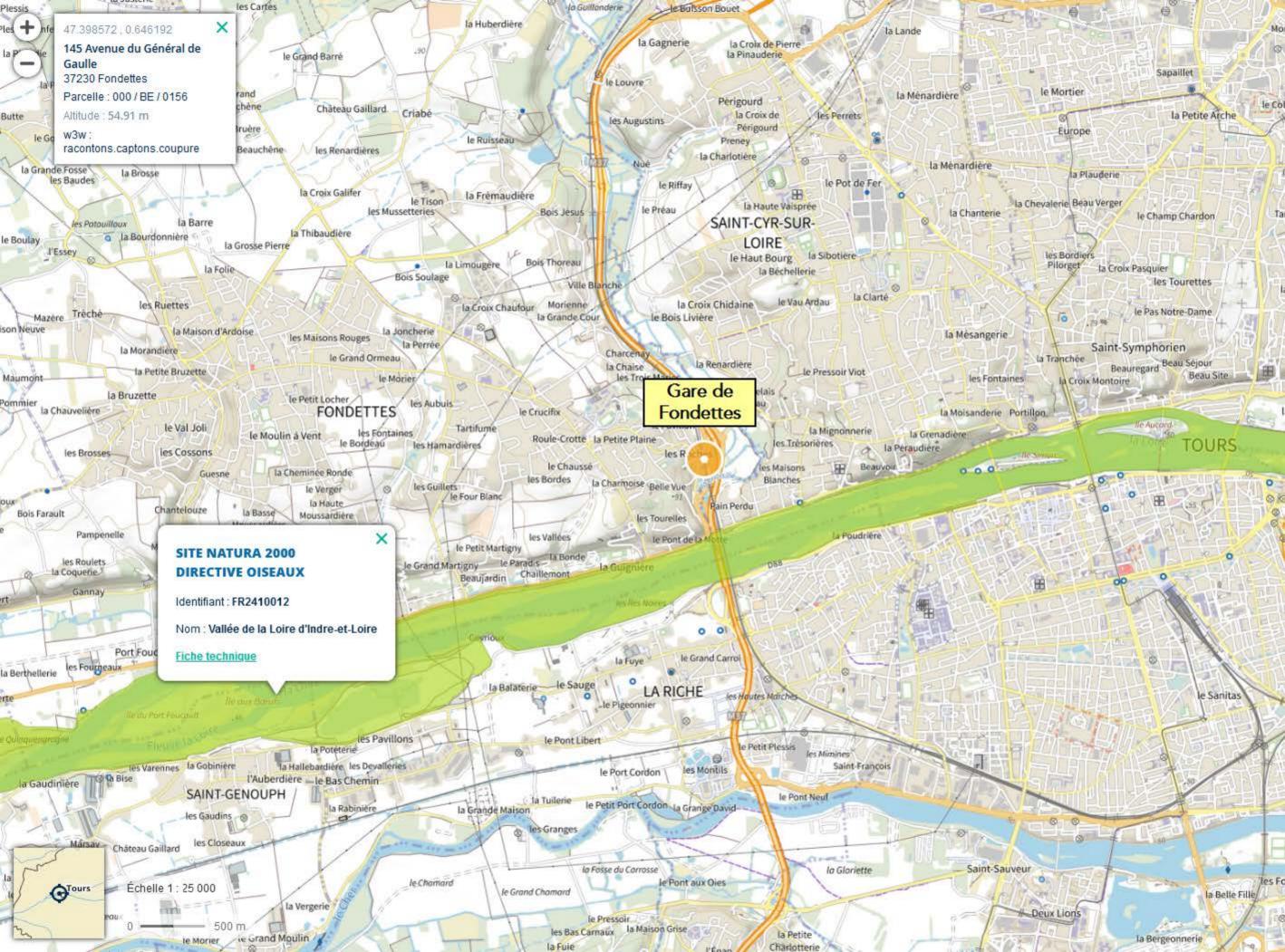
Je certifie sur l'honneur avoir pris en compte les principaux résultats disponibles issus des évaluations pertinentes des incidences sur l'environnement requises au titre d'autres législations applicables 🗹


Je certifie sur l'honneur l'exactitude des renseignements ci-dessus ☑

Nom BERTHEREAU	
Prénom Soline	Pour le Président, Le Vice-président délég
Qualité du signataire Directrice de projets	Laurent RAYMOND
À Nantes	
Fait le 1 4 0 6 2 0 2 4	Signature du (des) demandeur(

Signature du (des) demandeur(s)

Connexions Agence Gares Centre Ouest DIRECTION DÉVELOPPEMENT DIRECTION DE PROJETS POLL ET CENTRE 27, Bd de Stalingrad - BP 34112 44041 NANTES Cedex 1


Gares&

Rédacteur : Jean-Philippe REGAIRAZ - 11/07/2024

<u>Objet</u> : Impact acoustique prévisionnel de la réouverture de la halte de Fondettes

Description sommaire du projet

La ligne 561000, ligne de Tours au Mans, est circulée quotidiennement, au niveau de la gare de Fondettes par une vingtaine de trains voyageurs (majoritairement X72500 et X73500 + X76500, matériel diesel) qui circulent pratiquement tous entre 6h et 22h et en moyenne 5 trains frets, 3 de jour et 2 de nuit, Trafic Moyen Journalier Annuel 2022).

La gare de Fondettes—Saint-Cyr-sur-Loire est fermée depuis 1995. Suite à diverses demandes de réouverture, lancées par différents acteurs locaux, il est envisagé la réouverture de la halte de Fondettes — Saint-Cyr en lien avec le SERM de Tours.

schéma général des aménagements & travaux prévus pour la réouverture

D'un point de vue réglementaire, cette réouverture n'est pas soumise à la réalisation d'une étude acoustique. En effet, le décret 95-22 du 9 janvier 1995 relatif à la limitation du bruit des aménagements et infrastructures de transports terrestres (abrogé et repris dans les articles R571-44 à R571-52 du code de l'environnement) indique que « la conception, l'étude et la réalisation d'une infrastructure de transports terrestres nouvelle et la modification, ou la transformation significative d'une infrastructure de transports terrestres existante sont accompagnées de mesures destinées à éviter que le fonctionnement de l'infrastructure ne crée des nuisances sonores excessives ». La création d'une halte ne rentre pas dans ce cadre : aucune infrastructure nouvelle n'est créée et aucuns travaux <u>sur les voies</u> ne sont réalisés, condition première pour qu'une modification d'infrastructure soit considérée comme significative.

En l'absence de travaux sur les voies, aucune obligation réglementaire ne s'applique donc aux infrastructures de transports terrestres, que ce soit pour une augmentation de trafic (ce n'est pas le cas ici) ou pour l'arrêt de tout ou partie des trains.

Dans les études acoustiques réalisées en cas d'obligations réglementaires, l'arrêt des trains est en général simulé par une circulation à une vitesse constante d'environ 60 km/h de ces trains afin de tenir compte des bruits d'accélération et de freinage. Cette simplification méthodologique n'intègre que les bruits dus au roulement.

Les données disponibles ne permettent pas de modéliser plus précisément les secteurs d'arrêts. De fait, le catalogue des signatures acoustiques des trains (Méthode et données d'émission sonore pour la réalisation des études prévisionnelles du bruit des infrastructures de transport ferroviaire dans l'environnement Version du 13/04/2023) décrit les valeurs d'émissions liées au roulement des trains, pour des vitesses d'exploitation courantes, pour le matériel considéré. Le niveau sonore est calculé à partir de ce document qui n'est valable que dans une gamme de vitesse de 40 à 320 km/h, où le bruit de roulement est la source de bruit principale.

Méthode et données d'émission sonore pour la réalisation des études prévisionnelles du bruit des infrastructures de transport ferroviaire dans l'environnement X72500(-X72600-X72700) bicaisse (X TER)

Management	

Vitesse maximale	160 km/h
Vitesse de référence	140 km/h
Longueur	52,9 m
Type de freinage	Disque + Semelle composite
Réflexion Caisse/Ecran	1

Méthode et données d'émission sonore pour la réalisation des études prévisionnelles du bruit des infrastructures de transport ferroviaire dans l'environnement X72500(-X72600-X72700) tricaisse (X TER)

Vitesse maximale	160 km/h
Vitesse de référence	140 km/h
Longueur	78,5 m
Type de freinage	Disque + Semelle composite
Réflexion Caisse/Ecran	1

Niveaux sonores et spectre de référence au(x) point(s) de mesure en Leq,tp

1/3 oct.	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz
d = 25 m / h = 3.5 m [dB]	73,9	68,4	72,4	68,5	67	67,3
1/3 oct.	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz
d = 25 m / h = 3.5 m [dB]	66,6	68,9	71,5	72,7	73,4	71
1/3 oct.	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz
d = 25 m / h = 3,5 m [dB]	69,6	70,3	70,4	67,4	65,3	62,2

Niveaux sonores et spectre de référence au(x) point(s) de mesure en Leq,tp

1/3 oct.	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz
d = 25 m / h = 3,5 m [dB]	73,9	68,4	72,4	68,5	67	67,3
1/3 oct.	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz
d = 25 m / h = 3,5 m [dB]	66,6	68,9	71,5	72,7	73,4	71
1/3 oct.	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz
d = 25 m / h = 3,5 m [dB]	69,6	70,3	70,4	67,4	65,3	62,2

Méthode et données d'émission sonore pour la réalisation des études prévisionnelles du

bruit des infrastructures de transport ferroviaire dans l'environnement	
X73500(-X73600-X73700-X73800)-X73900 (A TER)	

· way	_
ta ta	R

140 km/h
140 km/h
28,9 m
Disque
1

Méthode et données d'émission sonore pour la réalisation des études prévisionnelles du bruit des infrastructures de transport ferroviaire dans l'environnement X76500 tricaisse (AGC)

Vitesse maximale	160 km/h
Vitesse de référence	140 km/h
Longueur	57,4 m
Type de freinage	Disque garniture frittée
Réflexion Caisse/Ecran	1

Niveaux sonores et spectre de référence au(x) point(s) de mesure en Leq,tp

1/3 oct.	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz
d = 25 m / h = 3,5 m [dB]	75,6	68,6	66,5	63,9	61,6	62,2
1/3 oct.	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz
d = 25 m / h = 3,5 m [dB]	63,7	65,8	67,7	68	69,7	69
1/3 oct.	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz
d = 25 m / h = 3,5 m [dB]	71	68,5	66,2	66,9	67,1	65

	800 Hz	1000 Hz	1250 Hz	
	68	69,7	69	
	3150 Hz	4000 Hz	5000 Hz	
	66,9	67,1	65]
_				
-				1

Niveaux sonores et spectre de référence au(x) point(s) de mesure en Leq,tp

1/3 oct.	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz
d = 25 m / h = 3.5 m [dB]	73,9	68,4	72,4	68,5	67	67,3
1/3 oct.	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz
d = 25 m / h = 3,5 m [dB]	66,6	68,9	71,5	72,7	73,4	71
1/3 oct.	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz
d = 25 m / h = 3.5 m [dB]	69,6	70,3	70,4	67,4	65,3	62,2
d = 25 m / h = 3.5 m						
		L0 = 80.9 d	B(A)			

Extrait des signatures acoustiques du matériel roulant voyageurs sur la ligne 561000 au niveau de la future halte

La réglementation sur le bruit des transports terrestres retient comme indicateur le LAeq, niveau de bruit « équivalent », en réalité dose de bruit reçue, c'est-à-dire la quantité totale d'énergie reçue sur une période. Les deux périodes jour (6h-22h) et nuit (22h-6h) sont retenues par la réglementation.

L'outil LAeq SNCF Réseau est utilisé pour déterminer le classement des voies : à partir du trafic journalier, de sa composition et de sa répartition sur la journée, le niveau sonore est calculé en un point de référence, situé à 10m du bord des voies. Le trafic moyen voyageur 2022 (hors fret) correspond à un niveau LAeq(6h-22h) de 61.0 dB(A) et LAeq(22h-6h) de 49.8 dB(A)

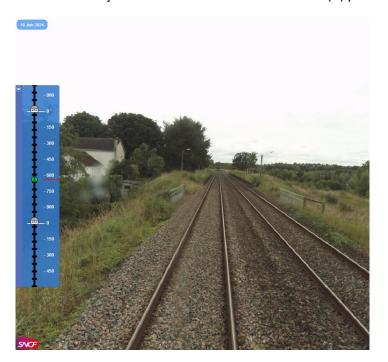
								nor	nbre de tra	ains		
Type de train		Modèle	Vitesse maximale du type de train	Longueur standard	Vîtesse maximale autorisée(c)	Vitesse sur le tronçon	Longueur réelle (d)	Jour (8h-18h)	Soir (18h-22h)	Nuit (22h-6h)	LAeq (Bh-22h) (e)	LAeq (22h-8h) (e)
X72500 (X TER)	3 caisses	US UM2 UM3	160	79 157 236		140		9,3 1,6 0,0	3,1 0,4 0,1	0,6 0,1 0,0	59,9	49,8
X73500 (A TER)	1 caisse	US UM2 UM3	140	29 58 87		140		0,6 0,1	0,4 0,1	,	47,6	-
X76500 (AGC)	3 caisses	US UM2 UM3	160	57 115 172		140					-	-
X76500 (AGC)	4 caisses	US UM2 UM3	160	73 146 218		140		2,8 0,5	0,3	0,0	53,6	27,9
	Total	des trains sur 24 h	eures :	<u>20</u>			par périodes :	<u>15</u>	<u>5</u>	1	61,0	49,8

Extrait de l'outil LAEQ SNCF Réseau : niveaux diurne et nocturne liées aux circulations voyageurs à 140km/h

Cependant, lors d'un arrêt des trains en gare, des bruits autres que ceux de roulement sont audibles par les riverains situés aux abords immédiats de la gare (moteurs, bip de fermeture des portes, etc...). Le fonctionnement du moteur pendant la période d'arrêt (source principale) générera notamment un bruit supplémentaire par rapport au bruit de roulement. Le fonctionnement au ralenti d'un moteur diesel génère un bruit large bande qui peut atteindre 60-70 dB(A) à 10m du bord de voie.

En considérant 6 arrêts d'une minute avec une source motorisation de 70 dB(A), cela équivaut sur la période diurne 6h-22h à un niveau lié au moteur diesel pendant l'arrêt des 6 trains de 48 dB(A) (delta = -22 dB(A) = 10 log(360/57000), niveau sonore sur 360 secondes ramené à une période diurne de 57600 secondes).

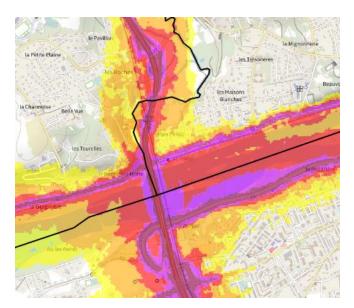
Le niveau de bruit cumulé sur la journée serait donc de 61 + 48 = 61.2 dB(A) (somme logarithmique), sans prendre en compte la baisse de bruit lié au ralentissement des 6 circulations s'arrêtant en gare. L'écart est négligeable.


Avec le même outil, on peut estimer les niveaux sonores comme suit :

- trafics 2022 diminué de 6 trains à 140 km/h : LAeq(6h-22h) = 59.6 dB(A)
- 6 trains s'arrêtant considérés comme circulant à 60 km/h = 47.5 dB(A)
- moteur diesel pendant l'arrêt des 6 trains de 48 dB(A)
 - → soit un niveau cumulé de 60.1 dB(A), soit une légère baisse du niveau sonore par rapport au niveau actuel.

Le niveau sonore global à proximité de la future halte restera donc tout à fait comparable au niveau existant. En cumul sur la journée, le niveau devrait même légèrement baisser. La consultation de Googlemaps et d'Imajnet (logiciel interne équivalent au Streetview ferroviaire) permet d'identifier la façade du bâtiment le plus proche de la future halte, située à un peu plus de 20m du bord de la voie et à plus grande distance de la gare.

Les niveaux sur cette façade à 20m seront donc environ 4 dB(A) plus faibles que ceux présentés à 10m.



Capture Imajnet juste avant la gare (quais visibles au centre)

extrait Googlemaps

On peut également noter que l'environnement sonore local est assez fortement influencer par les voies routières voisines (Cf. extrait de la carte de bruit routier 4^{ème} échéance disponible en ligne).

 $\frac{https://carto2.geo-ide.din.developpement-durable.gouv.fr/frontoffice/?map=91eb6449-9905-486b-8fb8-5194e6d5d261}{7194e6d5d261}$

Direction des Infrastructures
Bureau d'études

Note de conception des parcs de stationnement Pour la réouverture de la Halte Ferroviaire de FONDETTES

Septembre 2024

Préambule */ Contexte projet

La présente note a pour objet l'explication des principes de mise en œuvre de la réglementation relative à l'installation de dispositifs de gestion des eaux pluviales et d'ombrage sur le parc de stationnement de la future halte ferroviaire de Fondettes.

Dans le cadre de la réouverture de la halte ferroviaire de Fondettes, TOURS METROPOLE réalise la requalification des abords, afin de réévaluer l'aménité des lieux, mais aussi afin de permettre une intermodalité des transports qui convergent vers cette ligne ferroviaire.

Tout d'abord, une mise en accessibilité PMR sera assurée sur l'ensemble des équipements ouverts au public, ainsi que vers les stationnements PMR (en respectant bien largement le quota minimum de 2% de places PMR).

Egalement, une liaison cyclable sera assurée vers l'un des itinéraires majeurs de la Métropole. En effet la métropole dispose d'un schéma directeur cyclable qui irrigue le territoire métropolitain par un réseau de pistes en sites propres. L'itinéraire n°9, reliant Luynes à Rochecorbon, et passant par le centre de Tours, sera relié à la présente opération ferroviaire par un itinéraire secondaire bidirectionnel, également en site propre.

D'autre part, une desserte en transport collectif par une ligne de bus existante, sera maintenue et mieux intégrée dans la requalification.

Enfin, le parc de stationnement sera repensé afin de répondre au plus juste aux besoins de l'ouverture de la halte ferroviaire. Ainsi deux parkings seront aménagés. L'un, déjà existant côté Ouest de la gare, sera requalifié; alors qu'un second, situé côté Est de la gare, sera entièrement créés afin de permettre un accès direct vers chacun des deux quais.

Principes de gestion des Eaux Pluviales sur le parking existant restructuré

Ce projet tient à respecter les prescriptions de L'article L. 111-19-1 du code de l'urbanisme qui fixe comme première obligation d'intégrer, sur au moins la moitié de la superficie du parc de stationnement, des revêtements de surface, des aménagements hydrauliques ou des dispositifs végétalisés favorisant la perméabilité et l'infiltration des eaux pluviales ou leur évaporation.

Tours Métropole intègre, dans ses différents projets de travaux de voirie et d'aménagements urbains, les recommandations en matière de GIEP, et ambitionne désormais de rendre transparents ses aménagements à l'eau de pluie par une infiltration généralisée des précipitations au plus près de l'endroit où elles tombent, sans collecte ni ouvrage spécifiquement hydraulique.

Le parc de stationnement aujourd'hui existant à l'Ouest de la gare de Fondettes sera ainsi entièrement restructuré afin de collecter ses eaux pluviales vers un principe de fosses de plantation drainantes, dites « fosses de Stockholm ».

La structure imperméable actuelle du parking ne sera pas détruite, car son volume de démolition/reconstruction paraît trop conséquent pour exprimer une démarche environnementale (démolition, transport, mise en décharge, reconstruction).

En revanche son revêtement sera entièrement rénové afin de diriger les eaux de surfaces, par des jeux de pentes en long et pentes en travers, guidées vers les différentes zones de plantation réparties sur tout le parking.

Le parking actuel ne présente aucun arbre. Ainsi sur ce premier parking, la métropole compte profiter de la plantation des arbres sur environ un quart de la superficie du parking (cf chapitre suivant de la présente note sur l'ombrage paysager) pour créer par la même occasion des fosses suffisamment profondes pour recueillir et infiltrer dans des espaces paysagers.

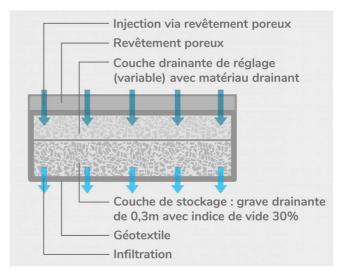
Un système de surverse des eaux pluviales sera néanmoins mis en œuvre afin de pallier à des pluies exceptionnelles.

Les « fosses de Stockholm » ainsi créées seront dimensionnées pour recueillir des pluies trentennales et permettre leur infiltration.

Née il y a environ une dizaine d'années, cette technique de paysagisme, répond de manière très pertinente à la problématique de la gestion des eaux pluviales. Le principe consiste à infiltrer l'eau de pluie dans la fosse de plantation en utilisant le volume de cette dernière comme volume tampon pendant la pluie. Une partie de l'eau va s'exfiltrer vers le sol profond et la nappe, le volume qui reste stocké dans le sol de la fosse sera ultérieurement évacué par évapotranspiration.

Ce système de Stockholm, aussi appelé « arbre de pluie », consiste ainsi à aménager un volume de mélange de pierre (criblage continu, non fermé, de type 20/80, 40/80, 60/100) et de terre végétale (souvent associé à du biochar) comme fosse de plantation, à diriger et infiltrer les eaux pluviales dans ce mélange en utilisant un revêtement perméable ou non, ou des tranchées d'infiltration, et à utiliser ces volumes comme fosses de plantation d'arbres ; ceci en utilisant de préférence des arbres ayant un système racinaire qui contribue à puiser ensuite ces mêmes eaux.

Le nivellement est simple, il consiste à décaisser toute la fosse d'arbre, la remplir du mélange drainant, puis à lui réserver une fois finie un niveau altimétrique plus bas que le revêtement des aires de stationnement, et en le ceinturant par des bordurettes ou voliges implantées au ras du sol. Les fosses feront généralement 12,5 m² de surface (5 x 2,5 m), pour une profondeur de 2 m, soit environ un volume de 25 m3 par fosse de plantation. Le projet prévoit d'accueillir environ 20 fosses de plantation, ainsi que différents linéaires de noues paysagères.


En plus d'accueillir un arbre de haute tige, chaque fosse sera paysager par un choix harmonieux de graminées, végétation herbacée et arbustive, évitant le piétinement du sol et contribuant à la biodiversité.

Un ensemble de fosses d'arbres indépendantes sera réparti de manière équilibrée et harmonieuse sur toute l'emprise du parking actuel.

Principes de gestion des Eaux Pluviales sur le nouveau parking

Pour le parking entièrement créé sur la partie Est de la gare de Fondettes, une méthode d'infiltration directe au travers de la chaussée sera mise en œuvre, afin de rendre son projet entièrement transparent en terme d'impact hydraulique.

Principe de fonctionnement d'un massif stockant par revêtement poreux :

Des revêtements poreux de différentes natures seront utilisés pour chacune des vocations des surfaces du parking. Ainsi des enrobés drainants seront mis en œuvre sur la chaussée de

desserte, et des revêtements plus paysagers, de type pavages enherbés, seront installés sur les places de stationnement.

La structure de voirie sera composée d'une assise poreuse de matériaux non liés, de type grave concassée ou semi-concassée, avec une porosité allant de 35 à 45 %. La structure réservoir est caractérisée par le coefficient de vide définissant sa capacité de stockage des eaux ainsi que par la résistance à la compression définissant leur solidité et domaine d'utilisation.

Le fonctionnement hydraulique de la chaussée à structure réservoir sera assuré par 3 fonctions : une injection de l'eau dans le volume du massif de stockage, un stockage temporaire de l'eau rendu possible par l'épaisseur du corps de chaussée (50 à 60 cm prévus), et enfin une évacuation par infiltration dans le sol naturel.

Les espaces végétalisés situés entre les stationnements seront eux aussi aménagés comme sur le principe du premier parking. Ces zones de plantations permettront elles aussi de recueillir les eaux pluviales dans de légères déclivités plantées de graminées, arbustes et arbres hautes tiges.

Pour assurer ces différentes intentions de gestion des eaux pluviales, et en fonction de l'avancement de la composition du plan d'ensemble de l'avant-projet détaillé, une note de calcul des volumes et surfaces sera réalisée en fonction de l'imperméabilité du projet créé.

Les volumes d'eaux pluviales captés seront ainsi intégrés dans le dimensionnement du projet.

L'étude de sol actuellement en cours nous permettra de fournir les informations géotechniques et les essais d'infiltration (tests de perméabilité Matsuo) pour déterminer l'ordre de grandeur de la perméabilité des sols en place, et valider les principes de gestion de l'eau proposés.

Principes d'ombrage du parc de stationnement

Pour rappel, dans la continuité de la gestion des eaux pluviales, l'article L. 111-19-1 du code de l'urbanisme fixe comme seconde obligation, l'intégration sur les parcs de stationnement de « dispositifs végétalisés ou des ombrières concourant à l'ombrage desdits parcs sur au moins la moitié de la surface ».

Dans la présente opération, il sera choisi un mode d'ombrage végétalisé, en plantant ainsi des essences locales d'arbres de hautes tiges et de demies tiges, avec une proportion importante afin de générer un ombrage satisfaisant.

En ce qui concerne les dispositifs végétalisés assurant l'ombrage (arbres), on apprécie l'ombrage prodigué par un arbre selon les critères suivants :

- d'une part en fonction de la canopée de l'arbre ;
- d'autre part en fonction d'un ratio d'arbres plantés par nombre de places de stationnement.

Etant situé à proximité du lycée horticole de Fondettes, une diversités d'espèces sera proposée afin d'offrir un parcours botanique au sein du parc de stationnement.

Les essences choisies devront ainsi offrir un houppier large, un feuillage relativement dense présentant de larges feuilles, avec un port général suffisant en ombrage, et pertinent pour un parc de stationnement (évitant les nuisances d'usage).

Les essences d'arbres de première grandeur au feuillages importants, de type frênes, érables planes, catalpas et paulownia seront favorisées au cœur des parkings; alors que sur le pourtour des parkings, des feuillages plus légers seront organisés, tels que bouleaux communs, savonniers, érables champêtres, saules blancs, saules marsault et alisiers.

En termes de quantités, il sera respecté au minimum le ratio d'un arbre par tranche de trois places de stationnement (ratio préconisé suite à la loi Climat et Résilience).

Dans le premier parking requalifié, on dénombre 57 places projetées (dont 6 PMR). Selon le calcul, ce premier parc doit ainsi disposer au moins de 19 arbres. Or, le projet prévoit 25 arbres de hautes tiges, ainsi que 6 arbres demies tiges.

Dans le second parking, entièrement créé, on dénombre 40 places projetées (dont 2 PMR). Selon le calcul, ce second parc doit ainsi disposer au moins de 14 arbres. Or, le projet prévoit 16 arbres de hautes tiges, ainsi que 8 arbres demies tiges.

Images d'ambiance des principes d'aménagement

Images d'ambiance proposées lors de l'étude préalable, pour la requalification du parking existant avec la réalisation de méthodes de Gestion Intégrée des Eaux Pluviales.

Aménagement d'espaces paysagers permettant de capter les eaux de pluie.

Rapport de mission de repérage des matériaux et produits contenant de l'amiante avant réalisation de travaux dans les infrastructures de transport

L'objet de la mission est l'établissement d'un rapport de repérage des matériaux et produits contenant de l'amiante avant réalisation de travaux ou en vue de compléter ou de constituer les documents de tracabilité et de cartographie portant sur les structures de voies piétonnes, cyclables, routières, ferroviaires, portuaires et aéroportuaires désigné ci-dessous. Il est réalisé suivant nos conditions particulières et générales de vente et

Il ne s'applique pas aux repérages de l'amiante dans les immeubles bâtis, les installations industrielles, les navires militaires, marchands, les aéronefs, les véhicules ferroviaires et terrestres dans lesquels l'amiante a pu être utilisé ni aux sols et aux roches en place.

2. Propriétaire des 1. Donneur d'ordre infrastructures de transport COLAS CENTRE-OUEST. TOURS METROPOLE VAL DE LOIRE, 2 rue de la Plaine, 37390 METTRAY Parc de la Perraudière, BP 651, 37540 SAINT CYR SUR LOIRE 3. Gestionnaire des 4. Autre infrastructures de transport

5. Identification de l'infrastructure de transport

Localisation et identification des infrastructures de Gare de Fondettes à FONDETTES transport Chaussée / Parking / Trottoir Désignation et type d'ouvrage Référence du programme de travaux Sans Objet

Non communiqué

Non communiquée

6. Références de la mission

Non Communiqué

Année d'installation initiale

Commande effectuée le	13/09/2024
Visite réalisée le(s)	18/09/2024à 14:30
Rapport émis le	26/09/2024
Opérateur(s) de repérage, entité et certification	Monsieur Gaylord MARTIN Le présent rapport est établi par une personne dont les compétences sont certifiées par : LCP 23 Bis rue Thomas Edison 33610 CANEJAN (Réf : 750)
Assurances	AXA RCP n° 1148866204 - Montant de garantie : 2 000 000 € - Date de validité : 31/12/2024
Laboratoire accrédite (analyse)	EUROFINS ABO,
Accompagnateur sur place	Aucun contact sur place
Sous-traitance	Sans objet
Textes de référence : Norme NF X 46-102 de Novembre 2020 : Art.	icle B4412-97 du Code du Travail · Décret n°2017-899 du 9 mai 2017

Réf.: DIA-HGS06-2409-029 OPT'IM DIAGNOSTICS - 12 Rue du Pont de l'Arche - 37550 ST AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Rapport Amiante: 1/29 Dossier: 1 / 29

7. Conclusion(s) de la mission de repérage

Dans le cadre de la mission objet du présent rapport, il n'a pas été repéré de matériaux et produits contenant de l'amiante

_			
	Absenc	I	
-n	Macana	е а /\r	mianto
	AUSCIIC	CUAL	

Dans le cadre de la mission objet du présent rapport, il a été repéré des matériaux et produits ne contenant pas d'amiante. Il s'agit de :

Matériaux ou produits	Localisation(s)	ZPSO	N° prélèvement ou Justification
Enrobé	Zone : Gare de Fondettes	1	P001
Enrobé d'une épaisseur 7cm	de Zone : Gare de Fondettes	2	P002
Enrobé d'une épaisseur 7cm	de Zone : Gare de Fondettes	3	P003
Enrobé d'une épaisseur 3cm	de Zone : Gare de Fondettes	4	P004
Enrobé	Zone : Gare de Fondettes	5	P005
Enrobé	Zone : Gare de Fondettes	6	P006

Fait à ST AVERTIN, le 26/09/2024

Monsieur Gaylord MARTIN Opérateur de repérage certifié

Rapport Amiante : 2/29

Dossier: 2 / 29

8. Parties d'ouvrages non visitées

Tous les ouvrages dont l'opérateur a eu connaissance ont été visités.

9. Sommaire

- Donneur d'ordre
- Propriétaire des infrastructures de transport
- 3 Gestionnaire des infrastructures de transport
- 4
- 5 Identification de l'infrastructure de transport
- 6 Références de la mission
- Conclusion(s) de la mission de repérage
- 8 Parties d'ouvrages non visitées
- 9 Sommaire
- 10 Programme de travaux du donneur d'ordre
- 11 Programme et périmètre de repérage
- 12 Autres interlocuteurs éventuels
- 13 Obligations des intervenants
- 14 Ecarts et adjonctions réalisés lors de la mission par rapport à la règlementation
- 15 Couches présentant une similitude de matériau
- 16 Liste et localisation des matériaux et produits repérés
- 17 Récapitulatif et estimation des quantités de matériaux ou produits contenant de l'amiante
- 18 Récapitulatif des matériaux ne contenant pas d'amiante
- 19 Schémas
- 20 Investigations complémentaires à mener
- 21 Documentation disponible
- 22 Observations
- 23 Modalités de repérage
- 24 Conditions particulières d'exécution

Et, le cas échéant en annexe :

Annexe 1 : Procès-verbaux d'analyse et documents utiles à la compréhension du présent rapport

Annexe 2: Attestation d'assurance Annexe 3 : Certificat de compétence

10. Programme de travaux du donneur d'ordre

Référence du document décrivant le programme des travaux transmis par le donneur d'ordre : Description du programme des travaux : Travaux sous Enrobés.

11. Programme et périmètre de repérage

Zones concernées ou impactées : Zone : Gare de Fondettes

Périmètre de repérage : Recherche Amiante et HAP sur 6 points pré-définis par le Donneur d'Ordre pour Travaux sous Enrobés.

12. Autres interlocuteurs éventuels

Maîtrise d'œuvre : non communiqué Maître d'ouvrage délégué : non communiqué

Coordonnateur : non communiqué

Accompagnateur désigné par le donneur d'ordre : Aucun contact sur place

13. Obligations des intervenants

Lors de la commande de la mission, le donneur d'ordre transmet les documents ou informations en sa possession qui doivent être remis à l'opérateur de repérage pour exécuter sa mission dans de bonnes conditions et, en particulier :

Réf.: DIA-HGS06-2409-029 Rapport Amiante: 3/29 OPT'IM DIAGNOSTICS - 12 Rue du Pont de l'Arche - 37550 ST AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 Dossier: 3 / 29

00024

Rapport Amiante: 4/29

Dossier: 4 / 29

- La liste des ouvrages concernés*;
- Les plans à jour de l'ouvrage ou, à défaut, des croquis* ; si ce n'est pas le cas, le donneur d'ordre fait réaliser ou réalise les plans ou croquis manquants ;
- Si elles sont connues, les dates de pose ou d'fabrication et mise en œuvre des différents composants de l'ouvrage, l'origine, les années de fabrication des matériaux et produits constituant l'ouvrage, les modifications, réhabilitations et réparations effectuées sur l'ouvrage;
- Le programme des travaux*, y compris sur d'autres ouvrages que ceux pour lesquels la mission est demandée mais concernés par les travaux projetés;
- Les éléments d'information nécessaires à l'accès aux différentes parties de l'ouvrage en toute sécurité (notion d'ouvrage accessible) tant sur ses parties intérieures qu'extérieures (*);
- Les rapports concernant la recherche d'amiante déjà réalisés*;
- La destination des ouvrages ou terrains (actuelle et passée);
- Les documents dont le donneur d'ordre dispose concernant leur auscultation, les caractéristiques particulières des matériaux (le Dossier des Ouvrages Exécutés DOE, plans d'exécution, de récolement, résultats de sondages, le Dossier d'Interventions Ultérieures sur l'Ouvrage DIUO, ...);
- Si les informations sont disponibles : les modifications survenues, les dates et la nature des travaux réalisés (réparation, restauration, entretien, réhabilitation...).

Les documents marqués d'un [*] doivent être communiqués lors de la consultation ou commande.

Pour rappel, ce présent document vient en complément des rapports existants de repérage antérieurs (diagnostic avant-travaux par exemple). Il appartient au maître d'ouvrage ou à l'employeur des salariés susceptibles d'être exposés aux fibres d'amiante de demander au propriétaire du bâtiment les dossiers techniques regroupant les informations relatives à la recherche et à l'identification des matériaux contenant de l'amiante. Ces documents doivent également être communiqués par le maître d'ouvrage au maître d'œuvre et au coordinateur. Conformément au code du travail, ces rapports, y compris le présent document, doivent être joints au plan de prévention, PGSSPS, PGSCSPS, Dossier d'interventions ultérieures... Ils doivent être remis à l'ensemble des employeurs de salariés susceptibles d'être exposés à des fibres d'amiante dans le cadre du chantier de travaux. Ils doivent également être joints aux éventuels dossiers d'appel d'offre ou demande de devis concernant l'intervention de salariés susceptibles d'être exposés aux fibres d'amiante.

Le présent rapport doit faire partie intégrante de l'évaluation des risques à établir dans le cadre du chantier. Le repérage, objet du présent rapport, est, conformément à la norme NF X 46-102 de la version en vigueur, réalisé à l'initiative du donneur d'ordre et du propriétaire si le donneur d'ordre n'est pas le propriétaire.

14. Ecarts et adjonctions réalisés lors de la mission par rapport à la réglementation

Sans Objet.

15. Couches présentant une similitude de matériau

CPSM ET DESCRIPTION	Localisation(s)	MPCA repéré ?
ZPSO #1 : Enrobé	Zone : Gare de Fondettes	Non
ZPSO #2 : Enrobé d'une épaisseur de 7cm	Zone : Gare de Fondettes	Non
ZPSO #3 : Enrobé d'une épaisseur de 7cm	Zone : Gare de Fondettes	Non
ZPSO #4 : Enrobé d'une épaisseur de 3cm	Zone : Gare de Fondettes	Non
ZPSO #5 : Enrobé	Zone : Gare de Fondettes	Non

ZPSO #6 : Enrobé

Zone : Gare de Fondettes

Non

Rapport Amiante : 5/29

Dossier: 5 / 29

16. Liste et localisation des matériaux et produits repérés

ZPSO #1	Inrastructures de transport / Enrobé					
Localisation : Zone : Gare de Fondettes						
Partie Inspectée / Descripti	ion	Photo	N° Ech.	Conclusion		
Enrobé Précisions de localisation : Lieu du prélèvement : Zone : de Fondettes	Gare	Avenue du Genéral de Gaulle, Fondettes, 37230, Centre-Val de Loire, France fanides, 104/97/98 47.398677, 0.645797 0.6612-9727 Par Altrude X3.7 metres 0.6710-9723 AN Merced 0.6266, Enders 0.7710-9723 AN Merced 0.6266, Enders 0.7710-97	P001	Absence d'amiante Après analyse référence échantillon n°001		

Rapport Amiante : 6/29

Dossier: 6 / 29

ZPSO #2	Inrastructures de transport / Enrobé d'une épaisseur de 7cm					
Localisation : Zone : Gare de Fondettes						
Partie Inspectée / Descript	ion	Photo	N° Ech.	Conclusion		
Enrobé d'une épaisseur de 7	7cm	Salt parties of the Salt Salt Salt Salt Salt Salt Salt Salt	P002	Absence d'amiante		
Précisions de localisation : Lieu du prélèvement : Zone : de Fondettes	: Gare	Rue des Trois Mariés, Fondettes, 37230, Centre- Val de Loire, France Lantude 47.3988.23 Los 010.125 PM Altude \$18 meters Morrored, 07/IR2024 Altude \$18 meters Morrored, 07/IR2024 Altude \$18 meters Morrored, 07/IR2024 Altude \$18 meters Altude \$18 meters Val de Loire, France Val de Loire, France		Après analyse référence échantillon n°002		

ZPSO #3	Inrastructures de transport / Enrobé d'une épaisseur de 7cm					
Localisation : Zone : Gare de Fondettes						
Partie Inspectée / Descript	ion	Photo	N° Ech.	Conclusion		
Enrobé d'une épaisseur de 7 Précisions de localisation : Lieu du prélèvement : Zone : de Fondettes		Rue des Trois Mariés, Fondettes, 37230, Centre-Val de Loire, France Lutitude 47,398577 Local 011434 F PM GMT 31143 IS PM Altitude 53 3 mètres mercred. 00748/2028 Altitude 53 3 mètres mercred.	P003	Absence d'amiante Après analyse référence échantillon n°003		

Rapport Amiante : 7/29 Dossier : 7/29

ZPSO #4	Inrastructures de transport / Enrobé d'une épaisseur de 3cm					
Localisation : Zone : Gare de Fondettes						
Partie Inspectée / Description Photo N° Ech. Conclusion						
Enrobé d'une épaisseur de 3 Précisions de localisation : Lieu du prélèvement : Zone : de Fondettes		Avenue du Général de Gaule, Fondettes 37230. Centre-Val de Loire, France. 47,39838 47,3988 47,3988 47,3988 47,3988 47,3	P004	Absence d'amiante Après analyse référence échantillon n°004		

ZPSO #5	Inrastru	ctures de transport / Enrobé					
Localisation : Zone : Gare de	Localisation : Zone : Gare de Fondettes						
Partie Inspectée / Descripti	ion	Photo	N° Ech.	Conclusion			
Enrobé Précisions de localisation : Lieu du prélèvement : Zone : de Fondettes	Gare	Chemin des Roches, Fondettes, 37230, Centre-Val de Loire, France Lamode 47.398051 Loca 01.44.99 M Antible 13.1 mines Antible 13	P005	Absence d'amiante Après analyse référence échantillon n°005			

Rapport Amiante: 8/29

Dossier: 8 / 29

ZPSO #6	Inrastructures de transport / Enrobé					
Localisation : Zone : Gare de Fondettes						
Partie Inspectée / Descript	ion	Photo	N° Ech.	Conclusion		
Enrobé Précisions de localisation : Lieu du prélèvement : Zone : de Fondettes	: Gare	Chemin des Roches, Fondettes, 37230, Centre-Val de Loire, France Latitude 47.398253 Local OLANZ PM ONT 11.4422 AM Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude 47.398253 Local OLANZ PM ONT 11.4422 AM Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude 47.398254 Local OLANZ PM ONT 11.4422 AM Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude AT 338264 Local Chemin des Roches, Fondettes, 17200, Centre-Val de Loire, France Latitude L	P006	Absence d'amiante Après analyse référence échantillon n°006		

17. Récapitulatif et estimation des quantités de matériaux ou produits contenant de l'amiante

Sans Objet.

18. Récapitulatif des matériaux ne contenant pas d'amiante

Matériaux ou produits	Localisation(s)	ZPS0	N° prélèvement ou Justification
Enrobé	Zone : Gare de Fondettes	1	P001
Enrobé d'une épaisseur de 7cm	Zone : Gare de Fondettes	2	P002
Enrobé d'une épaisseur de 7cm	Zone : Gare de Fondettes	3	P003
Enrobé d'une épaisseur de 3cm	Zone : Gare de Fondettes	4	P004
Enrobé	Zone : Gare de Fondettes	5	P005
Enrobé	Zone : Gare de Fondettes	6	P006

Rapport Amiante : 9/29

Dossier: 9 / 29

19. Schémas

Pour les infrastructures routières et ferroviaires, la réglementation demande que les croquis soient réalisés à l'échelle 1/200 ou sous forme de schéma itinéraire. Si les plans transmis par le donneur d'ordre ne sont pas ceux demandés par la réglementation, cette demande ne peut pas être respectée.

OPTIM DIAGNOSTICS - 12 Rue du Pont de l'Arche - 37550 ST AVERTIN - 02 47 25 89 21 - SIRET : 499 C 00024 Rapport Amiante: 10/29 Dossier: 10/29

Dossier: 11 / 29

20. Investigations complémentaires à mener

Sans Objet.

21. Documentation disponible

Type de document technique	Nom du document technique	Date	Opérateur et société	Utilisable
Date de délivrance du permis de construire - les années de construction - modifications - réhabilitation Destination des locaux (actuelles et passées)				Non fourni Non fourni
Documents concernant la construction - les caractéristiques particulières des locaux - les modifications survenues dans les locaux - les dates et la nature des travaux réalisés (réparations - restaurations - entretiens - réhabilitation)				Non fourni
Eléments d'information nécessaire à l'accès aux différentes parties de l'immeuble bâti en toute sécurité				Non fourni
Liste des immeubles ou parties d'immeuble bâtis concernés				Fourni
Plans ou croquis à jour de l'immeuble bâti				Fourni
Programme détaillé des travaux				Fourni
Rapports antérieurs amiante				Non fourni

[*] Le donneur d'ordre doit établir et finaliser ce document à l'aide de l'opérateur de repérage. Ce document, relatif à l'opération de recherche des matériaux susceptibles de contenir de l'amiante, doit notamment tenir compte des modalités d'accès des ouvrages.

22. Observations

Sans objet

23. Modalités de repérage

L'opérateur de repérage doit, afin de définir son intervention :

- Vérifier la complétude et analyser les documents fournis par le donneur d'ordre et, le cas échéant, lui demander les actions complémentaires nécessaires : recherche d'informations, réalisation des documents manquants en fonction des exigences définies dans le présent document ;
- Déterminer le périmètre de repérage et le programme de repérage en fonction du programme des travaux, et les transmettre au donneur d'ordre pour avis éventuel avant le début des opérations de
- Organiser un cheminement logique permettant l'examen de tout le périmètre de repérage. Ce cheminement peut cependant comprendre des accès mis à nu progressivement au fur et à mesure de leur réalisation ;
- Veiller à la cohérence de l'ensemble des recherches et au récolement des résultats, lorsque sa mission consiste à compléter ou actualiser les repérages précédemment réalisés.

L'inspection de l'ouvrage est exhaustive au regard du programme des travaux. Le repérage peut nécessiter des sondages destructifs ou des démontages particuliers.

Rapport Amiante: 12/29

Dossier: 12 / 29

Le repérage ne se limite pas à la zone où les travaux sont envisagés. Il s'étend :

- Aux zones impactées de façon directe ou indirecte par les travaux envisagés ;
- A l'épaisseur prévue de travaux plus une épaisseur supplémentaire correspondant à la précision des travaux (2 cm pour les enrobés et tout autre matériau lié).

Lorsque l'opérateur de repérage à la connaissance des matériaux ou produits qui contiennent effectivement de l'amiante, il peut revenir sur site pour estimer leurs quantités. Les quantités données dans ce rapport sont données à titre indicatif et peuvent variées de \pm 1-30 %.

Le rapport de repérage peut faire l'objet d'une présentation au donneur d'ordre. Cette disposition est particulièrement recommandée pour les rapports avec investigations complémentaires à réaliser en phase travaux, et devrait se faire, de préférence sur site, en présence du coordonnateur sécurité et protection de la santé (SPS) et de la maîtrise d'œuvre.

Le rapport de repérage doit être joint aux documents de consultation des entreprises. Il ne constitue pas à lui seul le dossier de consultation des entreprises.

24. Conditions particulières d'exécution

Liste des matériaux et produits à repérer dans le cadre du repérage amiante dans les structures de voies piétonnes, cyclables, routières, ferroviaires, portuaires et aéroportuaires (Annexe A : Liste prévisionnelle des sondages des matériaux et produits susceptibles de contenir de l'amiante à repérer de la norme NF X 46-102 de Novembre 2020).

Ouvrages	Parties d'ouvrages
Autoroutes et 2x2 voies, 2x3 voies et +	Chaussée Bretelle
Routes bidirectionnelles hors agglomération	Chaussée Pistes cyclables
Route en agglomération	Chaussée * Pistes cyclables Trottoir
Aménagement urbain	Infrastructures non linéaires (places, zones piétonnes, parkings) Pierres ornementales Quai de station de transport en commun, quai de déchargement
Plates-formes et voiries industrielles, portuaires ou aéroportuaires	Piste, plate-forme Taxiway & Poste, voie de circulation
Ballast**	LGV et groupes UIC*** b 1 à 4 (tout a été renouvelé il y a moins de 40 ans) Groupes UIC*** 5 à 6 renouvelé après 1980 Groupes UIC*** 5 à 6 renouvelé avant 1980 Groupes UIC*** 7 à 9

^{*} Dans certaines grandes agglomérations, des revêtements contenant de l'amiante chrysotile ont pu être utilisés sur des carrefours et au niveau de feux de signalisation, soumis de manière plus importante aux érosions liées aux freinages des véhicules. L'espacement des sondages tous les 200 m doit permettre de les identifier.

Le repérage amiante en cas de travaux peut donner lieu à des démontages et sondages destructifs.

^{**}Pour le ballast : la procédure de comparaison se fait sur les compositions lithologiques et pas sur l'épaisseur de la couche. Un prélèvement sur les 10 cm supérieurs suffit.

^{***}Groupes UIC : Classement international établit par l'Union Internationale des Chemins de fer.

Rapport de mission de repérage des matériaux contenant des Hydrocarbures Aromatiques Polycycliques (HAP) avant réalisation de travaux dans les enrobés

L'objet de la mission est l'établissement d'un rapport de repérage des matériaux et produits contenant de l'amiante avant réalisation de travaux ou en vue de compléter ou de constituer les documents de traçabilité et de cartographie portant sur les enrobés désigné ci-dessous. Il est réalisé suivant nos conditions particulières et générales de vente et d'exécution.

1. Donneur d'ordre

COLAS CENTRE-OUEST

2 rue de la Plaine, 37390 METTRAY

2. Propriétaire

TOURS METROPOLE VAL DE LOIRE, Parc de la Perraudière, BP 651, 37540 SAINT CYR SUR LOIRE

3. Gestionnaire des infrastructures de transport

Non Communiqué

4. Autre

Non communiqué

5. Identification de l'enrobé

Localisation et identification de l'enrobé	Gare, 37230 FONDETTES
Désignation et type d'ouvrage	Chaussée
Référence du programme de travaux	Sans Objet
Année d'installation initiale	Non précisée

Références de la mission

Commande effectuée le	13/09/2024
Visite réalisée le[s]	18/09/2024 à 14:30
Rapport émis le	04/10/2024
Opérateur(s) de repérage, entité et certification	Monsieur Gaylord MARTIN Le présent rapport est établi par une personne dont les compétences sont certifiées par : LCP 23 Bis rue Thomas Edison 33610 CANEJAN (Réf : 750)
Assurances	AXA RCP n° 1148866204 - Montant de garantie : 2 000 000 € - Date de validité : 31/12/2024
Laboratoire accrédite (analyse)	EUROFINS ABO,
Contact sur place	Aucun contact sur place
Sous-traitance	Sans objet
Taytan de néférance : Annêté du 16/07/0010 naletif au nanénage	de l'amiente event certaines enérotions réalisées dans les immeubles

Textes de référence : Arrêté du 16/07/2019 relatif au repérage de l'amiante avant certaines opérations réalisées dans les immeubles bâtis ; Norme NF X 46-020 version août 2017 ; Décret n°2017-899 du 9 mai 2017 ; Décret n°2019-251 du 27 mars 2019.

Réf.: DIA-HGS06-2409-029
OPTIM DIAGNOSTICS - 12 Rue du Pont de l'Arche - 37550 ST AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808

Rapport Amiante : 1/12 Dossier: 13 / 29

Rapport Amiante: 2/12

Dossier: 14 / 29

7. Conclusion(s) de la mission de repérage

Absence d'Hydrocarbures Aromatiques Polycycliques

Dans le cadre de la mission objet du présent rapport :

La présence d'Hydrocarbures Aromatiques Polycycliques(HAP) n'a pas été repérée en teneur élevée. Compte tenu des concentrations relevées, le donneur d'ordre pourra réutiliser les agrégats d'enrobés à chaud ou tièdes.

Fait à ST AVERTIN, le 04/10/2024

Monsieur Gaylord MARTIN Opérateur de repérage certifié

8. Parties d'ouvrages non visitées

Tous les ouvrages dont l'opérateur a eu connaissance ont été visités.

9. Sommaire

- 1 Donneur d'ordre
- 2 Propriétaire de l'infrastructure
- 3 Gestionnaire des infrastructures de transport
- 4 Autre
- 5 Identification de l'infrastructure de transport
- 6 Références de la mission
- 7 Conclusion(s) de la mission de repérage
- 8 Parties d'ouvrages non visitées
- 9 Sommaire
- 10 Programme de travaux du donneur d'ordre
- 11 Programme et périmètre de repérage
- 12 Autres interlocuteurs éventuels
- 13 Obligations des intervenants
- 12 Conditions de réalisation du repérage
- 14 Liste et localisation des matériaux et produits repérés
- 15 Investigations complémentaires
- 16 Documentation disponible
- 17 Observations
- 18 Modalités de repérage
- 19 Conditions particulières d'exécution
- 20 Schéma

Et, le cas échéant en annexe :

Annexe 1 : Récapitulatif et estimation des quantités de matériaux ou produits contenant de l'amiante Annexe 2 : Procès-verbaux d'analyse et documents utiles à la compréhension du présent rapport

10. Programme de travaux du donneur d'ordre

Référence du document décrivant le programme des travaux transmis par le donneur d'ordre : Description succincte du programme des travaux : Travaux sous Enrobés.

Rapport Amiante: 3/12

Dossier: 15 / 29

11. Programme et périmètre de repérage

Zones concernés ou impactés : Zone : Gare de Fondettes

Périmètre de repérage : Recherche Amiante et HAP sur 6 points pré-définis par le Donneur d'Ordre pour Travaux sous Enrobés.

12. Autres interlocuteurs éventuels

Maîtrise d'œuvre : non communiqué Maître d'ouvrage délégué : non communiqué

Coordonnateur : non communiqué

Accompagnateur désigné par le donneur d'ordre : Aucun contact sur place

13. Obligations des intervenants

Il appartient au donneur d'ordre, au maître d'ouvrage, au propriétaire, au gestionnaire de l'infrastructure ou à l'employeur de définir la présence ou l'absence d'Hydrocarbures Aromatiques Polycycliques (HAP) en teneur élevée dans le périmètre des travaux défini par ces derniers.

Le présent rapport doit faire partie intégrante de l'évaluation des risques à établir dans le cadre du chantier.

Pour rappel, connaître la teneur en HAP dans un enrobé routier permet de déterminer si le recyclage de ce dernier pourra être réalisé à chaud ou à tiède, ou non. Cette caractérisation est réalisée via une étude documentaire disponible (étude du dossier de l'ouvrage exécuté, du dossier d'intervention ultérieure sur l'ouvrage) et/ou via des prélèvements réalisés par carottage.

14. Liste et localisation des matériaux et produits repérés

Partie d'ouvrage	Repérage	Description	Critère ayant permis de conclure	Présence ou absence de HAP	Concentration (en mg/kg)
Aménagement urbain	001	Enrobé	Analyse Laboratoire	Absence	< 0.5 mg/kg
Route en agglomération	002	Enrobé d'une épaisseur de 7cm	Analyse Laboratoire	Absence	< 0.5 mg/kg
Route en agglomération	003	Enrobé d'une épaisseur de 7cm	Analyse Laboratoire	Absence	10.0 mg/kg
Aménagement urbain	004	Enrobé d'une épaisseur de 3cm	Analyse Laboratoire	Absence	< 0.5 mg/kg
Aménagement urbain	005	Enrobé	Analyse Laboratoire	Absence	< 0.5 mg/kg
Aménagement urbain	006	Enrobé	Analyse Laboratoire	Absence	< 0.5 mg/kg

15. Investigations complémentaires

Sans Objet.

Dossier: 16 / 29

16. Documentation disponible

Type de document technique	Nom du document technique	Date	Opérateur et société	Utilisable/utilisable en tout ou partie/non utilisable Justification
Date de délivrance du permis de construire - les années de construction - modifications - réhabilitation				Non fourni
Destination des locaux (actuelles et passées)				Non fourni
Documents concernant la construction - les caractéristiques particulières des locaux - les modifications survenues dans les locaux - les dates et la nature des travaux réalisés (réparations - restaurations - entretiens - réhabilitation)				Non fourni
Eléments d'information nécessaire à l'accès aux différentes parties de l'immeuble bâti en toute sécurité				Non fourni
Liste des immeubles ou parties d'immeuble bâtis concernés				Fourni
Plans ou croquis à jour de l'immeuble bâti				Fourni
Programme détaillé des travaux				Fourni
Rapports antérieurs amiante				Non fourni

[*] Le donneur d'ordre doit établir et finaliser ce document à l'aide de l'opérateur de repérage. Ce document, relatif à l'opération de recherche des matériaux susceptibles de contenir de l'amiante, doit notamment tenir compte des modalités d'accès des locaux.

17. Observations

Sans Objet.

18. Modalités de repérage

Avant de commencer les prélèvements, l'opérateur de repérage a consulté le « guichet unique » pour connaître l'ensemble des réseaux situés à proximité du périmètre des travaux.

L'opérateur de repérage a travaillé en deux temps :

- Premièrement, il a consulté tous les documents disponibles caractérisant l'ouvrage (par exemple, étude du dossier de l'ouvrage exécuté (DOE), du dossier d'intervention ultérieure sur l'ouvrage (DIUO), ...). Cette étude permet à l'opérateur de limiter les analyses par prélèvements.
- Deuxièmement, en fonction des informations disponibles, l'opérateur de repérage a réalisé des prélèvements d'échantillons d'enrobé routier. Ces échantillons ont été envoyés en -qui a défini la concentration d'Hydrocarbures Aromatiques Polycycliques dans les couches concernées par les travaux. Les résultats permettent de localiser les couches à forte teneur et leurs étendues.

L'inspection du périmètre est exhaustive au regard du programme des travaux. Ce repérage nécessite des sondages destructifs.

Lorsque l'opérateur de repérage à la connaissance des matériaux ou produits qui contiennent effectivement de l'amiante, il peut revenir sur site pour estimer leurs quantités. Les quantités données dans ce rapport sont données à titre indicatif et peuvent variées de +/- 30 %.

Rapport Amiante: 5/12

Dossier: 17 / 29

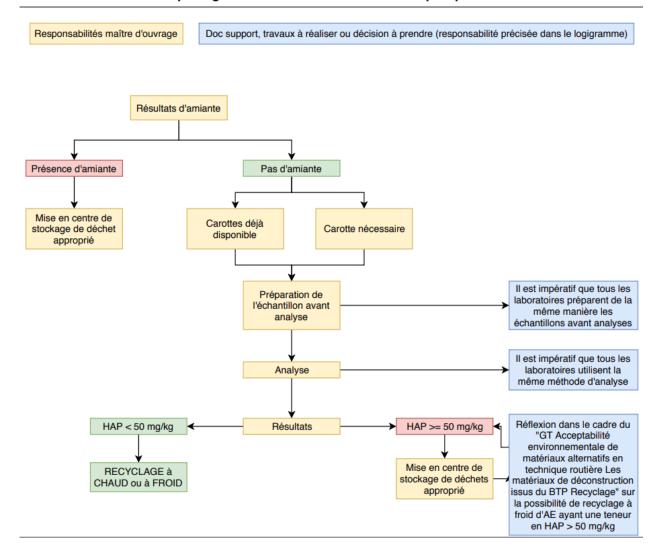
19. Conditions particulières d'exécution

Le repérage d'Hydrocarbures Aromatiques Polycycliques (HAP) avant travaux est réalisé suivant le « guide d'aide à la caractérisation des enrobés bitumineux » mis à jour le 20 novembre 2013.

Sauf avis contraire indiqué dans l'ordre de mission, le rebouchage est à la charge du donneur d'ordre. L'ordre de mission indique les responsabilités de mise en place de la signalisation temporaire sur chantier.

20. Schéma

Pour les infrastructures routières et ferroviaires, la réglementation demande que les croquis soient réalisés à l'échelle 1/200 en ou sous forme de schéma itinéraire. Si les plans transmis par le donneur d'ordre ne sont pas ceux demandés par la réglementation, cette demande ne peut pas être respectée.



Rapport Amiante: 6/12

Dossier: 18 / 29

Annexe 1 : Logigramme de gestion de la problématique HAP lors de travaux sur enrobés

Inspiré de l'annexe G-2 du Guide d'aide à la caractérisation des enrobés bitumineux Logigramme de gestion de la problématique HAP lors de travaux sur enrobés Comité de pilotage national "Travaux routiers - Risques professionnels"

Annexe 2 : Procès-verbaux d'analyse

OPT'IM DIAGNOSTICS Monsieur Gaylord MARTIN DIAGAMTER 12 rue du Pont de l'Arche 37550 SAINT AVERTIN

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page1/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Dossier N°: 24W025199 Date de réception : 23/09/2024 Date d'analyse : 25/09/2024

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

N° éch.	Référence client	Description visuelle	Technique utilisée / Analyste	Prép Nb prep / Nb grilles ou lames	paration Type	Résultats
001	DIA-HGS06-2409-0 29-00 1 Aménagement urbain Infrastructures non	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MOLP * / PFX7	6/6*	-	Analyse réalisée non * conclusive
	linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MET * / FEY6	3 / 6 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
	concernée : Zone : Gare de Fondettes	Matériau dur bitumineux de type enrobé (visiblement monocouche) liant hydrocarboné	MET * / FEY6	1 / 2 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
002	DIA-HGS06-2409-0 29-002 Route e n agglomération Trottoir Enrobé d'une épaisseur de 7cm	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MOLP * / PFX7	6/6*	*	Analyse réalisée non * conclusive
	Pièce concernée : Zone : Gare de Fondettes	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MET * / P2A2	3 / 6 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
		Matériau dur bitumineux de type enrobé (visiblement monocouche) liant hydrocarboné	MET * / P2A2	1 / 2 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole '

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B

ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf.: DIA-HGS06-2409-029 OPT'IM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Dossier: 20 / 29

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page2/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Dossier N°: 24W025199 Date de réception: 23/09/2024 Date d'analyse: 25/09/2024

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

N° éch.	Référence client	Description visuelle	Technique utilisée / Analyste	Prép Nb prep / Nb grilles ou lames	aration Type	Résultats
003	29-003 Route e n agglomération Chaussée Enrobé	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MOLP * / PFX7	6/6*	-	Analyse réalisée non * conclusive
	d'une épaisseur de 7cm Pièce concernée : Zone : Gare de Fondettes	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MET * / FEY6	3 / 6 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
		Matériau dur bitumineux de type enrobé (visiblement monocouche) liant hydrocarboné	MET * /FEY6	1 / 2 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
004	DIA-HGS06-2409-0 29-00 4 Aménagement urbain Infrastructures non	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MOLP * / PFX7	6/6*	*	Analyse réalisée non * conclusive
	linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé d'une	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MET * /FEY6	3 / 6 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
	épaisseur de 3cm Pièce concernée : Zone : Gare de Fondettes	Matériau dur bitumineux de type enrobé (visiblement monocouche) liant hydrocarboné	MET * /FEY6	1 / 2 *	Calcination et* attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf. : DIA-HGSO6-2409-029 OPT'IM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Dossier: 21 / 29

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page3/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Dossier N°: 24W025199 Date de réception: 23/09/2024 Date d'analyse: 25/09/2024

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

N° éch.	Référence client	Description visuelle	Technique utilisée / Analyste	Prép Nb prep / Nb grilles ou lames	paration Type	Résultats
005	DIA-HGS06-2409-0 29-00 5 Aménagement urbain Infrastructures non	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MOLP * / PFX7	6/6*	- *	Analyse réalisée non * conclusive
	linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MET * / FEY6	3 / 6 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
	concernée : Zone : Gare de Fondettes	Matériau dur bitumineux de type enrobé (visiblement monocouche) liant hydrocarboné	MET * /FEY6	1 / 2 *	Calcination et* attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
006	DIA-HGS06-2409-0 29-00 6 Aménagement urbain Infrastructures non	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MOLP * / PFX7	6/6*	- *	Analyse réalisée non * conclusive
	linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce	matériau dur bitumineux de type enrobé (visiblement monocouche) granulats (noir)	MET * /FEY6	3 / 6 *	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées
	concernée : Zone : Gare de Fondettes	Matériau dur bitumineux de type enrobé (visiblement monocouche) liant hydrocarboné	MET * /FEY6	1/2*	Calcination et attaque acide (méthode interne de traitement)	Fibres d'amiante non * détectées

Méthodes d'analyses employées pour la recherche qualitative des fibres d'amiante dans les matériaux :

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf. : DIA-HGS06-2409-029 OPTIM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Dossier : 22 / 29

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page4/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Dossier N°: 24W025199 Date de réception: 23/09/2024 Date d'analyse: 25/09/2024

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

Traitement par une méthode interne (modes opératoires T-PE-WO63769 et T-PM-WO84179) en vue d'une identification des fibres au Microscope Optique à Lumière Polarisée (MOLP) selon le guide HSG 248 - annexe 2.

Traitement par une méthode interne (modes opératoires T-PE-WO63769 et T-PM-WO22725) en vue d'une identification des fibres au Microscope Electronique à Transmission (MET) selon parties utiles de la norme NFX 43-050 et IMA « Principes pétrographiques et de classification minéralogique ».

NB 1: Sauf information contraire sur ce rapport, le laboratoire effectue une analyse couche par couche de l'échantillon transmis par le demandeur. Des composants décrits simultanément dans une même couche n'ont pas pu faire l'objet de prises d'essai séparées pour l'analyse.

NB 2 : "Fibres d'amiante non détectées au MOLP" s'entend comme : "aucune fibre d'amiante n'a été détectée, l'échantillon objet de l'essai peut éventuellement renfermer une teneur en fibre d'amiante optiquement observables** inférieure à la limite de détection. ** Pour être optiquement observable, une fibre doit avoir une largeur supérieure à 0,2 micromètre (μm)" ; "Fibres d'amiante non détectées" au MET s'entend comme : " aucune fibre d'amiante n'a été détectée, l'échantillon objet de l'essai peut éventuellement renfermer une teneur en fibre d'amiante inférieure à la limite de détection."

NB 3 : Pour la recherche d'amiante dans les matériaux, la limite de détection garantie par prise d'essai dans les matériaux (en MOLP et /ou en MET) est de 0.1% en masse.

NB 4: Le présent rapport mentionne les analyses conclusives et non conclusives. En effet, le laboratoire met en œuvre les deux techniques d'analyse MOLP et META sur tous les échantillons massifs conformément aux exigences indiquées dans l'arrêté du 1er octobre 2019.

Le « -» indiqué dans « Type de préparation » s'entend comme « Préparation avec traitement par calcination et attaque chimique et mécanique (méthode interne de traitement)

NB 5 : Analyse réalisée dans le cadre des textes réglementaires suivants : Décret n° 2017-899 du 9 mai 2017, Décret n° 2019-251 du 27 mars 2019, Décret n° 2011-629 du 3 juin 2011, Arrêté du 1er octobre 2019 (JORF n°0245 du 20 octobre 2019 texte n° 18), Arrêté du 25 juillet 2022 (JOFR n°0238 du 13 octobre 2022, texte n°10).

NB 6 : Le rapport est établi dans le cadre du cas 3 de l'article 6 de l'arrêté du 1er octobre 2019 à savoir la détection et l'identification d'amiante naturellement présent dans les matériaux et produits manufacturés. Il respecte également le cas 1 de l'article 6 de l'arrêté du 1er octobre 2019 à savoir la détection et l'identification d'amiante délibérément ajouté dans les matériaux et produits manufacturés.

NB 7 : En application de l'annexe I de l'arrêté du 1er octobre 2019, si au moins l'une des préparations met en évidence la présence d'amiante, il est conclu à la détection d'amiante sur l'échantillon. Sinon, il est conclu à la non détection de fibre d'amiante

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf. : DIA-HGSO6-2409-029 OPTIM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Dossier: 23 / 29

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page5/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Dossier N°: 24W025199 Date de réception : 23/09/2024 Date d'analyse : 25/09/2024

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

N° Echantillon		001	002	003	004	005
Référence client de l'écha	ntillon	29-001 Aménagement urbain	29-002 Route en agglomération Trottoir Enrobé d'une épaisseur de 7cm Pièce concernée : Zone :	DIA-HGS06-2409-0 29-003 Route en agglomération Chaussée Enrobé d'une épaisseur de 7cm Pièce concernée : Zone : Gare de Fondettes	29-004 Aménagement urbain Infrastructures non linéaires (places,	029-005 Aménagement urbain Infrastructures non linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce
Matrice	ia Délai Standa	Matériaux Routiers	Matériaux Routiers	Matériaux Routiers	Matériaux Routiers	Matériaux Routiers
NS006 : HAPs 16 composé						
Benzo(a)pyrène	mg/kg M.S.	< 0,5 *	< 0,5 *	0,97 *	< 0,5 *	40,0
Fluorène	mg/kg M.S.	< 0,5 *	< 0,5 *	< 0,5 *	< 0,5 *	10,0
Phénanthrène	mg/kg M.S.	< 0,5 *	< 0,5 *	1,49 *	< 0,5	- 0,0
Anthracène	mg/kg M.S.	< 0,5	< 0,5 *	< 0,5 *	< 0,5	~ 0,5
Fluoranthène	mg/kg M.S.	< 0,5	< 0,5 *	2,24 *	< 0,5	V 0,5
Pyrène	mg/kg M.S.	< 0,5 *	< 0,5 *	1,66 *	< 0,5 *	< 0,5 *
Benzo-(a)-anthracène	mg/kg M.S.	< 0,5	< 0,5	0,92 *	< 0,5	< 0,5 *
Chrysène	mg/kg M.S.	< 0,5	< 0,5 *	0,73 *	< 0,5 *	< 0,5 *
Benzo(b)fluoranthène	mg/kg M.S.	< 0,5	< 0,5 *	0,83 *	< 0,5	< 0,5 *
Benzo(k)fluoranthène	mg/kg M.S.	< 0,5	< 0,5 *	< 0,5	< 0,5	< 0,5 *
Indeno (1,2,3-cd) Pyrène	mg/kg M.S.	< 0,5	< 0,5	0,58 *	< 0,5	< 0,5 *
Dibenzo(a,h)anthracène	mg/kg M.S.	< 0,5	< 0,5 *	< 0,5 *	< 0,5 *	< 0,5 *
Benzo(ghi)Pérylène	mg/kg M.S.	< 0,5	< 0,5	0,60 *	< 0,5	< 0,5 *
Naphtalène	mg/kg M.S.	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5 *
Acénaphtène	mg/kg M.S.	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5 *
Acénaphthylène	mg/kg M.S.	< 0,5	< 0,5 *	< 0,5 *	< 0,5	< 0,5 *
Somme des HAP	mg/kg M.S.	< 0,5		10,0	< 0,5	< 0,5

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B

ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Dossier: 24 / 29

Réf.: DIA-HGS06-2409-029 OPT'IM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page6/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

N° Echantillon	001	002	003	004	005
Référence client de l'échantillon	29-001 Aménagement urbain	7cm Pièce concernée : Zone :	29-003 Route en agglomération Chaussée Enrobé d'une épaisseur de 7cm Pièce	29-004 Aménagement urbain	029-005 Aménagement urbain Infrastructures non linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce
Matrice	Matériaux Routiers	Matériaux Routiers	Matériaux Routiers	Matériaux Routiers	Matériaux Routiers
Ну	drocarbures	Aromatiques	s Polycycliqu	es	
NS019 : Analyse de la % matière sèche	95.2 *	98.1 *	96.6 *	97.6 *	99.8 *

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf. : DIA-HGSO6-2409-029 OPT'IM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page7/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Dossier N°: 24W025199 Date de réception : 23/09/2024 Date d'analyse : 25/09/2024

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

N° Echantillon	006
Référence client de l'échantillon	DIA-HGS06-2409-0 29-006 Aménagement urbain Infrastructures non linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce concernée: Zone: Gare de Fondettes
Matrica	Matériaux Poutiers

NS006: HAPs 16 composés - Délai Standard

Benzo(a)pyrène	mg/kg M.S.	< 0,5 *			
Fluorène	mg/kg M.S.	< 0,5 *			
Phénanthrène	mg/kg M.S.	< 0,5 *			
Anthracène	mg/kg M.S.	< 0,5 *			
Fluoranthène	mg/kg M.S.	< 0,5 *			
Pyrène	mg/kg M.S.	< 0,5 *			
Benzo-(a)-anthracène	mg/kg M.S.	< 0,5 *			
Chrysène	mg/kg M.S.	< 0,5 *			
Benzo(b)fluoranthène	mg/kg M.S.	< 0,5 *		-	
Benzo(k)fluoranthène	mg/kg M.S.	< 0,5 *			
Indeno (1,2,3-cd) Pyrène	mg/kg M.S.	< 0,5 *			
Dibenzo(a,h)anthracène	mg/kg M.S.	< 0,5 *			
Benzo(ghi)Pérylène	mg/kg M.S.	< 0,5			
Naphtalène	mg/kg M.S.	< 0,5 *			
Acénaphtène	mg/kg M.S.	< 0,5 *			
Acénaphthylène	mg/kg M.S.	< 0,5 *			
Somme des HAP	mg/kg M.S.	< 0,5			
NS019 : Analyse de la matière sèche	%	97.9 *			

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B

ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf.: DIA-HGS06-2409-029 OPTIM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Dossier: 26 / 29

Rapport d'analyse d'amiante et de HAP dans les matériaux

N° de rapport d'analyse : AR-24-NS-055233-01

Date d'émission de rapport : 04/10/2024 1:32

Page8/8

Annule et remplace la version AR-24-NS-053638-01 ayant pour date d'émission le 26/09/2024 à 19:17, qui doit être détruite ou nous être renvoyée.

Toute modification est identifiée par une mise en forme gras, italique et souligné ou notifiée dans les observations.

Référence dossier Client:DIA-HGS06-2409-029 Référence Commande : DIA-HGS06-2409-029

006 N° Echantillon Référence client de l'échantillon DIA-HGS06-2409-0 29-006 Aménagement urbain Infrastructures non linéaires (places, zones piétonnes, parkings.) Pierres ornementales Enrobé Pièce concernée : Zone : Gare de Fondettes Matrice Matériaux Routiers

Hydrocarbures Aromatiques Polycycliques

Méthode d'analyse employée pour la recherche quantitative de HAP dans les matériaux :

Extraction par mélange Hexane/acétone en vue d'un dosage des HAP par GCMSMS selon une méthode interne (procédure T-HAP-PR83048)
Les données transmises par le client pouvant affecter la validité des résultats (la date de prélèvement, la matrice, la référence échantillon et autres informations identifiées comme provenant du client), ne sauraient engager la responsabilité du laboratoire. Des essais ont permis de garantir la stabilité des échantillons pendant trois semaines dans les conditions de stockage du laboratoire. Au-delà de ce délai de stabilité, le laboratoire ne peut garantir l'absence de risque. Toutes les informations sont disponibles sur demande.

Marc-Antoine Thabard Technicien Analyste Microscopie

Tous les éléments de traçabilité sont disponibles sur demande. La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Les résultats du présent rapport s'appliquent aux objets tels qu'ils ont été reçus et ne concernent que les objets soumis à l'essai. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole

Eurofins Analyses pour le Bâtiment Ouest SAS 7 rue Pierre Adolphe Bobierre ,CS 90827 F-44308 Nantes, FRANCE

Tél: +33388916531: +33 2 51 83 49 48 - Fax: +33388916531 - Site Web: https://www.eurofins.fr/amiante/analyses/ S.A.S. au capital de 1 037 000 € RCS Nantes SIRET 529 294 092 00018 TVA FR48 529 294 092 APE 7120B

ACCREDITATION N° 1- 5597 Portée disponible sur www.cofrac.fr

Réf.: DIA-HGS06-2409-029

OPT'IM DIAGNOSTICS - 12 rue du Pont de l'Arche - 37550 SAINT AVERTIN - 02 47 25 89 21 - SIRET : 499 077 808 00024

Dossier: 27 / 29

Attestation d'assurance

GALEY-LABAUTHE & ASSOCIES

21 Place Dupuy 31000 TOULOÚSE Tel. 05 62 73 09 09

email. agence.galeylabauthe@axa.fr

n° Orias 10 053 214

ATTESTATION D'ASSURANCE

La société AXA FRANCE représentée par GALEY-LABAUTHE & ASSOCIES atteste que l'entreprise OPT IM DIAGNOSTICS représentée par Monsieur Patrick HEGESIPPE, domiciliée 12 rue du Pont de l'Arche 37550 SAINT-AVERTIN est titulaire du contrat suivant, en cours pour la période du 01/05/2024 au 31/12/2024 couvrant les conséquences pécuniaires de sa responsabilité civile suivant les dispositions des conditions générales et particulières

ASSURANCE RESPONSABILITE CIVILE Nº 1148866204 Contrat « Groupe »

Pour les activités désignées ci-dessous, telles que décrites aux conditions particulières du contrat ci-dessus référencés et exercées conformément aux dispositions des décrets et lois en vigueur :

- Amiante avant démolition
- Amiante génie civil
- Diagnostic Technique Global (DTG)
- Mérules avant démolition
- Plomb avant travaux
- Qualité de l'air (benzène, CO2, formaldéhyde)
- Assainissement collectif
- Constat Amiante Vente sans mention
- Contrôle périodique amiante
- Diagnostic de Performance Energétique sans
- Diagnostic défiscalisation ancien
- Dossier Technique Amiante avec mention
- ENSA (Etat des Nuisances Sonores Aériennes)
- Etat des installations intérieures de Gaz
- Etat des Risques et Pollutions
- Etat relatif à la présence de Termites dans le bati Etats des lieux
- Logement décent
- Superficie Carrez/Habitable et autres - CQV (Certificat de qualité de vie)
- Plan 2D/3D

- Amiante avant travaux immeubles bâtis
- Diagnostic gestion des déchets (PEMD)
- Examen visuel après travaux de retrait d'amiante
- Plomb avant démolition
- Projet de Plan Pluriannuel de Travaux
- Termites avant démolition
- Audit énergétique
- Constat du Risque d'Exposition au Plomb (vente, location, parties
- Diagnostic de Performance Energétique avec Mention
- DPE projeté
- Dossier Amiante Parties Privatives
- Dossier Technique Amiante sans mention
- Etat des installations intérieures d'Electricité
- Etat des Risques de pollution des sols (ERPS)
- Etat parasitaire
- Mérules
- Certificat d'ensoleillement
- Photo 360 et visite virtuelle

Extrait du tableau des garanties spécifiques à l'assuré désigné ci-dessus et par Cabinet de diagnostics :

- 1. Tous dommages corporels matériels et immatériels consécutifs confondus : 12 000 000 € par sinistre
- 2. Faute inexcusable (dommages corporels) : 1.000.000 € par sinistre et 2.000.000 € par année d'assurance
- 3. Atteinte à l'environnement : Tous dommages confondus : 1 000 000 € par année d'assurance
- Dommages immatériels non consécutifs : 2.000.000 € par sinistre et par année d'assurance
 Dommages aux biens confiés : 350 000 € par sinistre
- 6. Défense : inclus dans la garantie mise en jeu
- 7. Recours : 28.354 € par litige

La présente attestation ne peut engager la compagnie AXA FRANCE en dehors des limites précisées par les clauses et conditions du contrat auquel il se réfère.

Fait à Toulouse, le 8 avril 2024

GALEY-LABAUTHE & ASSOCIES

AXA France IARD.S.A. au capital de 214 799 030 €. 722 057 460 R.C.S. Nanterre. TVA intracommunautaire n° FR 14 722 057 460• AXA Assurances IARD Mutuelle. Société d'Assurance Mutuelle à cotisations fixes contre l'incendic, les accidents et risques divers Siren 775 699 309. TVA intracommunautaire n° FR 14 722 057 460• AXA Assistances de l'Arche - 92727 Nanterre Cedex • Entreprises règles par le Code des Assurances. Opérations d'assurances concrées de TVA – art. 261-€ CCI – suit pour les garanties portées par AXA Assistance France Assurance France France

Réf.: Dossier: 28 / 29

Certificat de compétence

Certificat de compétences Diagnostiqueur Immobilier

Monsieur MARTIN Gaylord

Amiante sans mention

Selon arrêté du 24 décembre 2021

Amiante

Date d'effet: 08/02/2022: - Date d'expiration: 07/02/2029

Amiante avec mention

Selon arrêté du 24 décembre 2021

Missions spécifiques, bâtiments complexes

Date d'effet: 08/02/2022: - Date d'expiration: 07/02/2029

DPE individuel Selon arrêté du 24 décembre 2021

Electricité

Diagnostic de performances énergétiques

Date d'effet: 08/02/2022: - Date d'expiration: 07/02/2029

Selon arrêté du 24 décembre 2021

Etat de l'installation intérieure électricité Date d'effet : 08/02/2022 : - Date d'expiration : 07/02/2029

Selon arrêté du 24 décembre 2021

Etat de l'installation intérieure gaz Date d'effet : 08/02/2022 : - Date d'expiration : 07/02/2029

Plomb sans mention

Constat du risque d'exposition au plomb

Selon arrêté du 24 décembre 2021

Date d'effet: 08/02/2022: - Date d'expiration: 07/02/2029

Termites métropole

Etat relatif à la présence de termites dans les bâtiments

Date d'effet: 08/02/2022: - Date d'expiration: 07/02/2029

Ce certificat est émis pour servir et valoir ce que de droit, Edité le 08/02/2022, à Canéjan par MOLEZUN Jean-Jacques Président.

Siège : 23bis, rue Thomas Edison - 33610 CANEJAN Mail : contact@lcp-certification.fr Site : www : lcp-certification.fr Tel: 05.33.89.39.30

Enr487@ LE CERTIFICAT V011 du 10-01-2022

Réf.: Dossier: 29 / 29

FONDETTES (37)

Rue des 3 Mariés Aménagement des abords de la gare

> Dossier T24-419 POL Diagnostic pollution Missions A200 + A270

Sondages et essais Etudes de sol Ingénierie - Instrumentation Laboratoire – Expertises

ZA La Haute Limougère – 8 rue Pierre et Marie Curie 37230 FONDETTES

Tél.: 02.47.28.35.90 Fax: 02.47.28.33.20

centre-ouest@competence-geotechnique.fr www.competence-geotechnique.fr

Implantations:

COZES (17), PERPEZAC-LE-NOIR (19), CHATILLON-LE-DUC (25), SEYCHES (47), MAIZIERES-LES-METZ (57), RADINGHEM-EN-WEPPES (59)

HISTORIQUE DU DOCUMENT

INDICE	Version 1
OBJET/ MODIFICATIONS	Création du document
ÉTABLI PAR	Pierre DAVERGNE
VERIFIÉ PAR	Arnaud GAGNER

DIFFUSION DU DOCUMENT : le 31/10/2024

DESTINATAIRE / @	DÉSIGNATION	COURRIER	MAIL
TOURS MÉTROPOLE			
M. POISSON	Maître d'ouvrage		X
p.poisson@tours-metropole.fr			

RÉSUMÉ NON TECHNIQUE

À la demande et pour le compte de TOURS MÉTROPOLE, maître d'ouvrage, nous avons réalisé un diagnostic pollution (mission A200 - Prélèvements, mesures, observations et/ou analyses sur les sols + mission A270 – Interprétation des résultats des investigations), des abords de la gare de Fondettes (37).

Cette étude intervient dans le cadre d'un projet d'aménagement de parkings paysagers de part et d'autre des voies ferrées.

Actuellement, le côté Ouest est aménagé d'un parking engravillonné, et le côté Est, en friche, a accueilli une base vie du chantier de la rocade de Tours à la fin des années 2000.

L'objectif a été d'appréhender la gestion adéquate des matériaux qui pourraient être excavés pour l'aménagement projeté.

Le présent diagnostic repose sur une méthodologie menée dans le respect des règles de l'art. Il a permis de démontrer que :

- Les sols du site sont constitués de <u>remblais</u> essentiellement sablo-graveleux sur 0,4 à > 1 m, recouvrant directement soit <u>le substratum marno-calcaire</u> beige-blanchâtre (uniquement au droit du parking actuel), soit des <u>limons argileux</u> marron (reconnus uniquement au droit de la friche). Hormis <u>les remblais au droit du sondage R1 qui dégageaient des effluves d'hydrocarbures</u>, aucun autre indice organoleptique flagrant de pollution n'a été mis en évidence au droit des autres sondages.
- Les résultats d'analyses réalisés ont permis de constater principalement 2 points de sondage présentant des excès par rapport aux limites d'acceptation des terres en ISDI, tous 2 situés au droit du parking actuel (côté Ouest):
 - au droit du sondage R1 (angle Nord-Est): HCT (C10-C40) et HAP;
 - au droit du sondage R2 (± centre Ouest), COT sur brut et Antimoine sur éluât.
- Plus généralement, et dans de moindres mesures, on relève :
 - des traces modérées de HCT (C10-C40) et HAP sur la quasi-totalité des échantillons;
 - des traces assez faibles de PCB sur la moitié des échantillons ;
 - quelques anomalies, généralement modérées, en métaux lourds (Cuivre, Plomb et Zinc), essentiellement recentrées au droit du sondage R2.

À la vue de ces résultats, et considérant le projet (parkings paysagés), les sols sont de qualité majoritairement satisfaisante. Aucune dépollution n'est à prévoir, et aucun risque sanitaire n'est à craindre dans la mesure où les matériaux seront pour la majorité très probablement recouverts (bitume, gravillons...).

Au droit des éventuels espaces verts, et par mesure préventive, les sols seront recouverts par 30 cm de terre végétale saine et les plantations de végétaux comestibles seront à proscrire.

Dans le cas où les matériaux de recouvrement actuels seraient excavés et évacués hors site, la plupart ne demandera pas de gestion particulière, et seront a priori acceptés en ISDI.

À priori, seules quelques zones du parking existant, comme celle du sondage R1, et éventuellement celle du sondage R2, pourraient demander une gestion particulière.

Mais au regard de la densité assez faible de sondages réalisés, du caractère très ponctuel des sources de pollution (véhicules fuyards), et des remblais hétérogènes, ces zones seront cependant difficiles à localisées et circonscrire. Pour une réutilisation sur site de ces matériaux, les mêmes recommandations faites au droit des espaces verts projetés seront appliquées (recouvrement).

RÉSUMÉ TECHNIQUE

Les résultats de ce rapport peuvent être synthétisés de la façon suivante :

Tableau 1 : Synthèse des résultats de l'étude

Client	TOURS MÉTROPOLE		
Situation du site	 Adresse Rue des 3 Mariés, gare de Fondettes (37), de part et d'autre des voies ferrées Usage répertorié: Parking (côté Ouest) + ancienne base vie de la rocade de Tours à la fin des années 2000, aujourd'hui en friche (côté Est) Référencé BASIAS: non Référencé BASOL: non 		
Projet	Projet d'aménagement de parkings p	aysagers de part et d'autre des voies ferrées	
Cadre de l'étude	Appréhender la gestion adéquate des	s matériaux qui pourraient être excavés	
Existence d'études antérieures	 Étude historique et technique d G066_24_EH&A_SNCF_Fondettes 	de pollution pyrotechnique – GEOMINES – dossier	
Natures des investigations	Réalisation de 6 sondages de sol (3 par zone), descendus à 1 m de profondeur (R1 à R6)		
Géologie	 > 0 à 0,4-> 1 m : Remblais sablo-graveleux > 0,4-0,5 à > 1 m : Limons argileux marron (sondages R4 et R6) > 0,4-0,75 à > 1 m : Substratum marno-calcaire (sondages R1 à R3) 		
Hydrogéologie	Aucune arrivée d'eau sur les profond	eurs atteintes (1 m max)	
Matrice(s) analysée(s)	Sol (1 échantillon / sondage (± 0,2-0,8 m) – soit 6 échantillons au total)		
Composés recherchés	Packs ISDI selon AM du 12/12/2014 + 8 métaux lourds sur brut		
Constat	 2 points en excès sur la partie Ouest (parking actuel): Angle Nord-Est (HCT: 1200 mg/kg de MS - HAP 113 mg/kg de MS); Centre Ouest (COT brut: 59000 mg/kg - MS et Antimoine éluât: 0,08 mg/kg de MS). Plus généralement, et de part et d'autre des voies ferrées: Traces modérées de HCT (100-390 mg/kg de MS) et HAP (0,844-28,9 mg/kg de MS); Faibles traces de PCB (0,007-0,085 mg/kg de MS); Anomalies ponctuelles modérées en métaux lourds (Cuivre, Plomb et Zinc). 		
Problématique	Résultats	Conclusions et préconisations	
État du site vis-à-vis du projet	Aucun risque sanitaire au droit des surfaces qui seront recouvertes. Risques sanitaires modérées au droit des futurs espaces verts.	Au droit des éventuels espaces verts, et par mesure préventive, les sols seront recouverts par 30 cm de terre végétale saine et les plantations de végétaux comestibles seront à proscrire.	
Gestion des déblais*	Partie Ouest: 2 Excès /aux limites ISDI Partie Est: aucun excès/limites ISDI	La plupart des matériaux ne demandera pas de gestion particulière, et seront a priori acceptés en ISDI. Seules quelques zones du parking existant demanderont une gestion particulière (ISDI+, ISDND, ISDD). Mais au regard de la densité assez faible de sondages réalisés, du caractère très ponctuel des sources de pollution (véhicules fuyards), et des remblais hétérogènes, ces zones seront cependant difficiles à localisées et circonscrire.	

^{*} A noter : cette comparaison est donnée à titre estimatif et ne vaut pas acceptation en centre. Les déchets seront admissibles seulement après validation de la procédure d'acceptation par l'exploitant (délivrance d'un certificat d'acceptation préalable et une vérification sur place).

SOMMAIRE

RÉSUMÉ NON TECHNIQUE1			
RÉSUMÉ TECHNIQUE	2		
I - INTRODUCTION	5		
1.1 MISSION			
1.2 MÉTHODOLOGIE	5		
1.3 RÉGLEMENTATION	5		
II - DESCRIPTION GÉNÉRALE DU SITE	6		
2.1 SITUATION GÉOGRAPHIQUE			
2.2 SITUATION CADASTRALE			
2.3 AMÉNAGEMENTS ACTUELS			
2.4 ÉTUDE PYROTECHNIQUE (GEOMINES 03/2024)	8		
III - PRÉSENTATION SUCCINCTE DU PROJET	9		
IV - INVESTIGATIONS SUR LES SOLS	10		
4.1 SONDAGES			
4.1.1 NATURE DU SOL			
4.1.2 L'EAU DANS LE SOL			
4.1.3 PHOTOGRAPHIES DES SONDAGES			
4.2 PRÉLÈVEMENTS			
4.3 PROGRAMME ANALYTIQUE			
4.4.1 GÉNÉRALITÉS			
4.4.2 VALEURS DE COMPARAISON RETENUES			
4.5 RÉSULTATS			
CONCLUSIONS ET RECOMMANDATIONS			
ANNEXES	20		
LISTE DES FIGURES			
Figure 1 : Localisation du site	C		
Figure 2 : Photographie aérienne			
Figure 3 : Extrait cadastral			
Figure 4 : Plans de principe du projet (sans échelle)			
Figure 5 : Plan d'implantation des sondages (sans échelle)			
Figure 6 : Plan de localisation des contaminations/anomalies relevés (sans échelle)			
LISTE DES TABLEAUX			
HISTE DES TABLEAUX			
Tableau 1 : Synthèse des résultats de l'étude	2		
Tableau 2 : Liste des documents transmis			
Tableau 3 : Photographies du site au 15/10/2024	8		
Tableau 4 : Épaisseurs des remblais			
Tableau 5 : Photographies des caisses de sondage			
Tableau 6 : Tranches de profondeurs des prélèvements d'échantillons			
Tableau 7 : Tableau de synthèse des résultats d'analyses	16		

GLOSSAIRE

ADES: portail national d'Accès aux Données sur les Eaux Souterraines

AEP: Alimentation en Eau Potable

AFNOR: Association Française de NORmalisation

AM: arrêté ministériel

ARS : Agence Régionale de Santé

BASIAS: inventaire d'anciens sites industriels et activités de services ICPE

BASOL: base de données sur les sites et sols pollués ou potentiellement pollués

BRGM: Bureau de Recherches Géologiques et Minières

BSS: Banque du Sous-Sol

BTEX: Benzène-Toluène, Éthylbenzène, Xylène (CAV les plus usuels)

CAV: Composés Aromatiques Volatiles (type BTEX)

COFRAC: Comité Français d'Accréditation

COHV: Composés Organiques Halogénés Volatils

COT: Carbone Organique Total

FNADE : Fédération Nationale des Activités de la Dépollution et de l'Environnement

HAP: Hydrocarbures Aromatiques Polycycliques

HCT: Hydrocarbures Totaux

ICPE: Installation Classée pour la Protection de l'Environnement

IGN: Institut Géographique National

INPN: Inventaire National du Patrimoine Naturel (du Muséum National d'Histoire Naturelle)

INRA: Institut National de la Recherche Agronomique

ISD / CET : Installation de Stockage de Déchets / Centre d'Enfouissement Technique

ISDI / CET K3 : Installation de Stockage de Déchets Inertes

ISNDN / CET K2 : Installation de Stockage de Déchets Non Dangereux

ISDD / CET K1 : Installation de Stockage de Déchets Dangereux

LQ: Limite de Quantification

MEDDE : Ministère de l'Écologie, du Développement durable et de l'Energie

Métaux : As : arsenic, Ba : baryum, Cd : cadmium, Cr : chrome, Cu : cuivre, Hg : mercure, Mo

: molybdène, **Ni** : nickel, **Pb** : plomb, **Se** : sélénium, **Sb** : antimoine, **Zn** : zinc.

MS: Matière sèche

NGF: Nivellement Général de France

PCB : Polychlorobiphényles
PCT : Polychloroterphényles
PLU : Plan Local d'Urbanisme

SIGES: Système d'Informations pour la Gestion des Eaux Souterraines

SSP: Sites et Sols Pollués **VC**: Valeur de comparaison

ZNIEFF: Zone Naturelle d'Intérêt Écologique, Faunistique et Floristique

I - INTRODUCTION

1.1 MISSION

À la demande et pour le compte de Tours Métropole, maître d'ouvrage, nous avons réalisé une étude de diagnostic pollution des sols des abords de la gare de Fondettes (37).

Cette étude intervient dans le cadre d'un projet d'aménagement de parkings paysagers de part et d'autre des voies ferrées.

L'objectif a été d'appréhender la gestion adéquate des matériaux qui pourraient être excavés pour l'aménagement projeté.

Elle a été réalisée suivant notre offre référencée T24-09-775 B V2, datée du 26/09/2024, et acceptée le 30/09/2024.

Les documents transmis pour remplir notre mission ont été les suivants :

Tableau 2 : Liste des documents transmis

Туре	Échelle	Phase / Indice	Date
Plan d'aménagement de la gare de Fondettes	-	ı	-
Étude historique et technique de pollution pyrotechnique – GEOMINES – dossier G066_24_EH&A_SNCF_Fondettes	-	-	29/03/2024

1.2 MÉTHODOLOGIE

La mission a été réalisée conformément à la méthodologie d'Avril 2017, concernant les modalités de gestion et de réaménagement des sites pollués, intégrant les nouvelles méthodologies en matière de sites pollués.

1.3 RÉGLEMENTATION

Les prestations réalisées sont conformes aux exigences de la norme AFNOR NF X31-620-2 de Août 2022 « Qualité des sols - Prestations de services relatives aux sites et sols pollués (Exigences dans le domaine des prestations d'études, d'assistance et de contrôle) ». Elles concernent plus particulièrement les prestations élémentaires suivantes :

- A200 : Prélèvements, mesures, observations et/ou analyses sur les sols ;
- A270 : Interprétation des résultats des investigations.

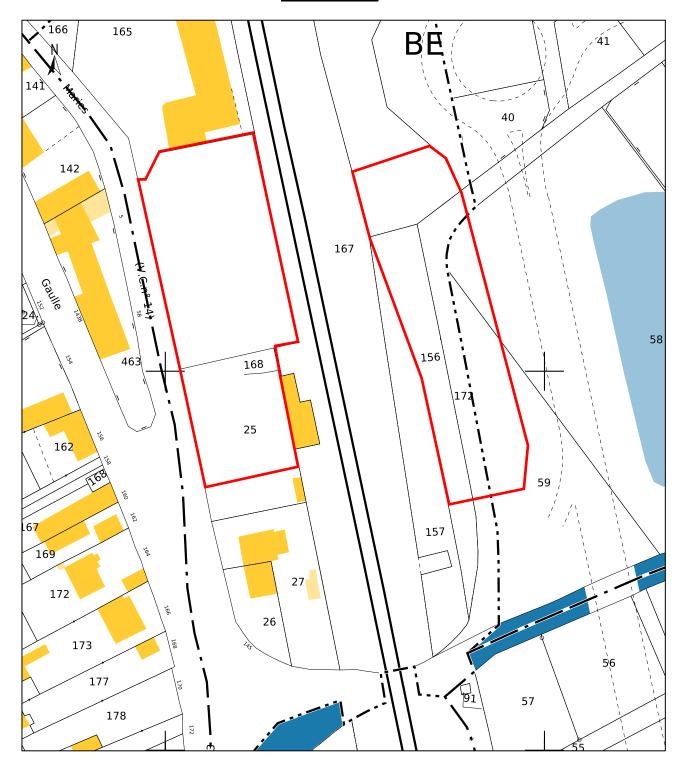
II - DESCRIPTION GÉNÉRALE DU SITE

2.1 SITUATION GÉOGRAPHIQUE

La gare de Fondettes (37), s'étend au début Sud de la Rue des 3 Mariés, dans le vallon de La Choisille.

| Second | S

Figure 1 : Localisation du site



2.2 SITUATION CADASTRALE

Les secteurs concernés par ces investigations sont localisés sur l'extrait cadastral suivant.

Figure 3 : Extrait cadastral (Échelle : 1/1000)

2.3 AMÉNAGEMENTS ACTUELS

La partie Ouest est actuellement aménagée en tant que parking engravilloné. La partie Est est en friche et partiellement recouverte de concassé dioritique et calcaire, ainsi que des vestiges de dalles bétonnées issues d'une base vie lors de l'aménagement de la rocade de Tours à la fin des années 2000.

Tableau 3: Photographies du site au 15/10/2024

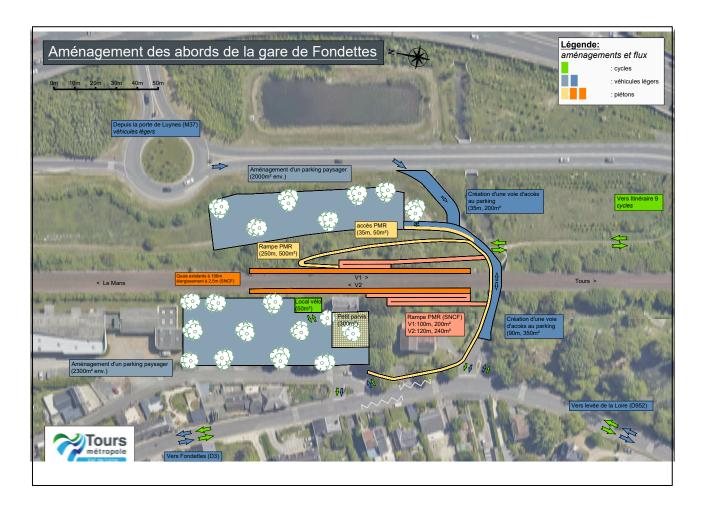
Photographies 2 & 3 - Partie Est

2.4 ÉTUDE PYROTECHNIQUE (GEOMINES 03/2024)

Suivant ce document, les différents bombardements durant la libération du secteur en 1945, ont eu pour objectif le pont de La Motte distant du site de ± 500 m.

Par conséquent, il a été jugé que l'emprise du site présente une présomption de pollution pyrotechnique dans le sous-sol au-delà des profondeurs atteintes lors des travaux réalisés depuis les derniers faits de guerre.

Les munitions précédemment trouvées à proximité et susceptibles d'être présentes dans le soussol de l'emprise du projet, sont des bombes américaines et anglaises de la série « GP 1000 lb et 2000 lb ».


III - PRÉSENTATION SUCCINCTE DU PROJET

Il est envisagé la remise en service de la gare de Fondettes, avec comme projet de la présente étude, l'aménagement des abords de la gare, avec :

- Le réaménagement paysager du parking existant côté Ouest des voies ferrées, sur ± 2300 m²);
- La création d'un second parking paysager côté Est, sur ± 2000 m²;
- La création d'une voirie d'accès reliant les 2 parkings ;
- De différents accès PMR.

Le plan de principe de ces aménagements est le suivant.

Figure 4 : Plans de principe du projet (sans échelle)

IV - INVESTIGATIONS SUR LES SOLS

Elles ont été menées le 15/10/2024, et ont consisté en la réalisation de sondages de sols, d'observations organoleptiques, de prélèvements d'échantillons de sols et d'analyses sur ces derniers.

Préalablement, une campagne de détection pyrotechnique a été réalisée le 10/10/2024 par la société CARDEM PYRO (Hauconcourt (57)), au droit des implantations envisagées des sondages. Un marquage-piquetage des réseaux existants, a également été réalisé le 14/10/2024 par la société CONOTECH (Larçay (37)).

4.1 **SONDAGES**

Nous avons procédé en la réalisation de <u>6 sondages de reconnaissance de sols</u> descendus à 1 m de profondeur, et répartis 3 par 3 sur chacune des zones d'étude.

Notés R1 à R6, ces sondages ont été réalisés à la tarière mécanique en Ø 63 mm.

L'implantation de ces sondages est présentée ci-dessous.

Figure 5 : Plan d'implantation des sondages (sans échelle)

4.1.1 NATURE DU SOL

Les sondages ont permis de distinguer la lithologie suivante, avec de haut en bas :

■ Couche 1 :

Des <u>remblais hétérogènes</u>, composés principalement par des sables bruns-gris-noirs ± riches en graviers, à traces de briques (R5), surmontés au droit du parking existant, par du bitume suivis d'une couche de forme de graves grises ou de falun beige, sur les épaisseurs suivantes :

Tableau 4 : Épaisseurs des remblais

Canalana	
Sondage (n°)	Prof. (m)
R1	0,75
R2	0,7
R3	0,4
R4	0,4
R5	> 1,0
R6	0,5

■ Couche 2 :

Des <u>limons argileux</u> bruns à quelques cailloutis ;

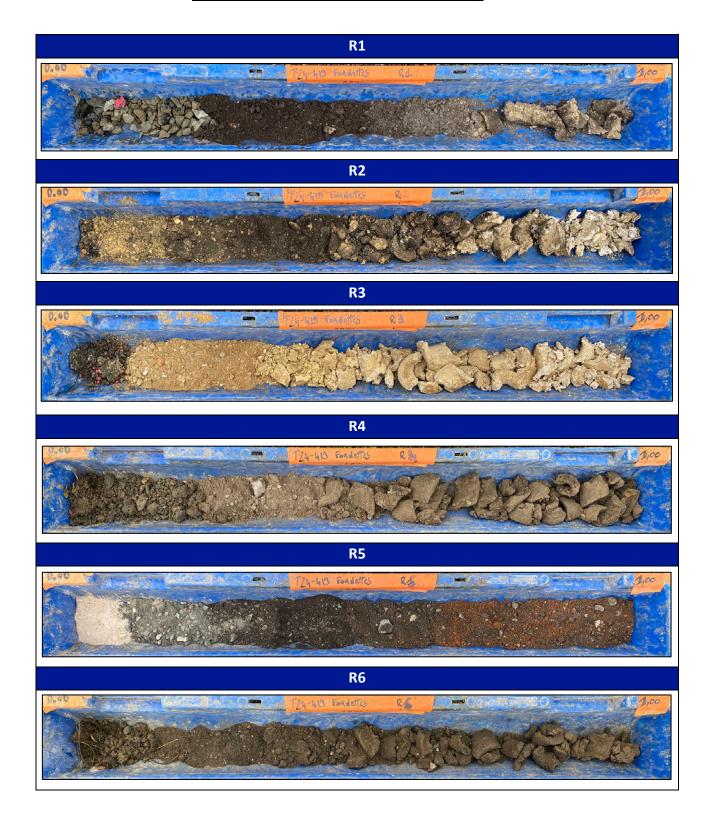
Ces limons sont reconnus uniquement au droit de la friche côté Est des voies ferrées, et jusqu'en fond de sondage (sondages R4 et R6).

■ Couche 3 :

Le <u>substratum marno-calcaire</u> beige-blanchâtre, au-delà.

Le substratum est reconnu uniquement au droit du parking actuel, côté Ouest des voies ferrées (sondages R1, R2, R3).

4.1.2 L'EAU DANS LE SOL


Aucune arrivée d'eau n'a été observée au droit des sondages, sur les profondeurs atteintes (1 m max), le 15/10/2024.

4.1.3 PHOTOGRAPHIES DES SONDAGES

Des échantillons remaniés ont été prélevés au fur et à mesure de la foration. Ces échantillons ont été mis en caisse, et ces dernières ont été photographiées.

Tableau 5 : Photographies des caisses de sondage

4.2 PRÉLÈVEMENTS

Parmi les échantillons prélevés au fur et à mesure de la foration, seuls les remblais au droit du sondage R1 dégageaient des effluves d'hydrocarbures.

Aucun indice organoleptique flagrant de pollution n'a été mis en évidence au droit des autres sondages.

Un échantillon a été prélevé dans chacun des sondages. Les tranches de profondeurs d'échantillonnage sont les suivantes :

Tableau 6 : Tranches de profondeurs des prélèvements d'échantillons

Sondage (n°)	Tranches de Prof. (m)
R1	0,25 – 0,8
R2	0,2 - 0,8
R3	0,1-0,8

Sondage (n°)	Tranches de Prof. (m)
R4	0,2 - 0,8
R5	0,3 - 0,8
R6	0,2 - 0,8

Ces échantillons ont été conditionnés dans des bocaux hermétiques en verre, stockés et transportés dans une glacière réfrigérée, puis envoyés au laboratoire d'analyses AGROLAB, agréé COFRAC sous 24 h.

4.3 **PROGRAMME ANALYTIQUE**

Sur chaque échantillon, il a été réalisé un bilan ISDI + 8 métaux lourds sur brut.

Le pack Bilan ISDI contient l'ensemble des paramètres à contrôler pour l'acceptation de matériaux en Installation de Stockage de Déchets Inertes.

Les analyses effectuées sur brut concernent les HAP, BTEX, PCB, COT, HCT.

Les analyses effectuées <u>sur éluât</u> concernent <u>les métaux lourds</u> (12), <u>les fluorures</u>, <u>les sulfates</u>, <u>les chlorures</u>, <u>l'indice phénol et le COT</u>.

4.4 VALEURS DE COMPARAISON

4.4.1 GÉNÉRALITÉS

Concernant la qualité sanitaire des terres, et contrairement à l'air et à l'eau, qui disposent de valeurs d'usages définies (potabilité, qualité de l'air, ...), aucune valeur de gestion réglementaire n'est définie pour le compartiment « sol », pour la raison suivante :

- Pour l'air et l'eau, les voies d'exposition aux pollutions (inhalation, ingestion) sont liées aux usages habituels que l'on fait de ces milieux ;
- ▶ Pour le sol, les voies d'expositions aux pollutions sont les mêmes (ingestion, inhalation) mais elles ne sont pas liées à l'usage naturel que l'on a fait du sol. C'est pour cette raison qu'aucune valeur de gestion réglementaire n'existe pour le sol. Pour compenser cette absence et conformément aux circulaires du 8 février 2007, les concentrations mesurées dans les sols doivent être comparées à des valeurs représentant un « état naturel » ou « habituel » (dit normal).

La définition du niveau de contamination des échantillons est le suivant :

- ➤ **Pour les contaminations organiques** (hydrocarbures, COHV, ...) : n'étant pas naturellement présents dans les milieux (excepté pour les HAP), leur détection est donc notable (sans pour autant préjuger d'un impact notoire) La limite de quantification (LQ) du laboratoire est donc retenue comme valeur de comparaison.
- Pour les contaminations minérales (éléments traces métalliques, ...) : les valeurs peuvent être comparées au fond géochimique du site (si disponible) ou à des valeurs issues d'études (pertinentes dans le contexte).

Concernant la gestion adéquate des terres en centre de stockage, celle-ci s'appuie également sur les paramètres sanitaires (tout en étant moins restrictive), mais <u>l'évolution physico-chimique</u> des matériaux joue également un rôle très important.

Ainsi, selon l'article R. 541-8 du Code de l'Environnement, un déchet inerte est défini comme un « déchet qui ne subit aucune modification physique, chimique ou biologique importante, qui ne se décompose pas, ne brûle pas, ne produit aucune réaction physique ou chimique, n'est pas biodégradable et ne détériore pas les matières avec lesquelles il entre en contact d'une manière susceptible d'entraîner des atteintes à l'environnement ou à la santé humaine ».

Cette évolution potentielle est notamment estimée par la réalisation de tests de lixiviation dont l'objectif est d'évaluer la quantité d'éléments solubles contenus dans les sols, susceptibles donc d'être mobilisés et d'interagir avec les milieux environnants.

4.4.2 VALEURS DE COMPARAISON RETENUES

Concernant la qualité sanitaire des terres, les résultats ont été comparés :

- pour les métaux lourds et métalloïdes uniquement, aux valeurs de la base de données pédologiques ASPITET (INRA, 2002) présentant les gammes de valeurs couramment observées dans les sols ordinaires français (Bruit de fond géochimique local : BFGL);
- pour les composés organiques, aux limites de quantification du laboratoire.

Concernant la gestion adéquate des matériaux qui seront évacués hors site, les résultats ont été comparés aux valeurs limites à respecter pour l'acceptation des terres en ISDI (Installation de Stockage de Déchets Inertes - anciennement Centre d'Enfouissement de classe 3), présentées dans l'arrêté ministériel du 12 décembre 2014 relatif aux ISDI.

4.5 RÉSULTATS

Sont relevés:

- des traces de HCT (C10-C40) sur la quasi-totalité des échantillons prélevés (excepté R3 Sud du parking existant). Ces traces sont généralement modérées, avec des mesures s'étalant de 100 à 390 mg/kg de MS, soit inférieures à la limite d'acceptation des terres en ISDI, fixée à ce jour à 500 mg/kg de MS. L'échantillon prélevé au droit du sondage R1 montre cependant une concentration supérieure à cette limite, avec 1200 mg/kg de MS mesurés;
- des traces de HAP sur tous les échantillons. Ces traces sont généralement faibles à modérées, avec des mesures s'étalant de 0,844 à 28,9 mg/kg de MS, soit inférieures à la limite d'acceptation des terres en ISDI, fixée à ce jour à 50 mg/kg de MS. L'échantillon prélevé au droit du sondage R1 montre cependant une concentration supérieure à cette limite, avec 113 mg/kg de MS mesurés;
- des traces faibles de PCB sur la moitié des échantillons, avec des mesures s'étalant de 0,007
 à 0,085 mg/kg de MS;
- quelques contaminations essentiellement modérées en métaux lourds sur brut (Cuivre, Plomb et Zinc). L'échantillon R2 présente cependant une anomalie en Plomb de l'ordre de grandeur d'une forte anomalie naturelle;
- 1 excès ponctuel en Antimoine sur la partie éluât par rapport aux limites ISDI sur l'échantillon R2, avec 0,08 mg/kg de MS pour une limite fixée à ce jour à 0,06 mg/kg de MS;
- 1 excès ponctuel en COT sur la partie brute par rapport aux limites ISDI sur l'échantillon R2, avec 59000 mg/kg de MS pour une limite fixée à ce jour à 30000 mg/kg de MS;

Aucune trace de BTEX n'est relevée. Toutes les mesures sont inférieures aux limites de quantification utilisées par le laboratoire.

Ces résultats sont synthétisés dans un tableau et sont illustrés sur un plan, présentés dans les pages qui suivent.

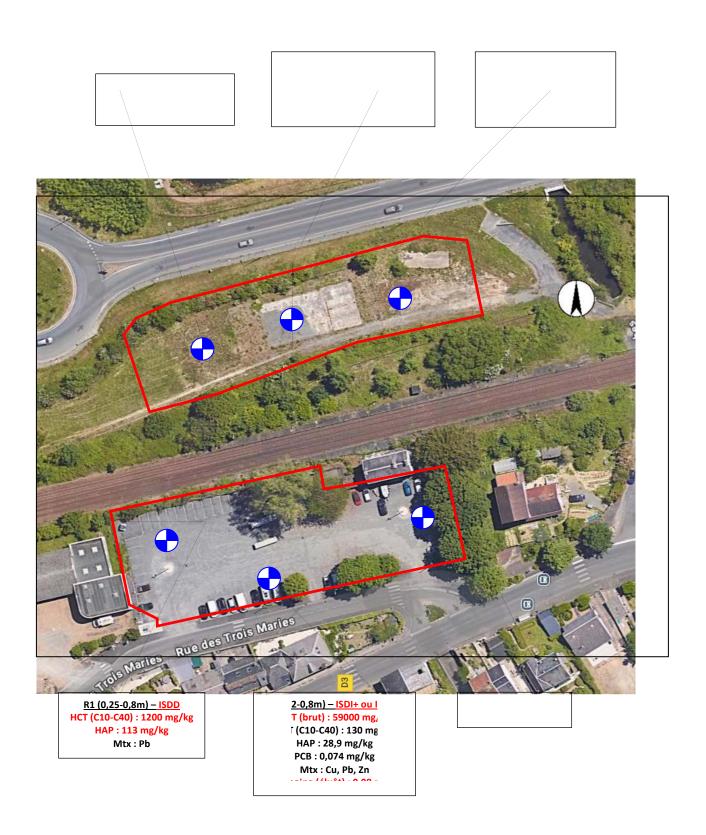
Les procès-verbaux d'analyses sont présentés en annexes.

Tableau 7 : Tableau de synthèse des résultats d'analyses

Légende du code couleur utilisé sur les concentrations mesurées

Inférieure aux limites de quantification (composés organiques) et Gammes de valeurs sols ordianires (métaux lourds)

Supérieure au LQ (composés organiques sur brut) et Supérieures aux concentrations moyennes (métaux lourds)


Gammes de valeurs anomalies naturelles modérées (métaux lourds)

Gammes de valeurs fortes anomalies naturelles (métaux lourds)

Supérieures aux limites ISDI et Supérieures aux gammes de valeurs de fortes anomalies naturelles (métaux lourds)

Paramètres				Val	eurs de comp	araison				Échan	tillons		
				ASPITET	(INRA, 2002)-	Métaux		Zone O	ıest - Parkin	g actuel	Zo	ne Est - Fric	he
	Paramètres	Unité	LQ Lab.	SOLS ORDINAIRES	ANOMALIES NATURELLES MODÉRÉES	FORTES ANOMALIES NATURELLES	(Arr. du 12/12/14)	R1 0,25-0,8m	R2 0,2-0,8m	R3	R4 0,2-0,8m	R5 0,3-0,8m	R6 0,2-0,8m
	СОТ	mg/kg Ms	1000				30000	10000	59000	1400	16000	16000	12000
	HCT (C10-C40)	mg/kg Ms	20				500	1200	130	<20,0	150	390	100
	HAP	mg/kg Ms	-		_		50	113	28,9	0,844	4,96	2,94	7,99
	BTEX	mg/kg Ms	-				6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Ϋ́	PCB	mg/kg Ms	_				1	n.d.	0,074	n.d.	0,0070	0,085	n.d.
ANALYSES SUR BRUT	Arsenic (As)	mg/kg Ms	1	1 à 25	30 à 60	60 à 284		6,6	11	5,5	6,6	16	6,8
SSU	Cadmium (Cd)	mg/kg Ms	0,1	0,05 à 0,45	0,7 à 2,0	2 à 16		0,1	0,3	0,1	0,2	0,3	0,3
YSE	Chrome (Cr)	mg/kg Ms	0,2	10 à 90	90 à 150	150 à 3180		17	14	17	15	16	21
MAL	Cuivre (Cu)	mg/kg Ms	0,2	2 à 20	20 à 62	65 à 102		20	51	6,1	27	26	15
₹	Mercure (Hg)	mg/kg Ms	0,05	0,02 à 0,15	0,15 à 2,3	-		<0,05	0,12	<0,05	<0,05	<0,05	<0,05
	Nickel (Ni)	mg/kg Ms	0,5	2 à 60	60 à 130	130 à 2076		13	15	9,7	9,3	11	12
	Plomb (Pb)	mg/kg Ms	0,5	9 à 50	60 à 90	100 à 3000		80	160	9,1	23	28	22
	Zinc (Zn)	mg/kg Ms	1	10 à 100	100 à 250	250 à 3800		42	120	23	38	71	37
	Fraction soluble	mg/kg MS	1000				4000	2200	1000	1000	0 - 1000	1600	0 - 1000
	Antimoine (Sb)	mg/kg Ms	0,05				0,06	0 -0,05	0,08	0 - 0,05	0-0,05	0-0,05	0 - 0,05
	Arsenic (As)	mg/kg Ms	0,05				0,5	0 -0,05	0,05	0 - 0,05	0-0,05	0-0,05	0,11
	Baryum (Ba)	mg/kg Ms	0,1				20	0,13	0,15	0,20	0,13	0,23	0-0,1
	Cadmium (Cd)	mg/kg Ms	0,001				0,04	0-0,001	0-0,001	0-0,001	0-0,001	0-0,001	0-0,001
	Chlorures (CI)	mg/kg Ms	1				800	26	73	19	0-10	16	0-10
JÂT	Chrome (Cr)	mg/kg Ms	0,02				0,5	0-0,02	0-0,02	0-0,02	0-0,02	0-0,02	0-0,02
ÉLI	СОТ	mg/kg Ms	10				500	0 - 200	0-200	0-200	0 - 200	0-200	0 - 200
ANALYSES SUR ÉLUÂT	Cuivre (Cu)	mg/kg Ms	0,02		_		2	0,15	0,15	0,04	0,14	0,07	0,10
SES	Fluorures (F)	mg/kg Ms	1				10	1,0	4,0	6,0	2,0	4,0	2,0
ALY	Indice phénol	mg/kg Ms	1				1	0-0,2	0-0,2	0-0,2	0-0,2	0-0,2	0-0,2
AN	Mercure (Hg)	mg/kg Ms	0,0003				0,01	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003
	Molybdène (Mo)	mg/kg Ms	0,05				0,5	0 - 0,05	0,06	0 - 0,05	0-0,05	0,05	0,09
	Nickel (Ni)	mg/kg Ms	0,05				0,4	0 - 0,05	0 - 0,05	0 - 0,05	0-0,05	0-0,05	0 - 0,05
	Plomb (Pb)	mg/kg Ms	0,05				0,5	0 - 0,05	0 - 0,05	0 - 0,05	0-0,05	0-0,05	0 - 0,05
	Sélénium (Se)	mg/kg Ms	0,05				0,1	0 -0,05	0 - 0,05	0 - 0,05	0-0,05	0-0,05	0 - 0,05
	Sulfates (SO4)	mg/kg Ms	50				1000	200	130	170	63	610	150
	Zinc (Zn)	mg/kg Ms	0,02				4	0 - 0,02	0 - 0,02	0 - 0,02	0-0,02	0-0,02	0-0,02

Figure 6 : Plan de localisation des contaminations/anomalies relevés (sans échelle)

CONCLUSIONS ET RECOMMANDATIONS

Suivant les investigations réalisées, les sols du site sont constitués de <u>remblais</u> essentiellement sablo-graveleux sur 0,4 à > 1 m, recouvrant directement soit <u>le substratum marno-calcaire</u> beigeblanchâtre (reconnu uniquement au droit du parking actuel côté Ouest des voies ferrées), soit des **limons argileux** marron (reconnus uniquement au droit de la friche, côté Est des voies ferrées).

Aucune arrivée d'eau n'a été observée au droit des sondages, sur les profondeurs atteintes (1 m max), le 15/10/2024.

Les résultats d'analyses effectuées ont permis de constater principalement 2 points de sondage présentant des excès par rapport aux limites d'acceptation des terres en ISDI, tous deux situés sur l'actuel parking (côté Ouest):

- au droit du sondage R1 (angle Nord-Est), par les HCT (C10-C40) et les HAP, avec respectivement 1200 et 113 mg/kg de MS, pour des limites fixées à ce jour à 500 et 50 mg/kg de MS;
- au droit du sondage R2 (± centre Ouest), par le COT sur brut et l'Antimoine sur éluât, avec respectivement 59000 et 0,08 mg/kg de MS, pour des limites fixées à ce jour à 30000 et 0,06 mg/kg de MS;

Plus généralement, et de part et d'autre des voies ferrées, on relève :

- des traces modérées de HCT (C10-C40) et HAP sur la quasi-totalité des échantillons, avec des mesures s'étalant de 100 à 390 mg/kg de MS pour les HCT, et 0,844 à 28,9 mg/kg de MS pour les HAP;
- des traces assez faibles de PCB sur la moitié de échantillons, avec des valeurs mesurées entre 0,007 et 0,085 mg/kg de MS;
- quelques anomalies modérées en métaux lourds (Cuivre, Plomb et Zinc), essentiellement recentrées au droit du sondage R2.

À la vue de ces résultats, et considérant le projet (parkings paysagés), les sols sont de qualité majoritairement satisfaisante. Aucune dépollution n'est à prévoir, et aucun risque sanitaire n'est à craindre dans la mesure où les matériaux seront pour la majorité très probablement recouverts (bitume, gravillons...).

Au droit des éventuels espaces verts, et par mesure préventive, les sols seront recouverts par 30 cm de terre végétale saine et les plantations de végétaux comestibles seront à proscrire.

Dans le cas où les matériaux de recouvrement actuels seraient excavés et évacués hors site, la plupart ne demandera pas de gestion particulière, et seront a priori acceptés en ISDI.

À priori, seules quelques zones du parking existant, comme celle du sondage R1, et éventuellement celle du sondage R2, pourraient demander une gestion particulière (ISDI+ ou ISDND pour R2 et ISDD pour R1).

Mais au regard de la densité assez faible de sondages réalisés, du caractère très ponctuel des sources de pollution (véhicules fuyards), et du caractère hétérogène des remblais, ces zones seront cependant difficiles à localisées et circonscrire en phase chantier.

Pour une réutilisation sur site de ces matériaux, les mêmes recommandations faites au droit des espaces verts projetés seront appliquées (recouvrement).

Les éléments nouveaux qui n'auraient pu être détectés au moment de la présente étude, doivent nous être immédiatement signalés, de façon à étudier les adaptations éventuelles.

L'Ingénieur chargé du dossier **Pierre DAVERGNE** Contrôle qualité **Arnaud GAGNER**

ANNEXES

Annexe 1: Plan d'implantation des sondages

Annexe 2 : Coupes de sondage détaillées

Annexe 3 : Procès-verbaux des résultats d'analyses

T24-419 POL – TOURS MÉTROPOLE – FONDETTES (37) – Aménagement des abords de la gare – Diagnostic pollution
ANNEXE 1 : Plan d'implantation des sondages

PLAN D'IMPLANTATION DES SONDAGES (Sans échelle)

T24-419 POL – TOURS MÉTROPOLE – FONDETTES (37) – Aménagement des abords de la gare – Diagnostic pollution
ANNEXE 2 : Coupes de sondage détaillées

									ABORDS DI	,,	15/10/20
	Longit	ude	Latitude	Svetàn	ne de cor	ordonnées	Précision des rele	vés	Niveau d'eau		1
	0,6457		47,3992	WGS 8		raomiees	Plurimétrique	ves		n mesuré 🔲 En cour	s de forac
	Élévati		Prof. atteinte			Nivellement		llements		on stabilisé 🗹 Sec	0 40 .0.45
		nseigné		0,0°	-	NGF	Décimètre		1		
bu					Fin			Machir	пе	Opérateur	
n r	enseig	né			Non ren	seigné		SD38		BUYS	
	Stratigraphie										
	grap						Descriptions				
	ratiç										
\dashv	ξ										
		RITUMMI	E + GRAVES								
		BITOMIN	2 * 010 (1/20								
	-	0,25 m									0,
	REMBLAIS	SABLE bi	run + graves								
	MB		3								
	8										
	-	0,5 m									
		SABLE gi	ris + quelques gra	ives							
	0.75 m	0,75 m									
ŀ	0,75 m ш	0,75 111									
	AIR										0
	9 1										
	₹∣	MARNO-	CALCAIRE beige-	blanchâtr	e + caillou	tis					
	IO-CAI	MARNO-	CALCAIRE beige-	blanchâtr	e + caillou	tis					
	ARNO-CAI	MARNO-	CALCAIRE beige-	·blanchâtr	e + caillou	tis					
	MARNO-CALCAIRE	MARNO-	CALCAIRE beige-	blanchâtr	e + caillou	tis					
	<u>1m</u>		CALCAIRE beige-	blanchâtr	re + caillou		3 Fondelfts R.J.				3,00
ın	1 m	1 m	eurs d'hydrocarl	oures au 0,8 m			S Condelity Rd				3,00
in é	1 m	1 m		oures au 0,8 m					ES (37) - AMENAGE	MENT DES ABORDS	DE LA GA

		19 FOND								15/10/2
Longi	tude	Latitude	Systèr	ne de co	ordonnées	Précision des relev	vés	Niveau d'eau		
0,645	6	47,3989	WGS 8	34		Plurimétrique		☐ Néant ☐ Nor	n mesuré 🔲 En cou	rs de fora
Éléva		Prof. atteinte	Angle	Azimut	Nivellement	Précision des nive	llements	🔲 Stabilisé 🔲 N	Ion stabilisé 🗹 Sec	
	enseigné	1,0 m	0,0°	-	NGF	Décimètre				
ıt				Fin			Machin	e	Opérateur	
enseig	gne I			Non rens	seigné		SD38		BUYS	
Stratigraphie										
gra						Descriptions				
trati										
N.										
	BITUME	+ FALUNS jaune								
	0,15 m									
										r
	SABLE b	run-noir								
AIS										
REMBLAIS										
A A	0,4 m									
	SABLE n	oir & ARGILE beig	e-jaune							
0,7 m	0,7 m									
Щ										
SAIR										
CALC	MARNO:	-CALCAIRE beige-	blanchâtr	e						
9										
MARNO-CALCAIRE										
~										
.00					HOLI-ME	Condetts R				2,00
mentai	res San	s signe organol								
	I Echa	antillon: 02 - 09	eptique 3 m	flagrant c	de pollution					
par Co				flagrant c	de pollution					
e-Oue	ompétend st	entillon: 0,2 - 0,8 ce Géotechniqu o lavergne@cgco.	е	flagrant c	de pollution	T24-419 F	ONDETTE	S (37) - AMENAGEI	MENT DES ABORDS	DE LA G

Longit	ude	Latitude	Systèn	ne de co	ordonnées	Précision des rele	evés	Niveau d'eau		
0,645		47,3986	WGS 8			Plurimétrique			lon mesuré 🔲 En cou	rs de fora
Élévat		Prof. atteinte			Nivellement		ellements	☐ Stabilisé ☐	Non stabilisé 🗹 Sec	
Non re	nseigné		0,0°	-	NGF	Décimètre				
it				Fin			Machin	е	Opérateur	
renseig	né			Non ren	seigné		SD38		BUYS	
Stratigraphie										
grap						Descriptions				
rati										
Ş.	DITLIME	+ GRAVES								
	0,05 m	TORAVES								
\ _{\sigma}										
REMBLAIS										
EW	FALUN b	eige								
°										
0,4 m	0,4 m									
ا پر ا										
CAIF										
CAL	MARNO-	CALCAIRE beige-	blanchâtr	е						
MARNO-CALCAIRE										
1ARI										
≥										-
1 m	1 m									
, ,,,,,										
, 00 V	Name of the last	10 A 10	1822		一个几一小时	fondettes R3	SAME SAME	Contract of		1,00
1	Work City			area o	61					
	的方法	4.5				L MARKET	194		18.	Line 1
					STEEL STATE			1 7		
			o-	5 VA	K 6 1 K			1	LOUR TOPSO	4
		100							CASA-NO. LA	
mentair	es Can	s signe organol entillon : 0,1 - 0,8	entique	flagrant d	de nollution					
nentali	eal Squ	a aigne organiol	chudue	nayrall (ac DOHULIOH					
	Echa	ntillon : 0,1 - 0,8	m .	Ū						
		entillon : 0,1 - 0,8 e Géotechniqu e				TO 4 440	ONDETT	C (27) ALIENIC	CEMENT DEC 40000	. DE . 4 .
	mpétenc t		е			T24-419 I	ONDETTE	S (37) - AMENAG	GEMENT DES ABORDS	S DE LA G

Long		Latitude	Systèn	ne de coo	ordonnées	Précision des relev	'és	Niveau d'eau		
0,646		47,3986	WGS 8			Plurimétrique			n mesuré 🔲 En cou	rs de for
Éléva		Prof. atteinte		Azimut	Nivellement		lements	☐ Stabilisé ☐ I	Non stabilisé ☑ Sec	
	enseigné		0,0°	-	NGF	Décimètre				
ut				Fin			Machine	е	Opérateur	
rensei	gné		$\overline{}$	Non rens	eigné		SD38		BUYS	
Stratigraphie										
угар						Descriptions				
 ratić										
<u>s</u>										
l o										
Z A	SABLE 8	& GRAVES gris-mar	ron humic	de en surfa	ice					
REMBLAIS										-
~										
0,4 m	0,4 m									
S										
LIMONS	LIMONS	argileux bruns + c	ailloutis							
=										
										ŀ
1 m	1 m									
1 m	1 m				T24-413	Fordetty R.			O. T. C.	3,00
1 m	1 m				124-419	Fondettes R. M.				\$,00
1 m	1 m				T24-413	Fondettel Rilly				3,00
mentai	ires San	ns signe organole antillon: 0,2 - 0,8 ce Géotechnique		flagrant d					MENT DES ABORDS	\$1,000 \$1,000

													10/202
	Longit	tude	Latitude	Systèr	ne de cod	ordonnées	Précision des relev	vés	Niveau d'e	Pau			
	0,646		47,3989	WGS 8		Didonnees	Plurimétrique	VC3			mesuré 🔲 En	cours de	forage
	Élévat		Prof. atteinte		Azimut	Nivellement		llements	☐ Stabilis	sé 🔲 No	on stabilisé 🗹	Sec	·o·ag
		enseigné		0,0°	-	NGF	Décimètre		1				
out					Fin			Machin	e		Opérateur		
ı re	nseig	né			Non rens	seigné		SD38			BUYS		
	Stratigraphie												
	grap						Descriptions						
	ratiç												
4	Š		ź										\perp
		DALLE BE	=ION										
	ŀ	0,07 m											\dashv
		SARLE &	GRAVIERS gris										
		0,1222	510 111 <u>2</u> 110 gills										
		0,25 m											\dashv
													0
	AIS												
	REMBLAIS												
	BE												
		SABLE br	run noir + quelque	s graves	+ traces de	e brique							
			4, 4, 4, 4	3		,,,,,							
													C
- 1													
	1 m	1 m											
	1 m	1 m											
es and a second	1m	1 m				1724-412	3. Fordettis RE					3,00	
	1 m	1 m				124-40	3. Fordettis R.L.					3,00	
4	1m	1 m				TZ4-413	S. Fordettes R.E.					2,0	
nm	1 m		s signe organole	eptique			S Foadeltes R.					2,0	
	entair	res Sans Écha	s signe organole ntillon: 0,3 - 0,8				S Fordettes R.E.					2,0	
ا خ	entair	res Sans Écha Impétence	s signe organole ntillon : 0,3 - 0,8 e Géotechnique					ONDETTE	SS (37) - AM	ENAGEM	IENT DES ABC	PRDS DE L	A GA

6	> -	'2 <i>1_1</i> 1	9 EONDI	ETTE	=S /37) _	IAGEMENT	DES /	AROPOS DE	IAGADE	Date	
6	ン	Z 1	3 I ONDI	_	_3 (37) - AIVILIY	AGLIVILINI	DL3 A	ABORD3 DE	LA GARL	15/10/	/2024
	Longi		Latitude			ordonnées	Précision des relev	ڎs	Niveau d'eau			
R6	0,646		47,3991	WGS			Plurimétrique			mesuré 🗌 En cour	s de for	rage
	Éléva		Prof. atteinte		Azimut			llements	│	on stabilisé 🗹 Sec		
Débu		enseigné	1,0 m	0,0°	Fin	NGF	Décimètre	Machin		Opérateur		
	enseig	né			Non rens	eiané		SD38		BUYS		
												S
	Stratigraphie						Descriptions					Echantillons
<u>)</u>	atig						Descriptions					hant
Prof.	Str											ы
0		SABLE &	GRAVIERS gris									
		0,1 m										
	<u>s</u>											0,2 m
	REMBLAIS											
	REN	SABLE br	un-noir + quelque	s gravie	rs							
	0,5 m	0,5 m										R6
	0,5 111	0,0 111										"
	SNS	LIMONS a	argileux marron									
	LIMONS											
												0,8 m
1	1 m	1 m										
25	DES V			rante a s	N III CARROLL						(A) A	-12
37.0	te de la constitución de la cons				24.3	124-413	Foodettes R&			4	7 2,00	1
6	Y		A CONTRACTOR		1.0	The state		and the		No. of the		200
		(0.07)					MA TON					
			400			Service CA	By white			The state of the s		
4								-				4
Comi	nentaiı	res Sans	signe organole	eptiane	flagrant d	e pollution						
			signe organole ntillon : 0,2 - 0,8		grant u							
			e Géotechnique	e			T24-419 F0	ONDETTE	S (37) - AMENAGEM	IENT DES ABORDS	DE LA	GARE
	re-Oue		averane@caco.t	fr							soilcloud	

T24-419 POL – TOURS MÉTROPOLE – FONDETTES (37) – Aménagement des abords de la gare – Diagnostic pollution
ANNEXE 3 : Procès-verbaux des résultats d'analyses
ANNUAL 3. Floces-verbaux des resultats d'allaiyses

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

COMPETENCE GEOTECHNIQUE 37 CENTRE OUEST Monsieur Pierre DAVERGNE 8, RUE PIERRE ET MARIE CURIE ZA HAUTE LIMOUGÈRE 37230 FONDETTES **FRANCE**

> Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

1472043 Affaire T24-419 FONDETTES

N° échant. 416763 Sol Date de validation 16.10.2024 Prélèvement Non spécifié

	11-27	Díanta	Limite	Incert.	Millorda	ISDI
	Unité	Résultat	Quant.	Résultat %	Méthode	12/12/2014
Prétraitement des échantillons						
Masse échantillon total inférieure à 2 kg	kg	° 0,72	0		Méthode interne	
Broyeur à mâchoires		۰			méthode interne	
Matière sèche	%	° 91,2	0,01	+/- 1	NEN-EN 15934	
Prétraitement de l'échantillon		۰			Conforme à NEN-EN 16179	
Lixiviation					·	
Fraction >4mm (EN12457-2)	%	° 32,8	0,1		Selon norme	
Masse brute Mh pour lixiviation *	g	° 100	1		Selon norme lixiviation	
Lixiviation (EN 12457-2)		٠			NF EN 12457- 2	
Volume de lixiviant L ajouté pour * l'extraction	ml	900	1		Selon norme lixiviation	
Analyses Physico-chimiques						
pH-H2O		° 10,5	0,1	+/- 10	Conforme a NF ISO 10390 (sol et sédiment)	
COT Carbone Organique Total	mg/kg Ms	10000	1000	+/- 16	conforme ISO 10694 (2008)	30000
Prétraitement pour analyses d	es métaux					
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)	
Métaux						
Arsenic (As)	mg/kg Ms	6,6	1	+/- 15	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416763 Sol

R1 Spécification des échantillons

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Chrome (Cr)	mg/kg Ms	17	0,2	+/- 12	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cuivre (Cu)	mg/kg Ms	20	0,2	+/- 20	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Mercure (Hg)	mg/kg Ms	<0,05	0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN-ISO 16772)	
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Plomb (Pb)	mg/kg Ms	80	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Zinc (Zn)	mg/kg Ms	42	1	+/- 22	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Naphtalène	mg/kg Ms	0,95	0,05	+/- 27	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,50 m)	0,5		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	0,58	0,05	+/- 11	équivalent à NF EN 16181
-luorène	mg/kg Ms	2,0	0,05	+/- 46	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	9,9	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	2,9	0,05	+/- 24	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	20,5	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	14,5	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	8,4	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	8,2	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	10,0	0,05	+/- 12	équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416763 Sol

Spécification des échantillons **D**4

Spécification des échantillons	R1					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Benzo(k)fluoranthène	mg/kg Ms	5,2	0,05	+/- 14	équivalent à NF EN 16181	
Benzo(a)pyrène	mg/kg Ms	13,9	0,05	+/- 14	équivalent à	
Dibenzo(a,h)anthracène	mg/kg Ms	1,2	0,05	+/- 15	NF EN 16181 équivalent à	
• • • • • • • • • • • • • • • • • • • •	mg/kg Ms	6,8	0,05	+/- 14	NF EN 16181 équivalent à	
Benzo(g,h,i)pérylène					NF EN 16181	
Indéno(1,2,3-cd)pyrène	mg/kg Ms	8,0	0,05	+/- 17	équivalent à NF EN 16181	
HAP (6 Borneff) - somme	mg/kg Ms	64,4			équivalent à NF EN 16181	
Somme HAP (VROM)	mg/kg Ms	84,8			équivalent à NF EN 16181	
HAP (EPA) - somme	mg/kg Ms	113 ^{x)}			équivalent à NF EN 16181	50
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05		ISO 22155	
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155	
Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155	
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155	
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155	
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155	
BTEX total	*) mg/kg Ms	n.d.			ISO 22155	6
Hydrocarbures totaux (ISO)						
Hydrocarbures totaux C10-C40	mg/kg Ms	1200	20	+/- 21	ISO 16703	500
	*) mg/kg Ms	<4,0	4		ISO 16703	
	mg/kg Ms	14,4	4	+/- 21	ISO 16703	
	*) mg/kg Ms	47,1	2	+/- 21	ISO 16703	
	*) mg/kg Ms	82,6	2	+/- 21	ISO 16703	
	*) mg/kg Ms	180	2	+/- 21	ISO 16703	
	*) mg/kg Ms	310	2	+/- 21	ISO 16703	
	mg/kg Ms mg/kg Ms	330	2	+/- 21 +/- 21	ISO 16703	
	/ TTIg/kg IVIS	240	2	+/- 21	130 10703	
Polychlorobiphényles Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			16167 NEN-EN	1
` ,	0 0		0.004		16167 NEN-EN	!
PCB (28)	mg/kg Ms	<0,001	0,001		16167	
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
Calcul des Fractions solubles				<u> </u>		
Fraction soluble cumulé (var. L/S)	mg/kg Ms	2200	1000		Selon norme	4000
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,06
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme	0,5

22	Delizerie	ing/kg wis	~0,000	0,00	100 22 100	
<u>a</u>	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155	
exte	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155	
700	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155	1
is e	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155	
edite	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155	
22	BTEX total *)	mg/kg Ms	n.d.		ISO 22155	6
_						

Hydrocarbures totaux C10-C40	mg/kg Ms	1200	20	+/- 21	ISO 16703 500	
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703	
Fraction C12-C16	*) mg/kg Ms	14,4	4	+/- 21	ISO 16703	
Fraction C16-C20	*) mg/kg Ms	47,1	2	+/- 21	ISO 16703	
Fraction C20-C24	*) mg/kg Ms	82,6	2	+/- 21	ISO 16703	
Fraction C24-C28	*) mg/kg Ms	180	2	+/- 21	ISO 16703	
Fraction C28-C32	*) mg/kg Ms	310	2	+/- 21	ISO 16703	
Fraction C32-C36	*) mg/kg Ms	330	2	+/- 21	ISO 16703	
Fraction C36-C40	*) mg/kg Ms	240	2	+/- 21	ISO 16703	

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 1 16167	
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	

Calcul des Fractions solubles

ealls	Fraction soluble cumulé (var. L/S)	mg/kg Ms	2200	1000	Selon norme lixiviation	4000
elles	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation	0,06
ala	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation	0,5

RvA L 005

page 3 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416763 Sol

R1 Spécification des échantillons

17.1					
Unité	Résultat		Incert. Résultat %	Méthode	ISDI 12/12/2014
mg/kg Ms	0,13	0,1		Selon norme	20
mg/kg Ms	0 - 0,001	0,001		Selon norme	0,04
mg/kg Ms	26	10		Selon norme	800
mg/kg Ms	0 - 0,02	0,02		Selon norme	0,5
mg/kg Ms	0 - 200	200		Selon norme	500
mg/kg Ms	0,15	0,02		Selon norme	2
mg/kg Ms	1,0	1		Selon norme	10
mg/kg Ms	0 - 0,2	0,2		Selon norme	1
mg/kg Ms	0 - 0,0003	0,0003		Selon norme	0,01
mg/kg Ms	0 - 0,05	0,05		Selon norme	0,5
mg/kg Ms	0 - 0,05	0,05		Selon norme	0,4
mg/kg Ms	0 - 0,05	0,05		Selon norme	0,5
mg/kg Ms	0 - 0,05	0,05		Selon norme	0,1
mg/kg Ms	200	50		Selon norme	1000
mg/kg Ms	0 - 0,02	0,02		Selon norme	4
viation				INIVICUOIT	
	10,0	0,1		Selon norme	
	300	5	+/- 10	Selon norme	
	10,9	0	+/- 5	Selon norme	
°C	*	0		Selon norme	
s sur áluat				lixiviation	
mg/l	220	100	+/- 22	Equivalent à NF EN ISO	
mg/l	0,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à	
mg/l	<0,020	0,02		conforme NEN-EN	
mg/l	2,6	1	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN	
mg/l	20	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN	
mg/l	<20	20		conforme EN	
,			· · · · · · · · · · · · · · · · · · ·	, .3.02 (2011)	
µg/l	<5,0	5		Conforme à	
				17294-2 Conforme à	
	mg/kg Ms	mg/kg Ms	mg/kg Ms 0,13 0,1 mg/kg Ms 0 - 0,001 0,001 mg/kg Ms 26 10 mg/kg Ms 0 - 0,02 0,02 mg/kg Ms 0 - 200 200 mg/kg Ms 0,15 0,02 mg/kg Ms 0 - 0,2 0,2 mg/kg Ms 0 - 0,003 0,0003 mg/kg Ms 0 - 0,05 0,05 mg/kg Ms 200 50 mg/kg Ms 0 - 0,02 0,02 viation 10,0 0,1 ml/g 10,0 0,1 μS/cm 300 5 sur éluat mg/l 20 100 mg/l 0,02 0,02 mg/l 2,6 1 mg/l 2,6 1 mg/l <20	Unité Résultat Quant. Résultat % mg/kg Ms	Unité Résultat Quant. Résultat % Méthode mg/kg Ms 0,13 0,1 Selon norme liavidation mg/kg Ms 0 - 0,001 0,001 Selon norme liavidation mg/kg Ms 26 10 Selon norme liavidation mg/kg Ms 0 - 0,02 0,02 Selon norme liavidation mg/kg Ms 0 - 200 200 Selon norme liavidation mg/kg Ms 0,15 0,02 Selon norme liavidation mg/kg Ms 0,15 0,02 Selon norme liavidation mg/kg Ms 0,15 0,02 Selon norme liavidation mg/kg Ms 0,000 0,000 Selon norme liavidation mg/kg Ms 0 - 0,02 0,2 Selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation mg/kg Ms 0 - 0,05 0,05 Selon norme liavidation mg/kg Ms 0 - 0,02 0,02 Selon norme liavidation mg/kg Ms 0 - 0,02 0,02 Selon norme liavidation selon norme liavidation mg/kg Ms 0 - 0,02 0,02 Selon norme liavidation selon norme liavidation mg/kg Ms 0 - 0,02 0,02 Selon norme liavidation selon norme liavidation mg/l 20 100 +/- 22 Equivalent a Selon norme liavidation selon norme li

L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	300	5	+/- 10	Selon norme lixiviation
pH		10,9	0	+/- 5	Selon norme lixiviation
Température	°C	20,8	0		Selon norme

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	220	100	+/- 22	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	2,6	1	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	20	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	20		conforme EN 16192 (2011)

Métaux sur éluat

≌ _						
	Antimoine (Sb)	μg/l	<5,0	5	Conforme à EN-ISO	
res					17294-2	
aramet	Arsenic (As)	μg/l	<5,0	5	Conforme à EN-ISO	

RvA L 005

page 4 de 6

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde 1472043 Affaire T24-419 FONDETTES

N° échant. **416763** Sol

Spécification des échantillons R1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
Baryum (Ba)	μg/l	13	10	+/- 10	Conforme à EN-ISO 17294-2
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2
Cuivre (Cu)	μg/l	15	2	+/- 10	Conforme à EN-ISO 17294-2
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN-EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

m) Etant donnée l'influence perturbatrice de l'échantillon, les limites de quantification ont été relevées.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est

de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Valeurs limites: Déchets inertes-Arrêté du 12/12/2014 Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Les paramètres suivants sont au-delà des limites requises par la norme.

Analyses Valeur Unité

HAP (EPA) - somme 113 mg/kg Ms Valeur limite dépassée Hydrocarbures totaux C10-C40 1200 mg/kg Ms Valeur limite dépassée

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Date de prise en charge: 17.10.2024 Fin des analyses: 24.10.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. En cas de déclaration de conformité, l'approche discrète est utilisée comme règle de décision. Cela signifie que l'incertitude de mesure n'est pas prise en compte pour l'établissement de la déclaration de conformité à une spécification ou à une norme.

page 5 de 6

TESTING
RVA L 005

ISO/IEC

H

selon la

sont accrédités

es paramètres

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416763 Sol

Spécification des échantillons R1

AL-West B.V. Mme Coraline Pinard, Tel. 33/380681936

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

COMPETENCE GEOTECHNIQUE 37 CENTRE OUEST Monsieur Pierre DAVERGNE 8, RUE PIERRE ET MARIE CURIE ZA HAUTE LIMOUGÈRE 37230 FONDETTES **FRANCE**

> Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

1472043 Affaire T24-419 FONDETTES

N° échant. 416764 Sol Date de validation 16.10.2024 Prélèvement Non spécifié

Prélèvement par:	Cli	ent					
Spécification des échantillons	R2						
	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Prétraitement des échantillor	าร						
Masse échantillon total inférieure à 2 kg	kg	۰	0,69	0		Méthode interne	
Broyeur à mâchoires		۰				méthode interne	
Matière sèche	%	۰	82,3	0,01	+/- 1	NEN-EN 15934	
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 16179	
Lixiviation							
Fraction >4mm (EN12457-2)	%	۰	37,1	0,1		Selon norme	
Masse brute Mh pour lixiviation	*) g	۰	110	1		Selon norme lixiviation	
Lixiviation (EN 12457-2)		۰				NF EN 12457- 2	
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation	
Analyses Physico-chimiques	}						
pH-H2O		0	8,4	0,1	+/- 10	Conforme a NF ISO 10390 (sol et sédiment)	
COT Carbone Organique Total	mg/kg Ms		59000	1000	+/- 16	conforme ISO 10694 (2008)	30000
Prétraitement pour analyses	des métaux						•
Minéralisation à l'eau régale		۰				NF-EN 16174; NF EN 13657 (déchets)	
Métaux							
Arsenic (As)	mg/kg Ms		11	1	+/- 15	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms		0,3	0,1	+/- 21	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO	

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416764 Sol

R2 Spécification des échantillons

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Chrome (Cr)	mg/kg Ms	14	0,2	+/- 12	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO	
Cuivre (Cu)	mg/kg Ms	51	0,2	+/- 20	11885 Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Mercure (Hg)	mg/kg Ms	0,12	0,05	+/- 20	conforme à NEN 6950 (digestion conf. à NEN 6961/NEN-EN-ISO 54321, mesure conforme à NEN-ISO 16772)	
Nickel (Ni)	mg/kg Ms	15	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Plomb (Pb)	mg/kg Ms	160	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Zinc (Zn)	mg/kg Ms	120	1	+/- 22	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Hydrocarbures Aromatiq	ues Polycycliques (IS	SO)				
Naphtalène .	mg/kg Ms	0,24	0,05	+/- 27	équivalent à NF EN 16181	
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Acénaphtène	mg/kg Ms	0,087	0,05	+/- 11	équivalent à NF EN 16181	
Fluorène	mg/kg Ms	0,15	0,05	+/- 46	équivalent à NF EN 16181	
Phénanthrène	mg/kg Ms	2,2	0,05	+/- 20	équivalent à NF EN 16181	
Anthracène	mg/kg Ms	0,53	0,05	+/- 24	équivalent à NF EN 16181	
Fluoranthène	mg/kg Ms	4,5	0,05	+/- 17	équivalent à NF EN 16181	
Pyrène	mg/kg Ms	3,4	0,05	+/- 19	équivalent à NF EN 16181	
Benzo(a)anthracène	mg/kg Ms	2,2	0,05	+/- 14	équivalent à NF EN 16181	
Chrysène	mg/kg Ms	2,4	0,05	+/- 14	équivalent à NF EN 16181	
Benzo(b)fluoranthène	mg/kg Ms	3,2	0,05	+/- 12	équivalent à NF EN 16181	

Hydrocarbures Aromatiq	ues Polycycliques (13	SO)				
Naphtalène	mg/kg Ms	0,24	0,05	+/- 27	équivalent à NF EN 16181	
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Acénaphtène	mg/kg Ms	0,087	0,05	+/- 11	équivalent à NF EN 16181	
Fluorène	mg/kg Ms	0,15	0,05	+/- 46	équivalent à NF EN 16181	
Phénanthrène	mg/kg Ms	2,2	0,05	+/- 20	équivalent à NF EN 16181	
Anthracène	mg/kg Ms	0,53	0,05	+/- 24	équivalent à NF EN 16181	
Fluoranthène	mg/kg Ms	4,5	0,05	+/- 17	équivalent à NF EN 16181	
Pyrène	mg/kg Ms	3,4	0,05	+/- 19	équivalent à NF EN 16181	
Benzo(a)anthracène	mg/kg Ms	2,2	0,05	+/- 14	équivalent à NF EN 16181	
Chrysène	mg/kg Ms	2,4	0,05	+/- 14	équivalent à NF EN 16181	
Benzo(b)fluoranthène	mg/kg Ms	3,2	0,05	+/- 12	équivalent à NF EN 16181	

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416764 Sol

R2 Spécification des échantillons

	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
Benzo(k)fluoranthène	mg/kg Ms	1,6	0,05	+/- 14	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	3,3	0,05	+/- 14	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	0,32	0,05	+/- 15	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	2,2	0,05	+/- 14	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	2,6	0,05	+/- 17	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	17,4			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	21,8			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	28,9 ×)			équivalent à 50 NF EN 16181

Composés aromatiques

Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155 6

Hydrocarbures totaux (ISO)

					INF EN IDIDI	
Benzo(g,h,i)pérylène	mg/kg Ms	2,2	0,05	+/- 14	équivalent à NF EN 16181	
Indéno(1,2,3-cd)pyrène	mg/kg Ms	2,6	0,05	+/- 17	équivalent à NF EN 16181	
HAP (6 Borneff) - somme	mg/kg Ms	17,4			équivalent à NF EN 16181	
Somme HAP (VROM)	mg/kg Ms	21,8			équivalent à NF EN 16181	
HAP (EPA) - somme	mg/kg Ms	28,9 ×)			équivalent à NF EN 16181	50
Composés aromatiques					NF EN 10161	
Benzène	mg/kg Ms	<0,050	0,05		ISO 22155	
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155	
Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155	
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155	
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155	
Somme Xylènes	mg/kg Ms	n.d.	•		ISO 22155	
	mg/kg Ms	n.d.			ISO 22155	6
Hydrocarbures totaux (ISO)						
Hydrocarbures totaux C10-C40	mg/kg Ms	130	20	+/- 21	ISO 16703	500
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703	
Fraction C12-C16 *	mg/kg Ms	5,0	4	+/- 21	ISO 16703	
Fraction C16-C20 *	mg/kg Ms	16,5	2	+/- 21	ISO 16703	
Fraction C20-C24 *	mg/kg Ms	20,8	2	+/- 21	ISO 16703	
Fraction C24-C28 *	mg/kg Ms	28,4	2	+/- 21	ISO 16703	
	mg/kg Ms	28	2	+/- 21	ISO 16703	
	mg/kg Ms	20,8	2	+/- 21	ISO 16703	
Fraction C36-C40 *	mg/kg Ms	7,8	2	+/- 21	ISO 16703	
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	0,057 x)			NEN-EN 16167	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,074 x)			NEN-EN 16167	1
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (52)	mg/kg Ms	0,002	0,001	+/- 33	NEN-EN 16167	
PCB (101)	mg/kg Ms	0,013	0,001	+/- 34	NEN-EN 16167	
PCB (118)	mg/kg Ms	0,017	0,001	+/- 19	NEN-EN 16167	
DOD ((CO)	3 3	, i	- ,			
PCB (138)	mg/kg Ms	0,022	0,001	+/- 30	NEN-EN 16167	
PCB (138) PCB (153)		-		+/- 30 +/- 22	NEN-EN	
* *	mg/kg Ms	0,022	0,001		NEN-EN 16167 NEN-EN	
PCB (153)	mg/kg Ms mg/kg Ms	0,022 0,015	0,001	+/- 22	NEN-EN 16167 NEN-EN 16167 NEN-EN	
PCB (153) PCB (180)	mg/kg Ms mg/kg Ms	0,022 0,015	0,001	+/- 22	NEN-EN 16167 NEN-EN 16167 NEN-EN 16167	4000
PCB (153) PCB (180) Calcul des Fractions solubles	mg/kg Ms mg/kg Ms mg/kg Ms	0,022 0,015 0,005	0,001 0,001 0,001	+/- 22	NEN-EN 16167 NEN-EN 16167 NEN-EN 16167	4000 0,06

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,057 x)			NEN-EN 16167	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,074 x)			NEN-EN 16167	1
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (52)	mg/kg Ms	0,002	0,001	+/- 33	NEN-EN 16167	
PCB (101)	mg/kg Ms	0,013	0,001	+/- 34	NEN-EN 16167	
PCB (118)	mg/kg Ms	0,017	0,001	+/- 19	NEN-EN 16167	
PCB (138)	mg/kg Ms	0,022	0,001	+/- 30	NEN-EN 16167	
PCB (153)	mg/kg Ms	0,015	0,001	+/- 22	NEN-EN 16167	
PCB (180)	mg/kg Ms	0,005	0,001	+/- 12	NEN-EN 16167	

Calcul des Fractions solubles

ealls	Fraction soluble cumulé (var. L/S)	mg/kg Ms	1000	1000	Selon norme lixiviation	4000
elles	Antimoine cumulé (var. L/S)	mg/kg Ms	0,08	0,05	Selon norme lixiviation	0,06
ala	Arsenic cumulé (var. L/S)	mg/kg Ms	0,05	0,05	Selon norme	0,5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416764 Sol

R2 Spécification des échantillons

Specification des echantillons	I\Z					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Baryum cumulé (var. L/S)	mg/kg Ms	0,15	0,1		Selon norme lixiviation	20
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation	0,04
Chlorures cumulé (var. L/S)	mg/kg Ms	73	10		Selon norme lixiviation	800
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	0,5
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	200		Selon norme lixiviation	500
Cuivre cumulé (var. L/S)	mg/kg Ms	0,15	0,02		Selon norme lixiviation	2
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	1		Selon norme lixiviation	10
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	0,2		Selon norme lixiviation	1
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation	0,01
Molybdène cumulé (var. L/S)	mg/kg Ms	0,06	0,05		Selon norme lixiviation	0,5
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,4
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,5
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,1
Sulfates cumulé (var. L/S)	mg/kg Ms	130	50		Selon norme lixiviation	1000
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	4
Analyses sur éluat après lix	iviation				iixiviation	
L/S cumulé	ml/g	10,0	0,1		Selon norme	
Conductivité électrique	μS/cm	150	5	+/- 10	lixiviation Selon norme	
рН	poro	8,4	0	+/- 5	lixiviation Selon norme	
Température	°C	20,3	0	., 0	lixiviation Selon norme	
		_0,0			lixiviation	
Analyses Physico-chimique		100	400	. / 00	Equivalent à	
Résidu à sec	mg/l	102	100	+/- 22	NF EN ISO 15216	
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1,	
					conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN	
Chlorures (CI)	ma/l	7.2	1	+/- 10	16192 (2011) Conforme à	
Chlorules (Ci)	mg/l	7,3	'	+/- 10	NEN-ISO 15923-1,	
					équivalent à NEN-EN	
Sulfates (SO4)	mg/l	13	5	+/- 10	16192 Conforme à	
Juliales (JO4)		13	J	7/- 10	NEN-ISO 15923-1,	
					équivalent à NEN-EN	
COT	mg/l	<20	20		16192 conforme EN	
	1119/1	\20			16192 (2011)	
Métaux sur éluat					Ocartaman)	
Antimoine (Sb)	µg/l	8,0	5	+/- 10	Conforme à EN-ISO 17294-2	
Arsenic (As)	μg/l	5,2	5	+/- 10	Conforme à	
. ,	. •	,			EN-ISO 17294-2	

L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	150	5	+/- 10	Selon norme lixiviation
pH		8,4	0	+/- 5	Selon norme lixiviation
Température	°C	20,3	0		Selon norme

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	102	100	+/- 22	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	7,3	1	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	13	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	20		conforme EN 16192 (2011)

Métaux sur éluat

≌						
S	Antimoine (Sb)	μg/l	8,0	5	+/- 10	Conforme à EN-ISO
ē						17294-2
aramet	Arsenic (As)	µg/l	5,2	5	+/- 10	Conforme à EN-ISO 17394-2

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

24.10.2024 Date N° Client 35006003

ISDI

RAPPORT D'ANALYSES

1472043 Affaire T24-419 FONDETTES Cde

416764 Sol N° échant.

R2 Spécification des échantillons

	11-24	D.Co.dica	Limite	Incert.	ISDI
	Unité	Résultat	Quant.	Résultat %	Méthode 12/12/2014
Baryum (Ba)	μg/l	15	10	+/- 10	Conforme à EN-ISO 17294-2
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2
Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2
Cuivre (Cu)	μg/l	15	2	+/- 10	Conforme à EN-ISO 17294-2
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN-EN-ISO 12846)
Molybdène (Mo)	μg/l	6,3	5	+/- 10	Conforme à EN-ISO 17294-2
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2

Limito

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Valeurs limites: Déchets inertes-Arrêté du 12/12/2014

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Les paramètres suivants sont au-delà des limites requises par la norme.

Analyses Valeur Unité

COT Carbone Organique Total 59000 mg/kg Ms Valeur limite dépassée 0,08 mg/kg Ms Antimoine cumulé (var. L/S) Valeur limite dépassée

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Date de prise en charge: 17.10.2024 Fin des analyses: 23.10.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. En cas de déclaration de conformité, l'approche discrète est utilisée comme règle de décision. Cela signifie que l'incertitude de mesure n'est pas prise en compte pour l'établissement de la déclaration de conformité à une spécification ou à une norme.

Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01

Seuls les

17025:2017.

SO/IEC

H

accrédités selon la norme

B

paramètres réalisés par AL-West

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416764 Sol

Spécification des échantillons R2

AL-West B.V. Mme Coraline Pinard, Tel. 33/380681936

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

COMPETENCE GEOTECHNIQUE 37 CENTRE OUEST Monsieur Pierre DAVERGNE 8, RUE PIERRE ET MARIE CURIE ZA HAUTE LIMOUGÈRE 37230 FONDETTES FRANCE

> Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde 1472043 Affaire T24-419 FONDETTES

N° échant.416765 SolDate de validation16.10.2024PrélèvementNon spécifiéPrélèvement par:Client

Prélèvement par:	Client					
Spécification des échantillons	R3					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Prétraitement des échantillor	ıs					
Masse échantillon total inférieure à 2 kg	kg	0,66	0		Méthode interne	
Broyeur à mâchoires	۰				méthode interne	
Matière sèche	% °	78,5	0,01	+/- 1	NEN-EN 15934	
Prétraitement de l'échantillon	۰				Conforme à NEN-EN 16179	
Lixiviation						
Fraction >4mm (EN12457-2)	% °	15,5	0,1		Selon norme	
Masse brute Mh pour lixiviation	*) g °	120	1		Selon norme lixiviation	
Lixiviation (EN 12457-2)	۰				NF EN 12457- 2	
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	1		Selon norme lixiviation	
Analyses Physico-chimiques						
pH-H2O	0	8,5	0,1	+/- 10	Conforme a NF ISO 10390 (sol et sédiment)	
COT Carbone Organique Total	mg/kg Ms	1400	1000	+/- 16	conforme ISO 10694 (2008)	30000
Prétraitement pour analyses	des métaux					
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)	
Métaux						
Arsenic (As)	mg/kg Ms	5,5	1	+/- 15	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO	

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

11885

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

ISDI

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. **416765** Sol

Spécification des échantillons R3

	Unité	Résultat	Quant.	Résultat %	Méthode 12/12/2014
Chrome (Cr)	mg/kg Ms	17	0,2	+/- 12	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	6,1	0,2	+/- 20	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN- EN-ISO 54321, mesure conforme à NEN-ISO 16772)
Nickel (Ni)	mg/kg Ms	9,7	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	9,1	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	23	1	+/- 22	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Limite

Incert.

Hydrocarbures Aromatiques Polycycliques (ISO)

Hydrocarbures Aromatique	s Polycycliques (1	SO)				
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Phénanthrène Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Fluoranthène	mg/kg Ms	0,15	0,05	+/- 17	équivalent à NF EN 16181	
Pyrène	mg/kg Ms	0,13	0,05	+/- 19	équivalent à NF EN 16181	
Benzo(a)anthracène	mg/kg Ms	0,089	0,05	+/- 14	équivalent à NF EN 16181	
Chrysène	mg/kg Ms	0,085	0,05	+/- 14	équivalent à NF EN 16181	
Benzo(b)fluoranthène	mg/kg Ms	0,11	0,05	+/- 12	équivalent à NF EN 16181	

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Les paramètres réalisés par AL-West BV sont accrédités selon la norme

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416765 Sol

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181	
Benzo(a)pyrène	mg/kg Ms	0,11	0,05	+/- 14	équivalent à	
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		NF EN 16181 équivalent à	
Benzo(g,h,i)pérylène	mg/kg Ms	0,088	0,05	+/- 14	NF EN 16181 équivalent à	
		-	-		NF EN 16181 équivalent à	
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,082	0,05	+/- 17	NF EN 16181 équivalent à	
HAP (6 Borneff) - somme	mg/kg Ms	0,540 x)			NF EN 16181	
Somme HAP (VROM)	mg/kg Ms	0,604 x)			équivalent à NF EN 16181	
HAP (EPA) - somme	mg/kg Ms	0,844 ×)			équivalent à NF EN 16181	50
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05		ISO 22155	
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155	
Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155	
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155	
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155	
Somme Xylènes	mg/kg Ms *) mg/kg Ms	n.d.			ISO 22155	
BTEX total	*) mg/kg Ms	n.d.			ISO 22155	6
Hydrocarbures totaux (ISO)					1,00,10=00	
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703	500
Fraction C10-C12	*) mg/kg Ms *) mg/kg Ms	<4,0	4		ISO 16703	
Fraction C12-C16 Fraction C16-C20	*) mg/kg Ms *) mg/kg Ms	<4,0 <2,0	4 2		ISO 16703	
Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2		ISO 16703	
Fraction C24-C28	*) mg/kg Ms	3,7	2	+/- 21	ISO 16703	
Fraction C28-C32	*) mg/kg Ms	3,6	2	+/- 21	ISO 16703	
Fraction C32-C36	*) mg/kg Ms	3,3	2	+/- 21	ISO 16703	
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703	
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167	1
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN	
PCB (52)	mg/kg Ms	<0,001	0,001		16167 NEN-EN	
PCB (101)	mg/kg Ms	<0,001	0,001		16167 NEN-EN	
PCB (118)	mg/kg Ms	<0,001	0,001		16167 NEN-EN	
PCB (138)	mg/kg Ms	<0,001	0,001		16167 NEN-EN	
PCB (153)	mg/kg Ms	<0,001	0,001		16167 NEN-EN	
PCB (180)	mg/kg Ms	<0,001	0,001		16167 NEN-EN	
Calcul des Fractions solubles		,	-,		16167	l
Fraction soluble cumulé (var. L/S)	mg/kg Ms	1000	1000		Selon norme	4000
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		lixiviation Selon norme	0,06
Arsenic cumulé (var. L/S)		0 - 0,05			lixiviation Selon norme	
Arsenic cumule (var. L/S)	mg/kg Ms	U - U,U5	0,05		lixiviation	0,5

	_		
:alcul	des	Fractions	solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	1000	1000	Selon norme lixiviation	4000
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation	0,06
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme	0,5

RvA L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416765 Sol

Spécification des échantillons R3

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Baryum cumulé (var. L/S)	mg/kg Ms	0,20	0,1		Selon norme lixiviation	20
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation	0,04
Chlorures cumulé (var. L/S)	mg/kg Ms	19	10		Selon norme lixiviation	800
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	0,5
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	200		Selon norme lixiviation	500
Cuivre cumulé (var. L/S)	mg/kg Ms	0,04	0,02		Selon norme	2
Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	1		Selon norme lixiviation	10
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	0,2		Selon norme lixiviation	1
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation	0,01
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,5
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,4
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,5
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,1
Sulfates cumulé (var. L/S)	mg/kg Ms	170	50		Selon norme lixiviation	1000
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	4
Analyses sur éluat après lixi	viation					
L/S cumulé	ml/g	10,0	0,1		Selon norme	
Conductivité électrique	μS/cm	110	5	+/- 10	Selon norme lixiviation	
рН		8,5	0	+/- 5	Selon norme lixiviation	
Température	°C	19,8	0		Selon norme lixiviation	
Analyses Physico-chimiques	s sur éluat				ii/Avidateiii	1
Résidu à sec	mg/l	102	100	+/- 22	Equivalent à NF EN ISO 15216	
Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)	
Chlorures (CI)	mg/l	1,9	1	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
Sulfates (SO4)	mg/l	17	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
СОТ	mg/l	<20	20		conforme EN 16192 (2011)	
Métaux sur éluat						
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2	
Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2	

M	éta	ПY	sur	á۱	uat
IVI	CLA	ua	Sui	CI	uaı

D C	Antimoine (Sb)	µg/l	<5.0	5	Conforme à	
20	/ tritimonio (GD)	μ9/1	40,0	O	EN-ISO	
Ď					17294-2	
<u>=</u>	Arsenic (As)	μg/l	<5.0	5	Conforme à	
ō	Alsellic (As)	μg/i	\3,0	3	EN-ISO	
σ.					17204-2	

page 4 de 5 **RvA** L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde 1472043 Affaire T24-419 FONDETTES

N° échant. **416765** Sol

Spécification des échantillons R3

	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
	Office	Nesultat	Quant.	Nesulial 70	Wethode 12/12/2014
Baryum (Ba)	µg/I	20	10	+/- 10	Conforme à EN-ISO 17294-2
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2
Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2
Cuivre (Cu)	μg/l	4,3	2	+/- 10	Conforme à EN-ISO 17294-2
Mercure	µg/l	° <0,03	0,03		méthode interne (conforme NEN-EN-ISO 12846)
Molybdène (Mo)	µg/I	<5,0	5		Conforme à EN-ISO 17294-2
Nickel (Ni)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Valeurs limites: Déchets inertes-Arrêté du 12/12/2014

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Date de prise en charge: 17.10.2024 Fin des analyses: 23.10.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. En cas de déclaration de conformité, l'approche discrète est utilisée comme règle de décision. Cela signifie que l'incertitude de mesure n'est pas prise en compte pour l'établissement de la déclaration de conformité à une spécification ou à une norme.

AL-West B.V. Mme Coraline Pinard, Tel. 33/380681936

17025:2017.

SO/IEC

Ä

réalisés par AL-West BV sont accrédités

es paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

COMPETENCE GEOTECHNIQUE 37 CENTRE OUEST Monsieur Pierre DAVERGNE 8, RUE PIERRE ET MARIE CURIE ZA HAUTE LIMOUGÈRE 37230 FONDETTES FRANCE

> Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde 1472043 Affaire T24-419 FONDETTES

N° échant.416766 SolDate de validation16.10.2024PrélèvementNon spécifié

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
		Resultat	Quant.	Resultat %	Methode	12/12/2014
Prétraitement des échantillons						
Masse échantillon total inférieure à 2 kg	kg	° 0,73	0		Méthode interne	
Broyeur à mâchoires		۰			méthode interne	
Matière sèche	%	° 86,1	0,01	+/- 1	NEN-EN 15934	
Prétraitement de l'échantillon		٥			Conforme à NEN-EN 16179	
Lixiviation						
Fraction >4mm (EN12457-2)	%	° 18,4	0,1		Selon norme	
Masse brute Mh pour lixiviation *) g	° 110	1		Selon norme lixiviation	
Lixiviation (EN 12457-2)		۰			NF EN 12457- 2	
Volume de lixiviant L ajouté pour * l'extraction) ml	900	1		Selon norme lixiviation	
Analyses Physico-chimiques						
pH-H2O		° 8,5	0,1	+/- 10	Conforme a NF ISO 10390 (sol et sédiment)	
COT Carbone Organique Total	mg/kg Ms	16000	1000	+/- 16	conforme ISO 10694 (2008)	30000
Prétraitement pour analyses d	es métaux					
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)	
Métaux						
Arsenic (As)	mg/kg Ms	6,6	1	+/- 15	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

ISDI

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416766 Sol

R4 Spécification des échantillons

	Unité	Résultat	Quant.	Résultat %	Méthode 12/12/2014
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Cuivre (Cu)	mg/kg Ms	27	0,2	+/- 20	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Mercure (Hg)	mg/kg Ms	<0,05	0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN- EN-ISO 54321, mesure conforme à NEN-ISO 16772)
Nickel (Ni)	mg/kg Ms	9,3	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Plomb (Pb)	mg/kg Ms	23	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885
Zinc (Zn)	mg/kg Ms	38	1	+/- 22	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885

Limite

Incert.

Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,21	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,70	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,62	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,38	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,38	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,59	0,05	+/- 12	équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416766 Sol

Spécification des échantillons	R4					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Benzo(k)fluoranthène	mg/kg Ms	0,27	0,05	+/- 14	équivalent à NF EN 16181	
Benzo(a)pyrène	mg/kg Ms	0,70	0,05	+/- 14	équivalent à NF EN 16181	
Dibenzo(a,h)anthracène	mg/kg Ms	0,058	0,05	+/- 15	équivalent à NF EN 16181	
Benzo(g,h,i)pérylène	mg/kg Ms	0,49	0,05	+/- 14	équivalent à NF EN 16181	
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,56	0,05	+/- 17	équivalent à NF EN 16181	
HAP (6 Borneff) - somme	mg/kg Ms	3,31			équivalent à NF EN 16181	
Somme HAP (VROM)	mg/kg Ms	3,69 x)			équivalent à NF EN 16181	
HAP (EPA) - somme	mg/kg Ms	4,96 x)			équivalent à NF EN 16181	50
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05		ISO 22155	
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155	
Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155	
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155	
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155	
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155	
BTEX total	*) mg/kg Ms	n.d.			ISO 22155	6
Hydrocarbures totaux (ISO)						
		4=0		/ 04	100 10700	

Hydrocarbures totaux C10-C40	mg/kg Ms	150	20	+/- 21	ISO 16703 500
Fraction C10-C12 *)	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20 *)	mg/kg Ms	5,2	2	+/- 21	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	11,5	2	+/- 21	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	23,3	2	+/- 21	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	35	2	+/- 21	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	44,6	2	+/- 21	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	28,2	2	+/- 21	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0060 x)			NEN-EN 16167	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0070 x)			NEN-EN 16167	1
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	
PCB (101)	mg/kg Ms	0,002	0,001	+/- 34	NEN-EN 16167	
PCB (118)	mg/kg Ms	0,001	0,001	+/- 19	NEN-EN 16167	
PCB (138)	mg/kg Ms	0,002	0,001	+/- 30	NEN-EN 16167	
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22	NEN-EN 16167	
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167	

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	elon norme lixiviation	4000
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	elon norme lixiviation	0,06
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	elon norme	0,5

page 3 de 5 **RvA** L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416766 Sol

R4 Spécification des échantillons

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Baryum cumulé (var. L/S)	mg/kg Ms	0,13	0,1		Selon norme	20
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation	0,04
Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	10		Selon norme lixiviation	800
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	0,5
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	200		Selon norme lixiviation	500
Cuivre cumulé (var. L/S)	mg/kg Ms	0,14	0,02		Selon norme lixiviation	2
Fluorures cumulé (var. L/S)	mg/kg Ms	2,0	1		Selon norme lixiviation	10
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	0,2		Selon norme lixiviation	1
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation	0,01
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,5
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,4
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme	0,5
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,1
Sulfates cumulé (var. L/S)	mg/kg Ms	63	50		Selon norme lixiviation	1000
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	4
Analyses sur éluat après lixi	viation				iixividuoff	1
L/S cumulé	ml/g	10,0	0,1		Selon norme	
Conductivité électrique	μS/cm	100	5	+/- 10	lixiviation Selon norme	
рН	P-5/3//	8,3	0	+/- 5	lixiviation Selon norme	
Température	°C	20,0	0		lixiviation Selon norme	
	a aur áluat	-,-			lixiviation	
Analyses Physico-chimiques Résidu à sec	mg/l	<100	100		Equivalent à	
inesidu a sec	ilig/i	<100	100		NF EN ISO 15216	
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1,	
					conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN	
Chlorures (CI)	mg/l	<1,0	1		16192 (2011) Conforme à	
	a,.	71,0	•		NEN-ISO 15923-1,	
					équivalent à NEN-EN	
Sulfates (SO4)	mg/l	6,3	5	+/- 10	16192 Conforme à	
		,			NEN-ISO 15923-1, équivalent à	
					NEN-EN 16192	
СОТ	mg/l	<20	20		conforme EN 16192 (2011)	
Métaux sur éluat					10102 (2011)	1
Antimoine (Sb)	μg/l	<5,0	5		Conforme à	
, ,		·			EN-ISO 17294-2	
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO	

L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	100	5	+/- 10	Selon norme lixiviation
рН		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,0	0		Selon norme

Analyses Physico-chimiques sur éluat

,	1					
Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216	
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)	
Chlorures (CI)	mg/l	<1,0	1		Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
Sulfates (SO4)	mg/l	6,3	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
COT	mg/l	<20	20		conforme EN 16192 (2011)	

Métaux sur éluat

res real	Antimoine (Sb)	µg/l	<5,0	5	Conforme à EN-ISO 17294-2	
oaramet	Arsenic (As)	µg/l	<5,0	5	Conforme à EN-ISO 17294-2	

page 4 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. **416766** Sol

Spécification des échantillons R4

	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
Baryum (Ba)	µg/l	13	10	+/- 10	Conforme à EN-ISO 17294-2
Cadmium (Cd)	μg/l	<0,1	0,1		17294-2 Conforme à EN-ISO 17294-2
Chrome (Cr)	µg/I	<2,0	2		Conforme à EN-ISO 17294-2
Cuivre (Cu)	μg/I	14	2	+/- 10	Conforme à EN-ISO 17294-2
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN-EN-ISO 12846)
Molybdène (Mo)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2
Nickel (Ni)	µg/I	<5,0	5		Conforme à EN-ISO 17294-2
Plomb (Pb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2
Sélénium (Se)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Valeurs limites: Déchets inertes-Arrêté du 12/12/2014

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Date de prise en charge: 17.10.2024 Fin des analyses: 23.10.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. En cas de déclaration de conformité, l'approche discrète est utilisée comme règle de décision. Cela signifie que l'incertitude de mesure n'est pas prise en compte pour l'établissement de la déclaration de conformité à une spécification ou à une norme.

AL-West B.V. Mme Coraline Pinard, Tel. 33/380681936

17025:2017.

SO/IEC

Ä

réalisés par AL-West BV sont accrédités

es paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

COMPETENCE GEOTECHNIQUE 37 CENTRE OUEST Monsieur Pierre DAVERGNE 8, RUE PIERRE ET MARIE CURIE ZA HAUTE LIMOUGÈRE 37230 FONDETTES **FRANCE**

> Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

1472043 Affaire T24-419 FONDETTES

N° échant. 416767 Sol

Date de validation	16.10.2024					
Prélèvement	Non spécifié Client					
Prélèvement par:						
Spécification des échantillons	R5					
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Prétraitement des échantillons						
Masse échantillon total inférieure à 2 kg	kg °	0,70	0		Méthode interne	
Matière sèche	% °	92,6	0,01	+/- 1	NEN-EN 15934	
Prétraitement de l'échantillon	۰				Conforme à NEN-EN 16179	
Lixiviation						
Fraction >4mm (EN12457-2)	% °	<0,1	0,1		Selon norme	
Masse brute Mh pour lixiviation *)	g	99	1		Selon norme	
Lixiviation (EN 12457-2)	•				lixiviation NF EN 12457-	
	ml	900	1		Selon norme lixiviation	
Analyses Physico-chimiques						
pH-H2O	o	9,5	0,1	+/- 10	Conforme a NF ISO 10390 (sol et sédiment)	
COT Carbone Organique Total	mg/kg Ms	16000	1000	+/- 16	conforme ISO 10694 (2008)	30000
Prétraitement pour analyses de	s métaux				1 10004 (2000)	
Minéralisation à l'eau régale	°				NF-EN 16174;	
Willionalication a road rogalo					NF EN 13657 (déchets)	
Métaux						
Arsenic (As)	mg/kg Ms	16	1	+/- 15	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms	0,3	0,1	+/- 21	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

ISDI

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416767 Sol

Spécification des échantillons R5

	Unité	Résultat	Quant.	Résultat %	Méthode 12/12/20)14
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cuivre (Cu)	mg/kg Ms	26	0,2	+/- 20	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Mercure (Hg)	mg/kg Ms	<0,05	0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN- EN-ISO 54321, mesure conforme à NEN-ISO 16772)	
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Plomb (Pb)	mg/kg Ms	28	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Zinc (Zn)	mg/kg Ms	71	1	+/- 22	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Limite

Incert.

Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,16	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,28	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,26	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,14	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,14	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,15	0,05	+/- 12	équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416767 Sol

Spécification des échantillons **R5**

Specification des echantillons	s R5				100	
	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISD Méthode 12/1	I 12/2014
Benzo(k)fluoranthène	mg/kg Ms	0,073	0,05	+/- 14	équivalent à NF EN 16181	
Benzo(a)pyrène	mg/kg Ms	0,18	0,05	+/- 14	équivalent à NF EN 16181	
Dibenzo(a,h)anthracène	mg/kg Ms	0,068	0,05	+/- 15	équivalent à NF EN 16181	
Benzo(g,h,i)pérylène	mg/kg Ms	0,085	0,05	+/- 14	équivalent à NF EN 16181	
Indéno(1,2,3-cd)pyrène	mg/kg Ms	1,4	0,05	+/- 17	équivalent à NF EN 16181	
HAP (6 Borneff) - somme	mg/kg Ms	2,17			équivalent à NF EN 16181	
Somme HAP (VROM)	mg/kg Ms	2,46 x)			équivalent à NF EN 16181	
HAP (EPA) - somme	mg/kg Ms	2,94 ×)			équivalent à NF EN 16181	50
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05		ISO 22155	
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155	
Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155	
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155	
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155	
Somme Xylènes	mg/kg Ms	n.d.	·		ISO 22155	
BTEX total	*) mg/kg Ms	n.d.			ISO 22155	6
Hydrocarbures totaux (ISO)					
Hydrocarbures totaux C10-C40	mg/kg Ms	390	20	+/- 21	ISO 16703	500
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703	
Fraction C12-C16	*) mg/kg Ms	4,8	4	+/- 21	ISO 16703	
Fraction C16-C20	*) mg/kg Ms	12,3	2	+/- 21	ISO 16703	
Fraction C20-C24	*) mg/kg Ms	29,0	2	+/- 21	ISO 16703	
Fraction C24-C28	*) mg/kg Ms	54,5	2	+/- 21	ISO 16703	
Fraction C28-C32	*) mg/kg Ms	86	2	+/- 21	ISO 16703	
	*) mg/kg Ms	130	2	+/- 21	ISO 16703	
Fraction C32-C36	133					

Hydrocarbures totaux (ISO)

Hydrocarbures totaux C10-C40	mg/kg Ms	390	20	+/- 21	ISO 16703	500
Fraction C10-C12 *)	mg/kg Ms	<4,0	4		ISO 16703	
Fraction C12-C16 *)	mg/kg Ms	4,8	4	+/- 21	ISO 16703	
Fraction C16-C20 *)	mg/kg Ms	12,3	2	+/- 21	ISO 16703	
Fraction C20-C24 *)	mg/kg Ms	29,0	2	+/- 21	ISO 16703	
Fraction C24-C28 *)	mg/kg Ms	54,5	2	+/- 21	ISO 16703	
Fraction C28-C32 *)	mg/kg Ms	86	2	+/- 21	ISO 16703	
Fraction C32-C36 *)	mg/kg Ms	130	2	+/- 21	ISO 16703	
Fraction C36-C40 *)	mg/kg Ms	70,6	2	+/- 21	ISO 16703	

Polychlorobinhényles

-	rolycillolopipilellyles							
1	Somme 6 PCB	mg/kg Ms	0,072			NEN-EN 16167		
	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,085			NEN-EN 16167	1	
5	PCB (28)	mg/kg Ms	0,003	0,001	+/- 27	NEN-EN 16167		
	PCB (52)	mg/kg Ms	0,019	0,001	+/- 33	NEN-EN 16167		
5	PCB (101)	mg/kg Ms	0,025	0,001	+/- 34	NEN-EN 16167		
5	PCB (118)	mg/kg Ms	0,013	0,001	+/- 19	NEN-EN 16167		
	PCB (138)	mg/kg Ms	0,011	0,001	+/- 30	NEN-EN 16167		
	PCB (153)	mg/kg Ms	0,009	0,001	+/- 22	NEN-EN 16167		
ļ	PCB (180)	mg/kg Ms	0,005	0,001	+/- 12	NEN-EN 16167		

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	1600	1000	Selon norme lixiviation 4000	
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme 0,06	
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme 0,5	

RvA L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416767 Sol

R5 Spécification des échantillons

opcomoducii doc conaminone	Unité	Résultat	Limite	Incert. Résultat %	Méthode	ISDI 12/12/2014
			Quant.	Nesulai /0	Selon norme	
Baryum cumulé (var. L/S)	mg/kg Ms	0,23	0,1		lixiviation	20
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation	0,04
Chlorures cumulé (var. L/S)	mg/kg Ms	16	10		Selon norme lixiviation	800
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	0,5
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	200		Selon norme lixiviation	500
Cuivre cumulé (var. L/S)	mg/kg Ms	0,07	0,02		Selon norme lixiviation	2
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	1		Selon norme lixiviation	10
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	0,2		Selon norme lixiviation	1
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation	0,01
Molybdène cumulé (var. L/S)	mg/kg Ms	0,05	0,05		Selon norme lixiviation	0,5
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,4
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,5
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,1
Sulfates cumulé (var. L/S)	mg/kg Ms	610	50		Selon norme lixiviation	1000
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme	4
Analyses sur éluat après lixiv	viation				lixiviation	
L/S cumulé	ml/g	10,0	0,1		Selon norme	1
Conductivité électrique	μS/cm	210	5	+/- 10	lixiviation Selon norme	
-	μο/σπ			+/- 5	lixiviation Selon norme	
pH Tama (matuma	00	9,9	0	+/- 5	lixiviation Selon norme	
Température	°C	20,0	0		lixiviation	
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	157	100	+/- 22	Equivalent à NF EN ISO 15216	
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)	
Chlorures (CI)	mg/l	1,6	1	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
Sulfates (SO4)	mg/l	61	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
COT	mg/l	<20	20		conforme EN 16192 (2011)	
Métaux sur éluat		,				
Antimoine (Sb)	μg/l	<5,0	5		Conforme à	
` ,					EN-ISO 17294-2	
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2	

L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	210	5	+/- 10	Selon norme lixiviation
рН		9,9	0	+/- 5	Selon norme lixiviation
Température	°C	20,0	0		Selon norme

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	157	100	+/- 22	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)
Chlorures (CI)	mg/l	1,6	1	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
Sulfates (SO4)	mg/l	61	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192
COT	mg/l	<20	20		conforme EN 16192 (2011)

Métaux sur éluat

≌ _						
	Antimoine (Sb)	μg/l	<5,0	5	Conforme à EN-ISO	
res					17294-2	
aramet	Arsenic (As)	μg/l	<5,0	5	Conforme à EN-ISO	

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde 1472043 Affaire T24-419 FONDETTES

N° échant. **416767** Sol

Spécification des échantillons R5

	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
Baryum (Ba)	μg/l	23	10	+/- 10	Conforme à EN-ISO 17294-2
Cadmium (Cd)	µg/l	<0,1	0,1		Conforme à EN-ISO 17294-2
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2
Cuivre (Cu)	μg/l	7,1	2	+/- 10	Conforme à EN-ISO 17294-2
Mercure	μg/l °	<0,03	0,03		méthode interne (conforme NEN-EN-ISO 12846)
Molybdène (Mo)	μg/l	5,4	5	+/- 10	Conforme à EN-ISO 17294-2
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Valeurs limites: Déchets inertes-Arrêté du 12/12/2014

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Date de prise en charge: 17.10.2024 Fin des analyses: 23.10.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. En cas de déclaration de conformité, l'approche discrète est utilisée comme règle de décision. Cela signifie que l'incertitude de mesure n'est pas prise en compte pour l'établissement de la déclaration de conformité à une spécification ou à une norme.

AL-West B.V. Mme Coraline Pinard, Tel. 33/380681936

17025:2017.

SO/IEC

Ä

réalisés par AL-West BV sont accrédités

es paramètres

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

COMPETENCE GEOTECHNIQUE 37 CENTRE OUEST Monsieur Pierre DAVERGNE 8, RUE PIERRE ET MARIE CURIE ZA HAUTE LIMOUGÈRE 37230 FONDETTES **FRANCE**

> Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

1472043 Affaire T24-419 FONDETTES

N° échant. 416768 Sol Date de validation 16.10.2024

Prélèvement Prélèvement par:	Clie	n spécifié ent					
Spécification des échantillons	R6						
	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Prétraitement des échantillons							
Masse échantillon total inférieure à 2 kg	kg	۰	0,70	0		Méthode interne	
Matière sèche	%	۰	86,4	0,01	+/- 1	NEN-EN 15934	
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 16179	
Lixiviation							
Fraction >4mm (EN12457-2)	%	۰	4,4	0,1		Selon norme	
Masse brute Mh pour lixiviation *)	g	۰	110	1		Selon norme lixiviation	
Lixiviation (EN 12457-2)		۰				NF EN 12457- 2	
Volume de lixiviant L ajouté pour *) l'extraction	ml		900	1		Selon norme lixiviation	
Analyses Physico-chimiques							
рН-Н2О		o	8,7	0,1	+/- 10	Conforme a NF ISO 10390 (sol et sédiment)	
COT Carbone Organique Total	mg/kg Ms		12000	1000	+/- 16	conforme ISO 10694 (2008)	30000
Prétraitement pour analyses de	s métaux						
Minéralisation à l'eau régale		•				NF-EN 16174; NF EN 13657 (déchets)	
Métaux							
Arsenic (As)	mg/kg Ms		6,8	1	+/- 15	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cadmium (Cd)	mg/kg Ms		0,3	0,1	+/- 21	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416768 Sol

Spécification des échantillons R6

•	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/20	14
	Office	Resultat	Quant.	Resultat %	Methode 12/12/20	J14
Chrome (Cr)	mg/kg Ms	21	0,2	+/- 12	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Cuivre (Cu)	mg/kg Ms	15	0,2	+/- 20	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Mercure (Hg)	mg/kg Ms	<0,05	0,05		conforme à NEN 6950 (digestion conf. à NEN 6961/NEN- EN-ISO 54321, mesure conforme à NEN-ISO 16772)	
Nickel (Ni)	mg/kg Ms	12	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	
Zinc (Zn)	mg/kg Ms	37	1	+/- 22	Minéralisation conforme à NEN-EN-ISO 54321, mesure conforme à NEN-EN-ISO 11885	

Naphtalène	mg/kg Ms	0,066	0,05	+/- 27	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,29	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	0,10	0,05	+/- 24	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	1,3	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	1,4	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,60	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,67	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,82	0,05	+/- 12	équivalent à NF EN 16181

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416768 Sol

Spécification des échantillons	R6				1001
	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
Benzo(k)fluoranthène	mg/kg Ms	0,43	0,05	+/- 14	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	1,1	0,05	+/- 14	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	0,089	0,05	+/- 15	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,63	0,05	+/- 14	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,49	0,05	+/- 17	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	4,77			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	5,68			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	7,99 ×)			équivalent à NF EN 16181 50
Composés aromatiques					
Benzène	mg/kg Ms	<0,050	0,05		ISO 22155
Toluène	mg/kg Ms	<0,050	0,05		ISO 22155
<i>Ethylbenzène</i>	mg/kg Ms	<0,050	0,05		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155 6

Hydrocarbures totaux C10-C40	mg/kg Ms	100	20	+/- 21	ISO 16703 500
Fraction C10-C12 *)	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16 *)	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20 *)	mg/kg Ms	6,1	2	+/- 21	ISO 16703
Fraction C20-C24 *)	mg/kg Ms	10,8	2	+/- 21	ISO 16703
Fraction C24-C28 *)	mg/kg Ms	17,4	2	+/- 21	ISO 16703
Fraction C28-C32 *)	mg/kg Ms	21	2	+/- 21	ISO 16703
Fraction C32-C36 *)	mg/kg Ms	25,5	2	+/- 21	ISO 16703
Fraction C36-C40 *)	mg/kg Ms	18,9	2	+/- 21	ISO 16703

Polychlorobiphényles

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025.2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " ¹) ".

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167	
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167	1
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation	4000
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation	0,06
Arsenic cumulé (var. L/S)	mg/kg Ms	0,11	0,05	Selon norme	0,5

RvA L 005

page 3 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde **1472043** Affaire T24-419 FONDETTES

N° échant. 416768 Sol

Spécification des échantillons R6

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	ISDI 12/12/2014
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme	20
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		lixiviation Selon norme lixiviation	0,04
Chlorures cumulé (var. L/S)	mg/kg Ms	0 - 10	10		Selon norme lixiviation	800
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	0,5
COT cumulé (var. L/S)	mg/kg Ms	0 - 200	200		Selon norme lixiviation	500
Cuivre cumulé (var. L/S)	mg/kg Ms	0,10	0,02		Selon norme lixiviation	2
Fluorures cumulé (var. L/S)	mg/kg Ms	2,0	1		Selon norme lixiviation	10
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	0,2		Selon norme lixiviation	1
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation	0,01
Molybdène cumulé (var. L/S)	mg/kg Ms	0,09	0,05		Selon norme lixiviation	0,5
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,4
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,5
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation	0,1
Sulfates cumulé (var. L/S)	mg/kg Ms	150	50		Selon norme lixiviation	1000
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation	4
Analyses sur éluat après lix	iviation				iixiviation	
L/S cumulé	ml/g	10,0	0,1		Selon norme	
Conductivité électrique	μS/cm	100	5	+/- 10	lixiviation Selon norme	
pH		9,5	0	+/- 5	lixiviation Selon norme	
Température	°C	20,6	0		lixiviation Selon norme	
Analyses Physico-chimique	s cur áluat			1	lixiviation	
Résidu à sec	mg/l	<100	100		Equivalent à	
Trediad a see	1119/1	1100			NF EN ISO 15216	
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1,	
					conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN	
Chlorures (CI)	mg/l	<1,0	1		16192 (2011) Conforme à	
, ,		•			NEN-ISO 15923-1,	
					équivalent à NEN-EN 16192	
Sulfates (SO4)	mg/l	15	5	+/- 10	Conforme à NEN-ISO	
					15923-1, équivalent à	
					NEN-EN 16192	
СОТ	mg/l	<20	20		conforme EN 16192 (2011)	
Métaux sur éluat						
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO	
Aragnia (Ag)	//			./ 10	17294-2 Conforme à	
Arsenic (As)	µg/l	11	5	+/- 10	EN-ISO	

Analyses sur éluat après lixiviation

L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	100	5	+/- 10	Selon norme lixiviation
рН		9,5	0	+/- 5	Selon norme lixiviation
Température	°C	20,6	0		Selon norme

Analyses Physico-chimiques sur éluat

Alialyses Fliysico-cili	illiques sur eluat					
Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216	
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192	
Indice phénol	mg/l	<0,020	0,02		conforme NEN-EN 16192 (2011)	
Chlorures (CI)	mg/I	<1,0	1		Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
Sulfates (SO4)	mg/l	15	5	+/- 10	Conforme à NEN-ISO 15923-1, équivalent à NEN-EN 16192	
COT	mg/l	<20	20		conforme EN 16192 (2011)	

Métaux sur éluat

≌						
ea	Antimoine (Sb)	μg/l	<5.0	5		Conforme à
S	A TRITION C (OD)	μ9/1	٦٥,٥	3		EN-ISO
ě						17294-2
ē	Arsenic (As)	μg/l	11	5	+/- 10	Conforme à
ğ	7 (130) (7 (3)	μ9/1		0	17 10	EN-ISO
ਲ						17201-2

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 24.10.2024 N° Client 35006003

RAPPORT D'ANALYSES

Cde 1472043 Affaire T24-419 FONDETTES

N° échant. 416768 Sol

Spécification des échantillons R6

	Unité	Résultat	Limite Quant.	Incert. Résultat %	ISDI Méthode 12/12/2014
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2
Cuivre (Cu)	μg/l	9,7	2	+/- 10	Conforme à EN-ISO 17294-2
Mercure	μg/l °	<0,03	0,03		méthode interne (conforme NEN-EN-ISO 12846)
Molybdène (Mo)	μg/l	8,8	5	+/- 10	Conforme à EN-ISO 17294-2
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Valeurs limites: Déchets inertes-Arrêté du 12/12/2014

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Date de prise en charge: 17.10.2024 Fin des analyses: 23.10.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'essai ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée. En cas de déclaration de conformité, l'approche discrète est utilisée comme règle de décision. Cela signifie que l'incertitude de mesure n'est pas prise en compte pour l'établissement de la déclaration de conformité à une spécification ou à une norme.

AL-West B.V. Mme Coraline Pinard, Tel. 33/380681936

17025:2017.

SO/IEC

Ä

réalisés par AL-West BV sont accrédités

es paramètres