

Demande d'examen au cas par cas préalable à la réalisation éventuelle d'une évaluation environnementale

Article R. 122-3 du code de l'environnement

Ministère chargé de l'environnement

Ce formulaire sera publié sur le site internet de l'autorité environnementale Avant de remplir cette demande, lire attentivement la notice explicative

Cadre réservé à l'autorité environnementale

Date de réception : 29/06/2020

Dossier complet le : 29/06/2020

N° d'enregistrement : F-075-20-C-0075

1. Intitulé du projet

Jardin de l'Ars — lot 6.1 - Covivio

2. Identification du (ou des) maître(s) d'ouvrage ou du (ou des) pétitionnaîre(s)

2.1 Personne physique

Nom

Prénom

2.2 Personne morale

Dénomination ou raison sociale

SCI rue de la Louisiane

Nom, prénom et qualité de la personne habilitée à représenter la personne morale

Benoît Fragu, Directeur du Développement

RCS / SIRET

852 671 784

Forme juridique

SCI

Joignez à votre demande l'annexe obligatoire n°1

Catégorie(s) applicable(s) du tableau des seulis et critères annexé à l'article R. 122-2 du code de l'environnement et dimensionnement correspondant du projet

N° de catégorie et sous catégorie

Caractéristiques du projet au regard des seulls et critères de la catégorie (Préciser les éventuelles rubriques issues d'autres nomenciatures (ICPE, IOTA, etc.)

39. Travaux, constructions et opérations d'aménagement

a) Travaux et constructions qui créent une surface de plancher au sens de l'article R. 111-22 du code de l'urbanisme ou une emprise au sol au sens de l'article R. * 420-1 du code de l'urbanisme comprise entre 10 000 et 40 000 m² Le projet a pour objectif l'aménagement d'un immeuble de bureaux de $20~000~\text{m}^2$ de surface de plancher, sur un terrain de $4~572~\text{m}^2$.

4. Caractéristiques générales du projet

Doivent être annexées au présent formulaire les pièces énoncées à la rubrique 8.1 du formulaire

4.1 Nature du projet, y compris les éventuels travaux de démolition

Le projet s'inscrit sur le territoire de la ZAC Saint-Jean Belcier à Bordeaux, au cœur du périmètre d'intérêt national « Bordeaux Euratlantique », dans le futur quartier des jardins de l'Ars en cours de construction. Le nouveau Campus Covivio en partenariat avec One Point se situe sur le lot 6.1 de la ZAC en limite de la rue de la Louisiane, du groupe scolaire de Brienne et de la future école ESMA en cours de conception.

L'emprise foncière du site est d'environ 4 572 m². Ce terrain se situe en partie sur d'anciens cours de tennis. Le projet totalise 20 000 m² de Surface Plancher tertiaires polyvalentes pour accueillir le futur campus. Il comprend des surfaces réparties en plusieurs entités programmatiques qui pourront à terme, travailler en totale synergie ou travailler indépendamment :

- Des espaces de Coworking, (Autres Bureaux)
- Un centre de formation /école (One point)
- Des espaces de travail (One Point)
- Le Live Point, le restaurant : des lieux potentiellement indépendants dont la spécificité est liée au mode de fonctionnement de l'entreprise One Point.

La loi nº 78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux données nominatives portées dans ce formulaire. Elle garantit un droit d'accès et de rectification pour ces données auprès du service destinataire.

4.2 Objectifs du projet

Le futur siège de One Point à Bordeaux est un projet tertiaire d'avant-garde, efficace, évolutif et très spécifique à Bordeaux.

Son fonctionnement est exemplaire ; il est fondé sur des principes structurels ambitieux et maîtrisés. La Maîtrise d'Ouvrage COVIVIO souhaite inscrire cette opération dans une stratégie de développement durable ambitieuse où les certifications nationales et internationales sont considérées comme un outil d'amélioration continue de la qualité environnementale.

L'architecture apporte une réponse concrète à la question des nouvelles formes de communication dans l'entreprise et des process de travail liés au « Design Thinking » où dans un même lieu : on a l'idée, on crée, on teste, et on réalise.

4.3 Décrivez sommairement le projet

4.3.1 dans sa phase travaux

Une charte chantier à faibles nuisances sera rédigée lors de la phase DCE, elle sera pièce constitutive du Marché des entreprises. Elle comportera l'ensemble des dispositions demandées dans l'annexe 1-5 RCFN du cahier des charges de EPA pour la ZAC (et ses annexes associées) ainsi que les exigences demandées dans les certifications environnementales BREEAM et HQE. Cette charte de chantier définira les conditions permettant de :

- Limiter les nuisances acoustiques,

- Limiter les nuisances acoustiques
 Limiter les nuisances visuelles,
- Limiter les nuisances dues au trafic,
- Limiter les nuisances dues à la poussière, à la boue et aux laitances,
- Limiter les pollutions et les consommations sur le chantier,
- Limiter les consommations de ressources,
- Optimiser les déchets de chantier et de déconstruction.

Un bilan de chantier sera réalisé à la livraison, il présentera notamment l'ensemble des actions et dispositions qui ont été prises lors de la phase travaux pour se conformer à la charte chantier à faibles nuisances ainsi qu'aux exigences de l'EPA.

Un responsable chantier faible nuisance (CFN) sera nommé par la Maîtrise d'Ouvrage au plus tard au commencement de la période de préparation de chantier.

Le Plan d'Installation de Chantier devra comporter l'ensemble des éléments utiles à la compréhension de la gestion de chantier : accès, base vie, flux (visiteurs, véhicules, livraison, stationnements...), aire de stockage et livraison, centrale à béton, aire de lavage des camions, aire de tri des déchets, panneau d'informations ...La zone de stockage des matériaux sera installée à proximité du bâtiment.

4.3.2 dans sa phase d'exploitation

La fluidité spatiale et fonctionnelle entre le lieu et les espaces publics (mails, rue et jardins) est assurée par les traitements des rez-de chaussée et des façades ainsi que par une contiguïté spatiale réelle entre le jardin de l'Ars et le cœur de l'ilot.

Conformément au PLU, le bâtiment est implanté à l'alignement d'un tracé sur rue et sur mails piétonniers, tout en concevant un lieu ouvert sur un parc sans rupture spatiale. Le live point est ouvert sur le jardin. Cette fluidité est perceptible par l'entrée sur le parc très transparente.

Elle est concue sans frontière physique perceptible entre le jardin intérieur, le live point et le jardin de l'Ars.

La synergie fonctionnelle entre le lieu et les espaces publics est assurée par la position stratégique des programmes singuliers installés sur la rue et sur le jardin : lieux de restauration, live point, réunions.

La mixité des usages de ce projet permet un accompagnement innovant des transformations sociales et favorise son intégration dans le quartier.

Les eaux usées seront récupérées et rejetées dans le réseau public sous voirie conformément au plan de réseaux de l'EPA. Conformément au PLU, les eaux pluviales seront collectées, stockées via des ouvrages de rétention, et rejetées dans les noues prévues par les aménagements extérieurs de l'EPA, avec le respect d'un débit de fuite de 3 L/s/ha.

4.4 A quelle(s) procédure(s) administrative(s) d'autorisation le projet a-t-il été ou sera-t-il soumis ? La décision de l'autorité environnementale devra être jointe au(x) dossier(s) d'autorisation(s).												
Une étude d'impact a été produite et soumise à l'avis du CGEDD concernant la réalisation de la ZAC Bordeaux Saint-Jean Belcier (maîtrise d'ouvrage assurée par l'établissement public d'aménagement « Bordeaux Euratlantique ») dans laquelle s'insère le projet (avis délibéré de l'autorité environnementale sur la réalisation de la ZAC Bordeaux Saint-Jean Belcier n°2013-89).												
Un dossier Loi sur l'eau permettra de justifier que l'ensemble des contraintes hydrologiques indiquées par l'Etablissement Public												
d'Aménagement et que le règlement PPRI sont respectées.												
The state of the s												
	ojet et superficie globale de l'opérati eurs caractéristiques	ion - préciser les unités de mesure utilisées Valeur(s)										
Surface des parcelles du projet : environ 4 572 m ²												
Surface de l'opération : 20 000 m² SDP												
4.6 Localisation du projet Adresse et commune(s)	Coordonnées nécasanblausel	Long0.545658 Lat. 44,820966										
d'implantation	Coordonnées géographiques ¹											
Rue de la Louisiane (numéro non encore connu)	Pour les catégories 5° a), 6° a), b et c), 7°a, 9°a), 10°, 11°a) et b),											
Parcelles :	22°, 32°, 34°, 38° ; 43° a) et b) de l'annexe à l'article R. 122-2 du											
BX217 / BX22	code de l'environnement :											
	Point de départ :	Long°'" Lat°'" Long°'" Lat°'" _										
	Point d'arrivée : Communes traversées :	Long.										
ŕ												
Jo	ignez à votre demande les ann	nexes n° 2 à 6										
4.7 S'agit-il d'une modification/extensi 4.7.1 Si oui, cette installation ou	on d'une installation ou d'un ouvrag cet ouvrage a-t-il fait l'objet d	ge existant? Oui Non X d'une évaluation Oui Non X										
environnementale ?		30										
4.7.2 Si oui, décrivez sommairemen	tles											
différentes composantes de votre p indiquez à quelle date il a été auto	projet et	/										
maidear a decide agin in a cite agin												

Pour l'outre-mer, voir notice explicative

5. Sensibilité environnementale de la zone d'Implantation envisagée

Afin de réunir les informations nécessaires pour remplir le tableau ci-dessous, vous pouvez vous rapprocher des services instructeurs, et vous référer notamment à l'outil de cartographie interactive CARMEN, disponible sur le site de chaque direction régionale.

Le site Internet du ministère de l'environnement vous propose un regroupement de ces données environnementales par région, à l'adresse suivante : http://www.developpement-durable.gouv.fr/-Les-données-environnementales-.html.

Cette plateforme vous indiquera la définition de chacune des zones citées dans le formulaire.

Vous pouvez également retrouver la cartographie d'une partie de ces informations sur le site de l'inventaire national du patrimoine naturel (http://inpn.mnhn.fr/zone/sinp/espaces/viewer/).

Le projet se situe-t-il :	Oui	Non	Lequel/Laquelle ?
Dans une zone naturelle d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ?		X	/
En zone de montagne ?		X	/
Dans une zone couverte par un arrêté de protection de biotope ?		X	
Sur le territoire d'une commune littorale ?		X	/
Dans un parc national, un parc naturel marin, une réserve naturelle (nationale ou régionale), une zone de conservation halieutique ou un parc naturel régional ?		X	
Sur un territoire couvert par un plan de prévention du bruit, arrêté ou le cas échéant, en cours d'élaboration ?	X		Le Plan de Prévention du Bruit dans l'Environnement (PPBE) de Bordeaux Métropole a été approuvé par le conseil métropolitain du 20 décembre 2019. Le projet s'inscrit dans un secteur défini en « zone de bruit potentiel métropolitaine » en raison du vaste projet urbain EPA Bordeaux Euratlantique.
Dans un bien inscrit au patrimoine mondial ou sa zone tampon, un monument historique ou ses abords ou un site patrimonial remarquable ?	X		Le projet s'inscrit au sein de la zone tampon du site Bordeaux Patrimoine mondial de l'UNESCO.

D'un site classé ?		X	/
D'un site Natura 2000 ?	0	X	Le site Natura 2000 le plus proche de l'emprise du projet est localisé à 330 m au nord-est du projet : il s'agit de la Zone Spéciale de Conservation FR200700 de La Garonne.
Le projet se situe-t-il, dans ou à proximité :	Oui	Non	Lequel et à quelle distance ?
Dans un site inscrit ?		X	/
Dans un périmètre de protection rapprochée d'un captage d'eau destiné à la consommation humaine ou d'eau minérale naturelle?		X	/
Dans une zone de répartition des eaux ?	X	П	L'emprise du projet s'inscrit au sein de la Zone de Répartition des Eaux de la ZRE3302 définie au titre de l'aquifère supérieur « Oligocène à l'ouest de la Garonne ».
Dans un site ou sur des sols pollués ?	X		Aucun site inscrit dans les bases de données BASIAS et BASOL n'est présent dans l'emprise du projet. Le site BASIAS recensé le plus proche, localisé à environ 50 m à l'est de l'emprise du projet, est référencé sous le numéro AQI3300379. Une évaluation de l'état des milieux réalisée par le bureau d'études Ginger Burgeap en 2019 a mis en évidence que compte tenu du projet d'aménagement envisagé, aucune recommandation n'est émise d'un point de vue sanitaire (cf. Annexe 16).
Dans une commune couverte par un plan de prévention des risques naturels prévisibles (PPRN) ou par un plan de prévention des risques technologiques (PPRT) ? si oui, est-il prescrit ou approuvé ?	X		Le projet est concerné par le Plan de Prévention du Risque Inondation de la Garonne. L'emprise du projet se situe au sein de la zone « jaune », constituée du secteur urbanisé non inondable en centennal mais inondable en exceptionnel et reste un secteur urbanisable avec limitation des établissements sensibles.
Dans une zone numide ayant fait l'objet d'une délimitation ?		X	botaniques n'ont quant à elles pas mis en évidence d'enjeu concernant les zones humides, notamment du fait du caractère très artificialisé du site. L'étude d'impact de la ZAC Saint-Jean Belcier n'avait pas mis en exergue de potentialités de présence de zones humides dans le secteur du projet.

6. Caractéristiques de l'impact potentiel du projet sur l'environnement et la santé humaine au vu des informations disponibles

6.1 Le projet envisagé est-il <u>susceptible</u> d'avoir les incidences notables suivantes ?

Inciden	ces potentielles	Oui	Non	De quelle nature ? De quelle importance ? Appréciez sommairement l'impact potentiel
	Engendre-t-il des prélèvements d'eau ? Si oui, dans quel milieu ?	X		Les relevés piézométriques ont mis en évidence la présence d'une nappe captive qui n'est pas utilisée pour l'alimentation en eau potable entre 0,45 et 1,01 m de profondeur. Le projet prévoit la construction d'un sous-sol. Ainsi, un pompage des eaux de fonds de fouille sera nécessaire. Ce dernier sera conforme aux prescriptions techniques en vigueur et pourrait être soumis à un dossier loi sur l'eau (volumes prélevés non encore connus à ce jour). Il va également générer une hausse des consommations en eau potable sur le réseau de distribution afin d'alimenter le nouveau bâtiment.
Ressources	Impliquera-t-il des drainages / ou des modifications prévisibles des masses d'eau souterraines ?	X		Une infrastructure est prévue sur une profondeur de 3,5 m sous laquelle des pieux seront fondés à une profondeur moyenne de 15 m par rapport au terrain naturel. Le site est ainsi susceptible de faire l'objet d'un pompage de fond de fouille.
	Est-il excédentaire en matériaux ?		X	A ce stade de programmation du chantier de construction, il n'est pas encore possible de définir les quantités exactes de matériaux qui seront mises en mouvement. Dans le cadre d'une démarche de chantier respectueuse de l'environnement, il sera recherché un équilibre des déblais-remblais pour limiter le apports de nouveaux matériaux. Les déblais non réutilisés seront traités en décharge spécialisée, selon la future étude définition de pollution des sols.
	Est-il déficitaire en matériaux ? Si oui, utilise-t-il les ressources naturelles du sol ou du sous- sol ?			/
Milleu nature	Est-il susceptible d'entraîner des perturbations, des dégradations, des destructions de la biodiversité existante : faune, flore, habitats, continuités écologiques ?		X	D'après les observations réalisées sur le site, l'emprise à aménager ne présente p de sensibilité écologique particulière : ce secteur en friche fortement anthropisé présente que quelques espèces végétales rudérales. Aucune faune d'intérêt particul n'y a été observée. Le site du projet n'est de plus directement concerné par aucune ZNIEFF, site Natu 2000, réserve naturelle, etc. Il est par ailleurs localisé en dehors des continui écologiques identifiées à l'échelle régionale.
	Si le projet est situé dans ou à proximité d'un site Natura 2000, est-il susceptible d'avoir un impact sur un habitat / une espèce inscrit(e) au Formulaire Standard de Données du site ?		X	/

	Est-il susceptible d'avoir des incidences sur les autres zones à sensibilité particulière énumérées au 5.2 du présent formulaire ?		X	/
	Engendre-t-il la consommation d'espaces naturels, agricoles, forestiers, maritimes ?		X	/
	Est-il concerné par des risques technologiques ?		X	/
Risques	Est-il concerné par des risques naturels ?	X		Aléa moyen d'exposition au retrait-gonflement des argiles. Risque de remontées de nappes : emprise du projet située en zone potentiellement sujette aux débordements de nappe. Les relevés piézométriques ont mis en évidence la présence de la nappe entre 0,45 et 1,01 m de profondeur. Le projet prévoit la construction d'un sous-sol. Ainsi, un pompage des eaux de fonds de fouille sera nécessaire. Ce dernier sera conforme aux prescriptions techniques en vigueur et pourrait être soumis à un dossier loi sur l'eau (volumes prélevés non encore connus à ce jour). Risque sismique : zone de sismicité faible (niveau 2 sur 5). Zone jaune du PPRI : secteur urbanisé non inondable en centennal mais inondable en exceptionnel. Secteur urbanisable avec limitation des établissements sensibles.
	Engendre-t-il des risques sanitaires ? Est-il concerné par des risques sanitaires ?		X	/ Aucun site inscrit dans les bases de données BASIAS et BASOL n'est présent dans l'emprise du projet.
	Engendre-t-il des déplacements/des trafics	X		Les déplacements induits par l'activité du site (livraisons, collecte déchets) et par les occupants ou les visiteurs seront les suivants : véhicules légers vers le parking souterrain ou vélos des cyclistes vers le local vélo au RDC. En outre, les trafics induits ont été prévus dans le cadre de l'étude d'impact concernant la réalisation de la ZAC Bordeaux Saint-Jean Belcier dans laquelle s'insère le projet. De plus, le projet se situe à proximité des transports en commun : arrêt de deux lignes de tramway à 250 m et future ligne TCSP sur le boulevard Jean-Jacques Bosc après l'ouverture du Pont Simone Veil.
Nuisances	Est-il source de bruit ? Est-il concerné par des nuisances sonores ?		X	Le projet n'est pas de nature à générer des nuisances sonores significatives, en dehors des périodes de chantier (impact temporaire). Le site du projet se situe en dehors des zones affectées par le bruit des infrastructures de transport routier, par le bruit ferroviaire et par le bruit industriel. Il n'est donc pas concerné par des nuisances sonores identifiées.

	Engendre-t-il des odeurs ? Est-il concerné par des nuisances olfactives ?			/
	Engendre-t-il des vibrations ? Est-il concerné par des vibrations ?		X	Le projet n'est pas de nature à générer des vibrations, en dehors des périodes de chantier (circulation et mouvements des engins de chantier : impact temporaire).
	Engendre-t-il des émissions lumineuses? Est-il concerné par des émissions lumineuses ?			Un éclairage extérieur sera prévu dans le cadre du projet, au niveau des entrées, du parvis côté jardin et du patio. Cet éclairage ne sera toutefois pas de nature à générer des nuisances significatives, notamment eu égard à la pollution lumineuse d'ores et déjà générée par la métropole bordelaise.
	Engendre-t-il des rejets dans l'air ?	0	X	/
	Engendre-t-il des rejets liquides ? Si oui, dans quel milieu ?		X	/
Emissions	Engendre-t-il des effluents ?			Le projet va nécessairement produire des effluents durant son exploitation (effluents des bâtiments tertiaires). Les réseaux d'assainissement desserviront le site conformément à la réglementation en vigueur.
	Engendre-t-il la production de déchets non dangereux, inertes, dangereux ?	X		Le projet va nécessairement produire des déchets liés à l'aménagement en lui-même (chantier), mais également durant son exploitation (déchets ménagers, eaux usées liées aux activités tertiaires). Il n'est toutefois pas de nature à produire des déchets dangereux.

Patrimolne /	Est-il susceptible de porter atteinte au patrimoine architectural, culturel, archéologique et paysager ?		X	/
Cadre de vie / Population	Engendre-t-il des modifications sur les activités humaines (agriculture, sylviculture, urbanisme, aménagements), notamment l'usage du sol?		X	/
6.2 Les incide approuvés Oui X	ences du projet ident s ? Non Si oui, décri			ont-elles susceptibles d'être cumulées avec d'autres projets existants ou
Cette ZAC, qui projet faisant l' environnants. T pour une part	a fait l'objet d'une étude objet de cette demande d' outefois, dans la mesure importante issus de déma évoir porteront essentiel Il est également à noter c	e d'impo d'exame où la r olitions lement	act, intèg en au ca réalisation / recons sur les r	nt-Jean-Belcier, sur un secteur d'anciennes friches ferroviaires, industrielles et fluviales. re de nombreux projets de construction, notamment aux abords immédiats du site du site du site acceptance. Des incidences sont ainsi susceptibles de se cumuler avec d'autres projets no de la ZAC a fait l'objet d'une analyse d'ensemble, et que les différents projets sont tructions dans un contexte densément urbanisé, voire même dégradé, les incidences nuisances liées aux différentes phases de chantier et les trafics générés en phase asemble vise, sur de nombreuses thématiques environnementales, l'amélioration de la
6.3 Les incide	ences du projet identi Non X Si oui, déc			nt-elles susceptibles d'avoir des effets de nature transfrontière ?

6.4 Description, le cas échéant, des mesures et des caractéristiques du projet destinées à éviter ou réduire les effets négatifs notables du projet sur l'environnement ou la santé humaine (pour plus de précision, il vous est possible de joindre une annexe traitant de ces éléments):

Le projet s'établit sur un secteur ne présentant, à priori, pas d'enjeu notable. La composition du projet a néanmoins été conçue au regard de différents objectifs environnementaux :

- Une conception selon différentes certifications environnementales: BREEAM New Construction 2016 niveau Very Good, HQE Bâtiment Durable 2016 Niveau Excellent, Ready 2 Services, niveau 1 étoile, Energie Carbone niveaux Energie 2 Carbone 1, référentiel juillet 2017,
- Des ambitions environnementales en matière de performances énergétiques, matériaux, gestion de l'eau et des déchets, paysage et biodiversité,
- La recherche de confort et bien-être concernant les bruits et nuisances, le confort visuel, la qualité de l'air ou encore le confort hygrothermique,
- L'inscription dans un quartier favorisant différents moyens de transports,
- Un chantier à faible impact environnemental.

La notice environnement du dossier de PC, présentée en Annexe 15, développe dans le détail ces différents points.

7. Auto-évaluation (facultatil)

Au regard du formulaire rempli, estimez-vous qu'il est nécessaire que votre projet fasse l'objet d'une évaluation environnementale ou qu'il devrait en être dispensé ? Expliquez pourquoi.

Au regard du contexte du site, des éléments récoltés sur les diverses thématiques environnementales fournis dans le présent formulaire et des annexes associées, il peut être estimé que le projet n'a pas lieu de faire l'objet d'une étude d'impact. Le site de projet a par ailleurs d'ores et déjà été analysé dans le cadre de l'étude d'impact de la réalisation de la ZAC Bordeaux Saint-Jean

8. Annexes

8.1 Annexes obligatoires

Belcier.

	3.1 Annexes obligatoires								
	Objet								
1	Document CERFA n°14734 intitulé « informations nominatives relatives au maître d'ouvrage ou pétitionnaire non publié ;								
2	Un plan de situation au 1/25 000 ou, à défaut, à une échelle comprise entre 1/16 000 et 1/64 000 (Il peut s'a d'extraits cartographiques du document d'urbanisme s'il existe) ;	agir X							
3	Au minimum, 2 photographies datées de la zone d'implantation, avec une localisation cartographique des pr de vue, l'une devant permettre de situer le projet dans l'environnement proche et l'autre de le situer dan paysage lointain;	s le X							
4	Un plan du projet <u>ou</u> , pour les travaux, ouvrages ou aménagements visés aux catégories 5° a), 6° b) et c), 9°,10°,11°, 12°, 13°, 22°, 32, 38°; 43° a) et b) de l'annexe à l'article R. 122-2 du code de l'environnement projet de tracé ou une enveloppe de tracé;	7°, t un 🛛							
	Sauf pour les travaux, ouvrages ou aménagements visés aux 5° a), 6° b) et c), 7°, 9°, 10°, 11°, 12°, 13°, 22°, 38°; 43° a) et b) de l'annexe à l'article R. 122-2 du code de l'environnement: plan des abords du projet (mètres au minimum) pouvant prendre la forme de photos aériennes datées et complétées si nécessaire selon évolutions récentes, à une échelle comprise entre 1/2 000 et 1/5 000. Ce plan devra préciser l'affectation constructions et terrains avoisinants ainsi que les canaux, plans d'eau et cours d'eau;	100 X							
4	Si le projet est situé dans un site Natura 2000, un plan de situation détaillé du projet par rapport à ce site. Dans autres cas, une carte permettant de localiser le projet par rapport aux sites Natura 2000 sur lesquels le projet susceptible d'avoir des effets.	s les est							

8.2 Autres annexes volontairement transmises par le maître d'ouvrage ou pétitionnaire

Veuillez compléter le tableau ci-joint en indiquant les annexes jointes au présent formulaire d'évaluation, ainsi que les parties auxquelles elles se rattachent

Objet

- Annexe 7 : Sites naturels sensibles (ZNIEFF type 1 et 2)
- Annexe 8 : Etat des lieux des continuités écologiques
- Annexe 9 : Occupation du sol du site d'étude
- Annexe 10 : Patrimoine culturel
- Annexe 11: Patrimoine paysager
- Annexe 12 : Aléa retrait/gonflement des argiles
- Annexe 13 : Risque de remontées de nappes
- Annexe 14: Nuisances et pollutions
- Annexe 15 : Notice environnement
- Annexe 16: Evaluation de l'état des milieux Ginger Burgeap

9. Engagement et signature

Je certifie sur l'honneur l'exactitude des renseignements ci-dessus

X

Fait à

Paris

le. 29/06/2020

Signature

SCI RUE DE LA LOUISIANE Société Civile Immobilière 30 avenue Kleber 751 6 PARIS RCS PARIS 852 671 874

Insérez votre signature en cliquant sur le cadre ci-dessus

----- Courriel original -----

Objet: RE: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st

jean belcier

Date: 08/07/2020 14:48

De: > Auterbe Aurelie (par Internet) <aurelie.auterbe@covivio.fr>

À: GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Cc: Fragu Benoit <benoit.fragu@covivio.fr>, Valvasori Arnaud <arnaud.valvasori@covivio.fr>,

Floquet Vincent vincent.floquet@covivio.fr, Muel Oscar oscar.muel@covivio.fr

Répondre à: Auterbe Aurelie <aurelie.auterbe@covivio.fr>

Madame,

Comme convenu, je vous prie de bien vouloir trouver ci-joint le courrier détaillant les précisions demandées sur notre projet Jardins de l'Ars lot 6.1.

Également je vous prie de trouver ci-après un lien permettant de télécharger les annexes du courrier à savoir les plans et les élévations de l'immeuble.

Lien de téléchargement : https://we.tl/t-gkydjSoPYL (expire le 15 juillet)

Je reste également à votre disposition si nécessaire,

Bonne réception,

Cordialement

Aurélie AUTERBE Directrice de Projets Développement Development Project Manager

30, avenue Kléber 75 208 – Paris cedex 16

T: +(33) 01 58 97 50 18 M: +(33) 06 07 37 68 01

email: aurelie.auterbe@covivio.fr

www.covivio.eu

Suivez-nous sur Twitter @covivio_ Et sur les réseaux sociaux

----Message d'origine-----

De: GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Envoyé: mardi 7 juillet 2020 17:41

À : Auterbe Aurelie <aurelie.auterbe@covivio.fr>

Cc: Fragu Benoit

Cc: Fragu@covivio.fr>

Objet : Re: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st jean belcier

bonjour,

je vous remercie pour votre message. n'hésitez pas à me communiquer ce courrier par email, je le ferai enregistré à notre secrétariat

bien à vous caroll

Le 07/07/2020 17:15, > Auterbe Aurelie a écrit :

Madame,

Pour faire suite à notre entretien téléphonique d'hier, je vous confirme que nous sommes en mesure de vous apporter les précisions souhaitées sur le projet de Bordeaux Jardins de l'Ars lot 6.1.

Nous finalisons le courrier de réponse que nous vous adresserons demain, mercredi 8 juillet, au plus tard.

Cordialement

Aurélie AUTERBE

Directrice de Projets Développement

Development Project Manager

30, avenue Kléber

75 208 - Paris cedex 16

T:+(33) 01 58 97 50 18

M: +(33) 06 07 37 68 01

email: aurelie.auterbe@covivio.fr

www.covivio.eu [1]

Suivez-nous sur Twitter @covivio_[2]

Et sur les réseaux sociaux

De: GARDET Caroll - CGEDD/AE

<caroll.gardet@developpement-durable.gouv.fr>

Envoyé: lundi 6 juillet 2020 14:51

À : Auterbe Aurelie <a urelie.auterbe@covivio.fr>; Fragu Benoit senoit.fragu@covivio.fr Objet : TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st jean belcier

bonjour,

j'ai essayé de vous appeler vendredi et encore ce matin sans succès, à propos de la demande de cas par cas que vous avez adressée à l'autorité.

je me permets de vous rappeler que l'absence de décision de l'autorité vaut soumission et que le code de l'environnement fixe les délais pour la complétude du dossier et l'émission de la décision.

Je vous saurais gré de bien vouloir me rappeler dans les meilleurs délais. 0664056641

bien cordialement caroll gardet

--

caroll gardet

rapporteur.e à l'Ae du CGEDD

MEDDE/CGEDD/Ae

Tour Séquoia, porte 30.07 Ad Postale : MEDDE 92055 La Défense Cedex

Tél.: +33 (1) 40 81 25 52

----- Courriel original -----

Objet: RE: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st

jean belcier

Date: 10/07/2020 10:25

De: > Auterbe Aurelie (par Internet) <aurelie.auterbe@covivio.fr>

À: GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Cc: Fragu Benoit senoit.fragu@covivio.fr, Valvasori Arnaud senoit.fragu@covivio.fr, Valvasori Arnaud senoit.fragu@covivio.fr,

Floquet Vincent vincent.floquet@covivio.fr, Muel Oscar scar.muel@covivio.fr,

"dominique.iglesias@thema-environnement.fr" <dominique.iglesias@thema-

environnement.fr>

Répondre à: Auterbe Aurelie <aurelie.auterbe@covivio.fr>

Bonjour Madame,

Au regard du rapport BURGEAP ci-joint et au regard de notre projet d'immeuble l'usage de bureaux est bien compatible.

Comme échangé, et suivant vos observations nous vous confirmons pouvoir augmenter l'épaisseur de 30cm de terre végétale à hauteur de 1m ou 1,50m pour répondre aux risques d'ingestion.

Nous prenons l'engagement de réaliser une étude sur les risques sanitaires au regard des résultats des sondages. Ce calcul des risques sanitaires d'ores et déjà initié présentera :

- la réalisation du schéma conceptuel,
- la réalisation d'un calcul de risque en ingestion avec les métaux,
- la réalisation d'un calcul de risque en inhalation avec le résultat du napthalène,
- une préconisation en synthèse.

Par ailleurs, des sondages sur la présence de COV dans les gaz de sol ont bien été réalisés et que ceux-ci se sont révélées négatifs (cf. pages 15 et 16 du rapport Burgeap joint) et notamment sur le point de sondage 3 au niveau du parvis. "Les mesures réalisées au PID sur chaque échantillon se sont révélées négatives (0 ppmV)".

De plus, les remblais sableux noirâtres ne dépassent pas les 1,10m de profondeur sur l'ensemble de la parcelle ce qui les positionnent au-dessus des évents du parking. Cette couche de terre sera évacuée en filière spécialisée. Nous pourrons, le cas échéant, prévoir la mise en place de flo plug au droit des évents pour canaliser les gaz.

Enfin, la surface de zone de parvis représente 249.5 m², pour une parcelle de 4 572 m².

Cordialement

Aurélie AUTERBE Directrice de Projets Développement Development Project Manager

30, avenue Kléber 75 208 – Paris cedex 16

T:+(33) 01 58 97 50 18 M:+(33) 06 07 37 68 01

email: aurelie.auterbe@covivio.fr

www.covivio.eu

Suivez-nous sur Twitter @covivio_ Et sur les réseaux sociaux

----Message d'origine-----

De: GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Envoyé: jeudi 9 juillet 2020 10:19

À : Auterbe Aurelie <aurelie.auterbe@covivio.fr>

Cc: Fragu Benoit < benoit.fragu@covivio.fr>; Valvasori Arnaud < arnaud.valvasori@covivio.fr>;

Floquet Vincent vincent.floquet@covivio.fr; Muel Oscar scar.muel@covivio.fr

Objet : Re: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st

jean belcier

bonjour,

je reviens sur le premier point. pourriez vous qu'elle est la superficie en m² de jardin en rdc non revêtu dans le projet?

au niveau du jardin sur votre parcelle, le substitution sur 30 cm ne me semble pas suffisante pour que vous exonériez tout risque d'ingestion et de remontée de gaz de sols pollués. Avec seulement 30 cm, une étude des risques sanitaires est indispensable.

de la même manière, aucun test n'a été réalisé sur les gaz de sol sur l'ensemble de la parcelle. étant rappelée la présence d'évent dans le parking, quelles justifications pouvaient vous nous apporter sur l'absence de risque sanitaire dans le parking du fait de la présence de sols pollués sous-jacents?

dans l'attente de votre retour bien cordialement

Le 09/07/2020 09:50, > Auterbe Aurelie a écrit :

Madame,

Pour faire suite à votre demande, je vous prie de trouver ci-dessous les réponses à vos questions:

1. Pollution:

BURGEAP en tant que BET pollution préconise comme barrière physique à la pollution une dalle béton ou une épaisseur de terre végétale de 30 cm.

Nous avons suivi sa recommandation en prévoyant dans le cadre de notre projet une terre végétale minimale de 30 cm. Également la majeure partie du parvis sera recouverte de pavés qui crée une barrière physique. Le parvis représentant 5% de la parcelle fait l'objet d'un sondage complémentaire dont nous sommes en attente de résultat. Nous prenons comme engagement, comme pour le reste de la parcelle, de traiter les terres en filières adéquates le cas échéant et d'assurer la comptabilité avec l'usage.

2. Ilot de fraicheur:

L'ensemble des terrasses présente des profondeurs de terres permettant la plantation de plantes vivaces et d'arbustes sur une épaisseur de terre de 60cm. Également nous prévoyons des bacs pouvant accueillir des arbrisseaux avec une épaisseur de terre de 1,20m. Ces bacs sont répartis sur l'ensemble des terrasses.

L'ensemble des espaces végétalisé est conçu par à un paysagiste qui assurera également le suivi et la conformité de la réalisation.

Espérant avoir répondu à vos questions, nous restons à votre disposition.

Cordialement

Aurélie AUTERBE Directrice de Projets Développement Development Project Manager

30, avenue Kléber 75 208 – Paris cedex 16

T: +(33) 01 58 97 50 18 M: +(33) 06 07 37 68 01

email: aurelie.auterbe@covivio.fr

www.covivio.eu

Suivez-nous sur Twitter @covivio_ Et sur les réseaux sociaux

----Message d'origine----

De: GARDET Caroll - CGEDD/AE

<caroll.gardet@developpement-durable.gouv.fr>

Envoyé: mercredi 8 juillet 2020 17:59 À: Auterbe Aurelie

<a href="mailto:<a href="mailt

<arnaud.valvasori@covivio.fr>; Floquet Vincent
<<u>vincent.floquet@covivio.fr></u>; Muel Oscar <u><oscar.muel@covivio.fr></u> Objet
: Re: TU décision de cas par cas // aménagement d'un immeuble de
bureau ilot 6.1 st jean belcier

bonsoir,

je vous remercie de votre réponse rapide et efficace, et de votre bonne compréhension des problématiques que je vous ai exposées.

néanmoins, je me permets de vous demander deux précisions:

1 - pollution des sols.

le plan d'implantation des sondages de sols de burgeap montre que le secteur de votre parcelle non situé sur parking souterrain n'a pas été investigué. il y a donc présomption d'une pollution telle que celle présente sur le reste de la parcelle. vous proposez une mesure d'évitement du risque sanitaire (sur la partie jardin) qui consiste à une substitution des 30 premiers centimètres de sol.

pourriez-vous m'expliquer comment cette profondeur de 30, qui me parait bien faible, garantie une absence de risque d'exposition?

2 - ilot de fraicheur.

Vous indiquez que les terrasses seront recouvertes de terre suffisantes pour permettre toute plantation. Pourriez-vous me préciser la hauteur de terre qui sera rapportée sur les toits?

je vous remercie bien cordialement

Le 08/07/2020 14:48, > Auterbe Aurelie a écrit :

Madame,

Comme convenu, je vous prie de bien vouloir trouver ci-joint le courrier détaillant les précisions demandées sur notre projet Jardins de l'Ars lot 6.1.

Également je vous prie de trouver ci-après un lien permettant de télécharger les annexes du courrier à savoir les plans et les élévations de l'immeuble.

Lien de téléchargement : https://we.tl/t-gkydjSoPYL (expire le 15 juillet)

Je reste également à votre disposition si nécessaire,

Bonne réception,

Cordialement

Aurélie AUTERBE Directrice de Projets Développement Development Project Manager

30, avenue Kléber 75 208 – Paris cedex 16

T:+(33) 01 58 97 50 18 M:+(33) 06 07 37 68 01

email: aurelie.auterbe@covivio.fr

www.covivio.eu

Suivez-nous sur Twitter @covivio_ Et sur les réseaux sociaux

-----Message d'origine-----

De: GARDET Caroll - CGEDD/AE

<caroll.gardet@developpement-durable.gouv.fr>

Envoyé: mardi 7 juillet 2020 17:41

À : Auterbe Aurelie <a urelie.auterbe@covivio.fr> Cc : Fragu Benoit benoit.fragu@covivio.fr Objet : Re: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st jean belcier

bonjour,

je vous remercie pour votre message. n'hésitez pas à me communiquer ce courrier par email, je le ferai enregistré à notre secrétariat

bien à vous caroll

Le 07/07/2020 17:15, > Auterbe Aurelie a écrit :

Madame,

Pour faire suite à notre entretien téléphonique d'hier, je vous confirme que nous sommes en mesure de vous apporter les précisions

souhaitées sur le projet de Bordeaux Jardins de l'Ars lot 6.1.

Nous finalisons le courrier de réponse que nous vous adresserons demain, mercredi 8 juillet, au plus tard.

Cordialement

Aurélie AUTERBE Directrice de Projets Développement

Development Project Manager

30, avenue Kléber

75 208 - Paris cedex 16

T:+(33) 01 58 97 50 18

M:+(33) 06 07 37 68 01

email: <u>aurelie.auterbe@covivio.fr</u>

www.covivio.eu [1]

Suivez-nous sur Twitter @covivio_[2]

Et sur les réseaux sociaux

De: GARDET Caroll - CGEDD/AE

<caroll.gardet@developpement-durable.gouv.fr>

Envoyé: lundi 6 juillet 2020 14:51

À : Auterbe Aurelie <aurelie.auterbe@covivio.fr>; Fragu Benoit <benoit.fragu@covivio.fr> Objet : TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st jean belcier

bonjour,

j'ai essayé de vous appeler vendredi et encore ce matin sans succès, à propos de la demande de cas par cas que vous avez adressée à l'autorité.

je me permets de vous rappeler que l'absence de décision de l'autorité vaut soumission et que le code de l'environnement fixe les délais pour la complétude du dossier et l'émission de la décision.

Je vous saurais gré de bien vouloir me rappeler dans les meilleurs

délais. 0664056641

bien cordialement caroll gardet

--

caroll gardet

rapporteur.e à l'Ae du CGEDD

MEDDE/CGEDD/Ae

Tour Séquoia, porte 30.07 Ad Postale : MEDDE 92055 La Défense Cedex

Tél.: +33 (1) 40 81 25 52

Sujet : Tr: RE: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st jean belcier

De: GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Date: 11/07/2020 00:07

Pour: MESGUICH Martine - CGEDD/AE <martine.mesguich@developpement-durable.gouv.fr>,

CANARDON Daniel - CGEDD/AE <daniel.canardon@developpement-durable.gouv.fr>

Copie à : LEDENVIC Philippe (Président de l'AE) - CGEDD/AE

<philippe.ledenvic@developpement-durable.gouv.fr>

pour le dossier

----- Courriel original -----

Objet: RE: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1

st jean belcier

Date: 09/07/2020 09:50

De: > Auterbe Aurelie (par Internet) <aurelie.auterbe@covivio.fr>

À: GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Cc: Fragu Benoit <benoit.fragu@covivio.fr>, Valvasori Arnaud

<arnaud.valvasori@covivio.fr>, Floquet Vincent <vincent.floquet@covivio.fr>, Muel

Oscar <oscar.muel@covivio.fr>

Répondre à: Auterbe Aurelie <aurelie.auterbe@covivio.fr>

Madame,

Pour faire suite à votre demande, je vous prie de trouver ci-dessous les réponses à vos questions:

1. Pollution:

BURGEAP en tant que BET pollution préconise comme barrière physique à la pollution une dalle béton ou une épaisseur de terre végétale de 30 cm. Nous avons suivi sa recommandation en prévoyant dans le cadre de notre projet une terre végétale minimale de 30 cm. Également la majeure partie du parvis sera recouverte de pavés qui crée une barrière physique. Le parvis représentant 5% de la parcelle fait l'objet d'un sondage complémentaire dont nous sommes en attente de résultat. Nous prenons comme engagement, comme pour le reste de la parcelle, de traiter les terres en filières adéquates le cas échéant et d'assurer la comptabilité avec l'usage.

2. Ilot de fraicheur:

L'ensemble des terrasses présente des profondeurs de terres permettant la plantation de plantes vivaces et d'arbustes sur une épaisseur de terre de 60cm. Également nous prévoyons des bacs pouvant accueillir des arbrisseaux avec une épaisseur de terre de 1,20m. Ces bacs sont répartis sur l'ensemble des terrasses.

L'ensemble des espaces végétalisé est conçu par à un paysagiste qui assurera également le suivi et la conformité de la réalisation.

Espérant avoir répondu à vos questions, nous restons à votre disposition.

Cordialement

Aurélie AUTERBE Directrice de Projets Développement Development Project Manager

30, avenue Kléber 75 208 - Paris cedex 16

T : +(33) 01 58 97 50 18 M : +(33) 06 07 37 68 01

email : aurelie.auterbe@covivio.fr

www.covivio.eu

Suivez-nous sur Twitter @covivio_ Et sur les réseaux sociaux

----Message d'origine----

De : GARDET Caroll - CGEDD/AE <caroll.gardet@developpement-durable.gouv.fr>

Envoyé: mercredi 8 juillet 2020 17:59

À : Auterbe Aurelie <aurelie.auterbe@covivio.fr>

Cc : Fragu Benoit <benoit.fragu@covivio.fr>; Valvasori Arnaud

<arnaud.valvasori@covivio.fr>; Floquet Vincent <vincent.floquet@covivio.fr>; Muel
Oscar <oscar.muel@covivio.fr>

Objet : Re: TU décision de cas par cas // aménagement d'un immeuble de bureau ilot 6.1 st jean belcier

bonsoir,

je vous remercie de votre réponse rapide et efficace, et de votre bonne compréhension des problématiques que je vous ai exposées.

néanmoins, je me permets de vous demander deux précisions:

1 - pollution des sols.

le plan d'implantation des sondages de sols de burgeap montre que le secteur de votre parcelle non situé sur parking souterrain n'a pas été investigué. il y a donc présomption d'une pollution telle que celle présente sur le reste de la parcelle. vous proposez une mesure d'évitement du risque sanitaire (sur la partie jardin) qui consiste à une substitution des 30 premiers centimètres de sol.

pourriez-vous m'expliquer comment cette profondeur de 30, qui me parait bien faible, garantie une absence de risque d'exposition?

2 - ilot de fraicheur.

Vous indiquez que les terrasses seront recouvertes de terre suffisantes pour permettre toute plantation. Pourriez-vous me préciser la hauteur de terre qui sera rapportée sur les toits?

je vous remercie bien cordialement

Le 08/07/2020 14:48, > Auterbe Aurelie a écrit :

Madame,

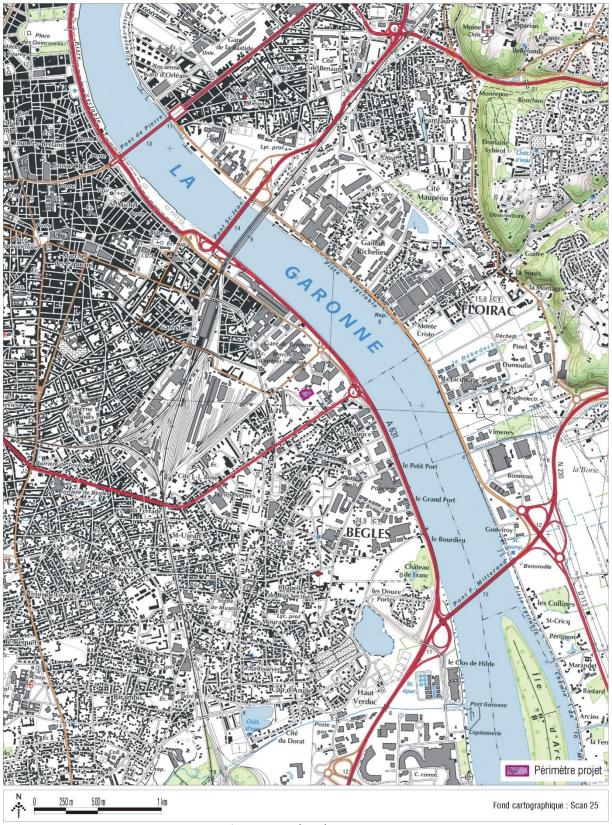
Comme convenu, je vous prie de bien vouloir trouver ci-joint le courrier détaillant les précisions demandées sur notre projet Jardins de l'Ars lot 6.1.

Également je vous prie de trouver ci-après un lien permettant de télécharger les annexes du courrier à savoir les plans et les élévations de l'immeuble.

Lien de téléchargement : https://we.tl/t-gkydjSoPYL (expire le 15 juillet)

Je reste également à votre disposition si nécessaire,

Bonne réception,

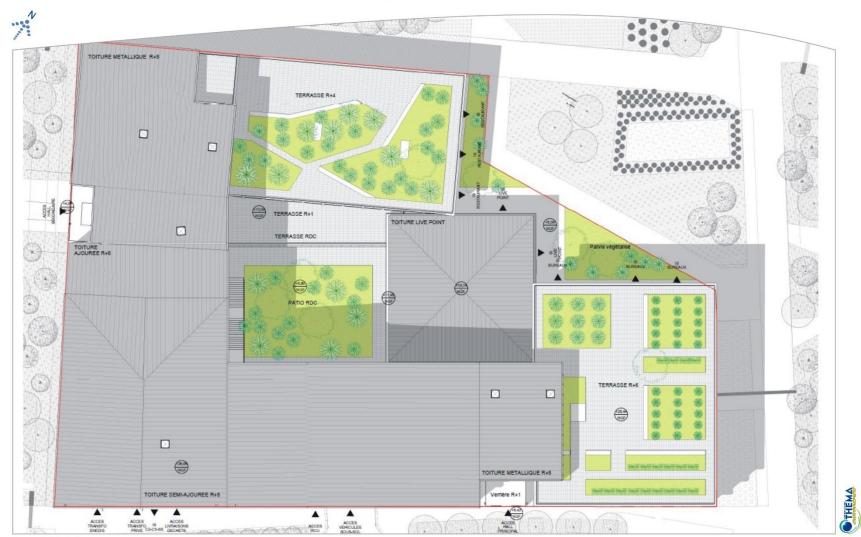

Cordialement

```
Aurélie AUTERBE
Directrice de Projets Développement
Development Project Manager
30, avenue Kléber
75 208 - Paris cedex 16
T: +(33) 01 58 97 50 18
M : +(33) 06 07 37 68 01
email : aurelie.auterbe@covivio.fr
www.covivio.eu
Suivez-nous sur Twitter @covivio
Et sur les réseaux sociaux
----Message d'origine----
De : GARDET Caroll - CGEDD/AE
<caroll.gardet@developpement-durable.gouv.fr>
Envoyé : mardi 7 juillet 2020 17:41
À : Auterbe Aurelie <aurelie.auterbe@covivio.fr> Cc : Fragu Benoit
<benoit.fragu@covivio.fr> Objet : Re: TU décision de cas par cas //
aménagement d'un immeuble de bureau ilot 6.1 st jean belcier
bonjour,
je vous remercie pour votre message. n'hésitez pas à me communiquer ce
courrier par email, je le ferai enregistré à notre secrétariat
bien à vous
caroll
Le 07/07/2020 17:15, > Auterbe Aurelie a écrit :
 Madame,
 Pour faire suite à notre entretien téléphonique d'hier, je vous
 confirme que nous sommes en mesure de vous apporter les précisions
 souhaitées sur le projet de Bordeaux Jardins de l'Ars lot 6.1.
 Nous finalisons le courrier de réponse que nous vous adresserons
 demain, mercredi 8 juillet, au plus tard.
 Cordialement
 Aurélie AUTERBE
 Directrice de Projets Développement
 Development Project Manager
 30, avenue Kléber
 75 208 - Paris cedex 16
 T: +(33) 01 58 97 50 18
 M: +(33) 06 07 37 68 01
 email : aurelie.auterbe@covivio.fr
 www.covivio.eu [1]
```

```
Suivez-nous sur Twitter @covivio_ [2]
Et sur les réseaux sociaux
De : GARDET Caroll - CGEDD/AE
<caroll.gardet@developpement-durable.gouv.fr>
Envoyé : lundi 6 juillet 2020 14:51
À : Auterbe Aurelie <aurelie.auterbe@covivio.fr>; Fragu Benoit
<benoit.fragu@covivio.fr> Objet : TU décision de cas par cas //
aménagement d'un immeuble de bureau ilot 6.1 st jean belcier
bonjour,
j'ai essayé de vous appeler vendredi et encore ce matin sans succès,
à propos de la demande de cas par cas que vous avez adressée à
l'autorité.
je me permets de vous rappeler que l'absence de décision de
l'autorité vaut soumission et que le code de l'environnement fixe les
délais pour la complétude du dossier et l'émission de la décision.
Je vous saurais gré de bien vouloir me rappeler dans les meilleurs
délais. 0664056641
bien cordialement
caroll gardet
caroll gardet
rapporteur.e à l'Ae du CGEDD
MEDDE/CGEDD/Ae
Tour Séquoia, porte 30.07 Ad Postale : MEDDE 92055 La Défense Cedex
Tél.: +33 (1) 40 81 25 52
Links:
_ _ _ _ _ _
[1] http://www.covivio.eu/
[2] https://twitter.com/covivio_
```


LOCALISATION DU SITE D'ÉTUDE

Annexe 2 : Plan de situation



LOCALISATION DES PRISES DE VUES

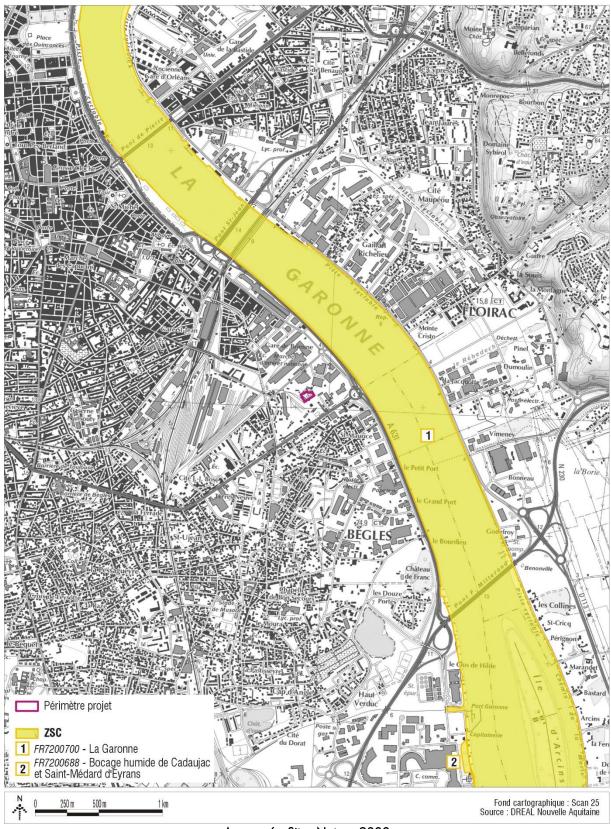
Annexe 3 : Localisation des prises de vues

PLAN DE COMPOSITION DU PROJET

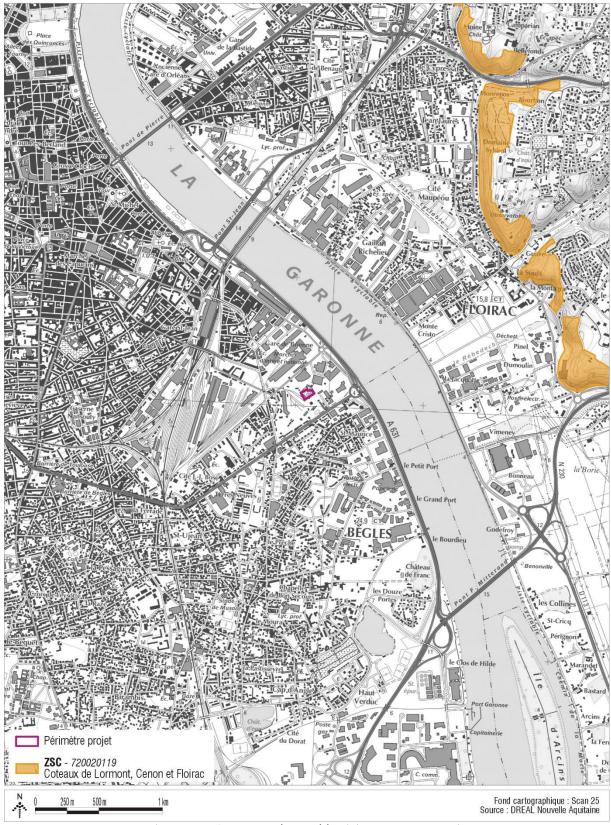
Source : Valode & Pistre

Annexe 4 : Plan masse du projet

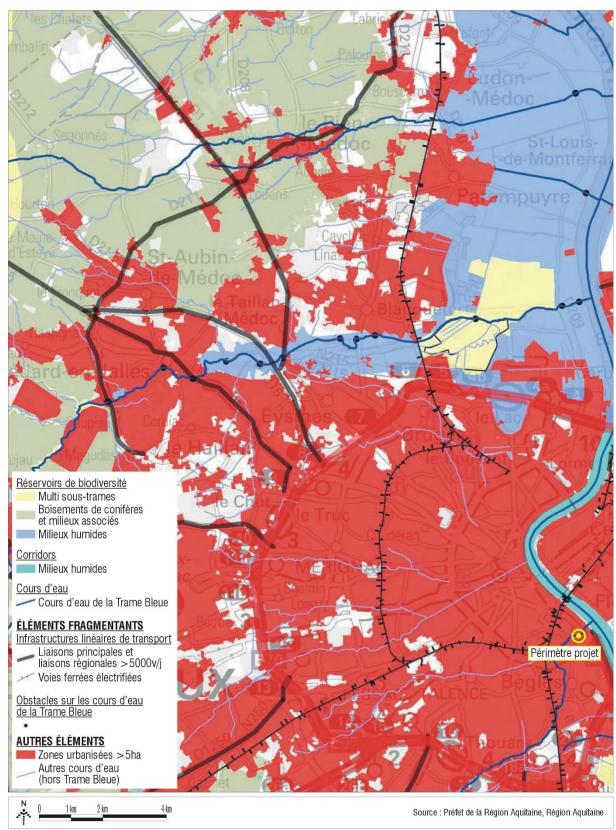
THEMA


PLAN DES ABORDS DU PROJET

Annexe 5 : Plan des abords du projet

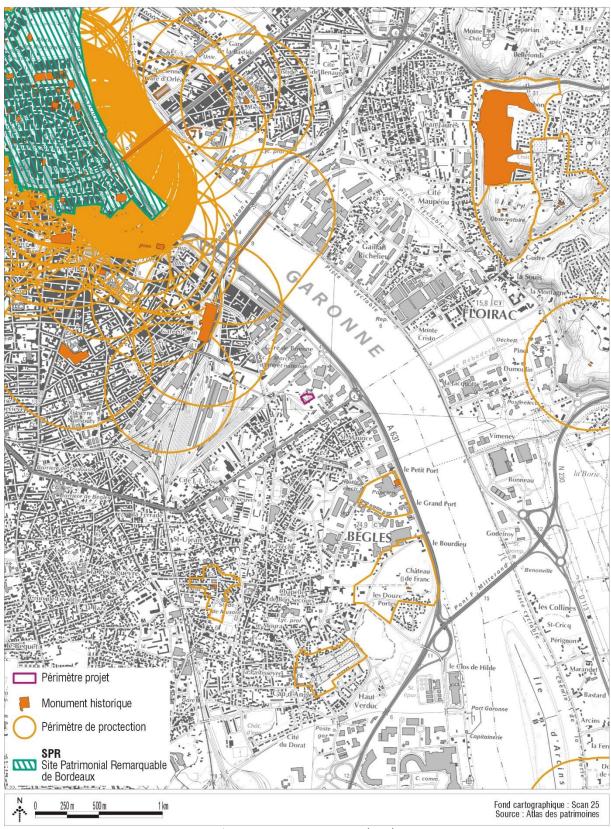

SITES NATURA 2000

Annexe 6 : Sites Natura 2000

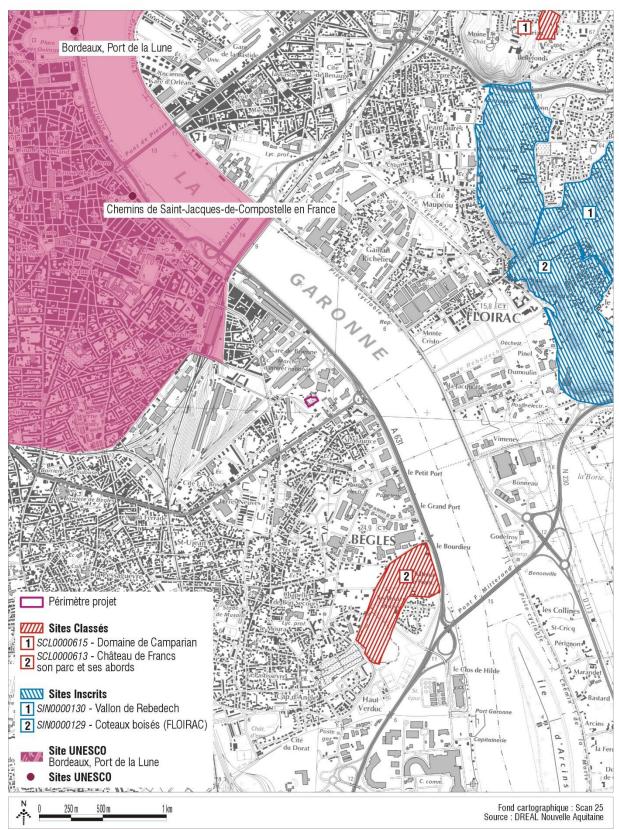

SITES NATURELS SENSIBLES

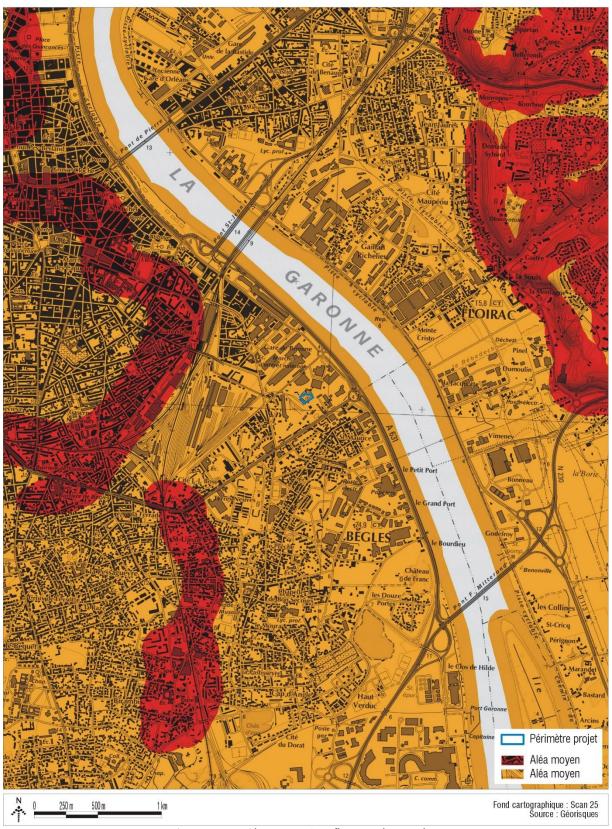
Annexe 7 : Sites naturels sensibles (ZNIEFF types 1 et 2)

ÉTAT DES LIEUX DES CONTINUITÉS ÉCOLOGIQUES RÉGIONALES

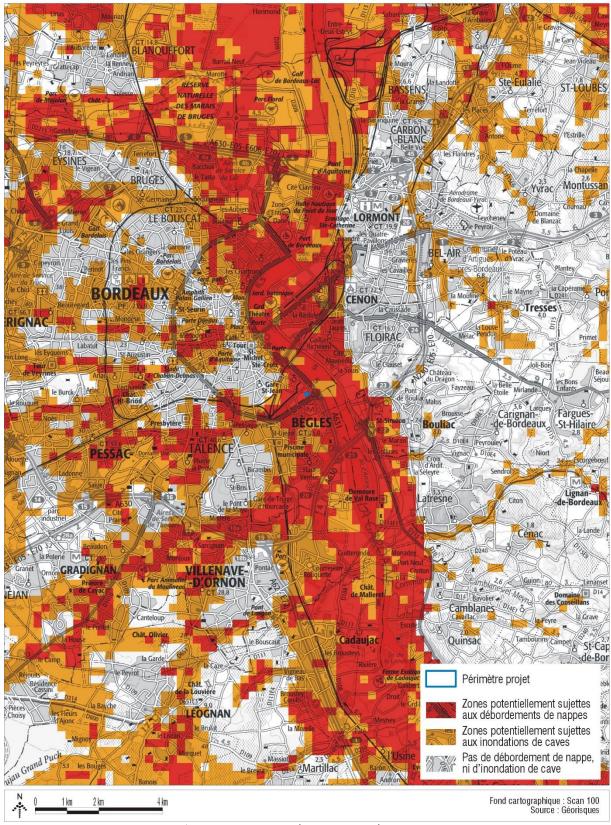

Annexe 8 : Etat des lieux des continuités écologiques

Annexe 9 : Occupation du sol du site d'étude

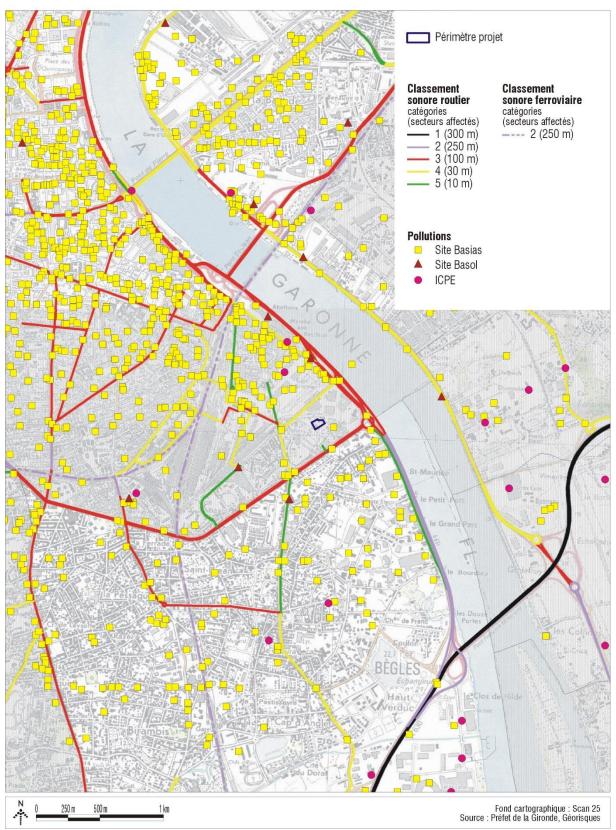

PATRIMOINE CULTUREL

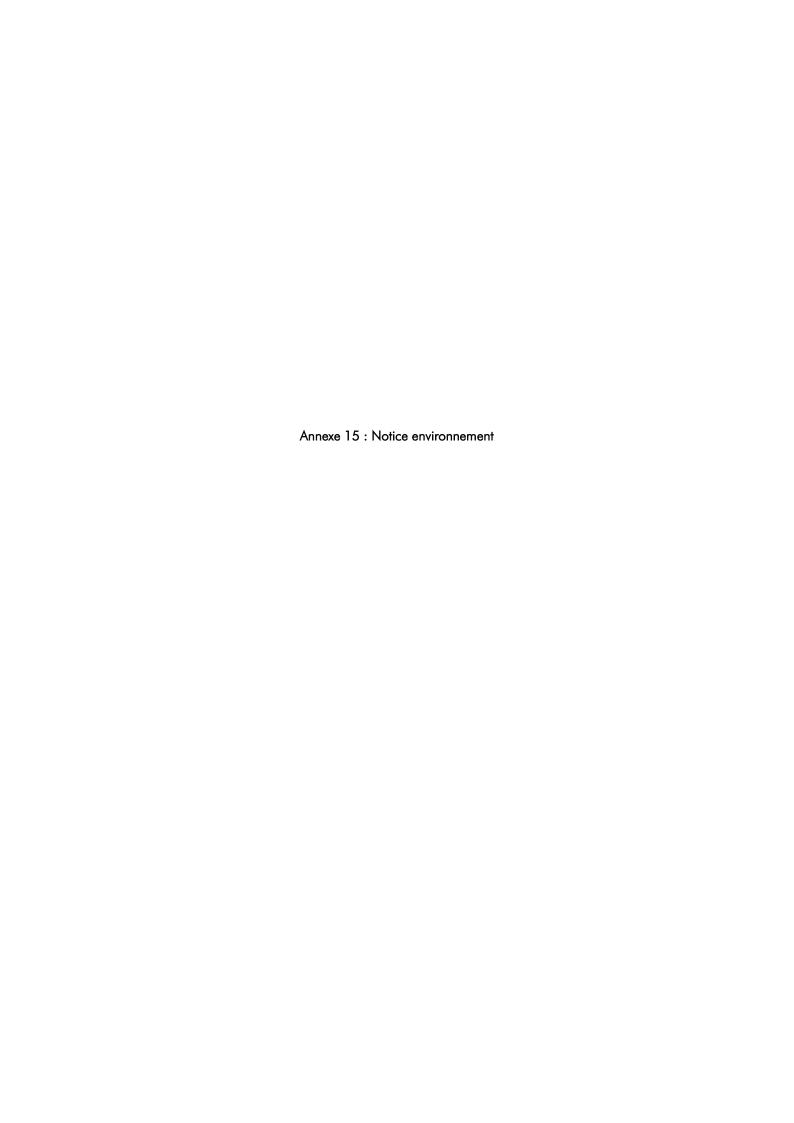

Annexe 10 : Patrimoine culturel

PATRIMOINE PAYSAGER


Annexe 11: Patrimoine paysager

Annexe 12 : Aléa retrait/gonflement des argiles


RISQUE DE REMONTÉES DE NAPPES


Annexe 13 : Risque de remontées de nappes

NUISANCES ET POLLUTIONS

Annexe 14: Nuisances et pollutions

BUREAUX JARDINS DE L'ARS

COVIVIO

MAITRE D'OUVRAGE SCI Rue de la Louisiane

30, avenue Kléber 75116 PARIS

MAITRE D'OUVRAGE DELEGUE

COVIVIO DEVELOPPEMENT 30, avenue Kléber 75208 PARIS cedex 16

MAITRISE D'ŒUVRE

VALODE & PISTRE ARCHITECTE:

ALTO INGENIERIE ECONOMISTE: BET FLUIDES: DAL BET STRUCTURE: VP GREEN VP GREEN BET FACADES: ACOUSTICIEN: PAYSAGISTE: RAPHIA LASA G-ON SEC. INCENDIE: CSD & ASSOCIES AMO ENV.:

BUR. CONTROLE: VERITAS CSPS:

EMETTEUR DU DOCUMENT

27-29 rue Raffet - 75016 PARIS 01 83 62 19 59

PHASE
CAP
TITRE

ENVIRONNEMENT

NOTICE

Affaire : 159.01			te: 12/02/	/2030	Eche	elle : -		
GON	ARS	CAP	NTE	ENV	GEN	0004		-
EMETTEUR	PROJET	PHASE	TYPE	IDENT.	LOT	N° DE SERIE	11	NDICE

TABLE DES MATIERES

1	IN'	INTRODUCTION		
2	CE	ERTIFICATIONS ENVIRONNEMENTALES VISÉES	4	
3	ΑN	MBITIONS ENVIRONNEMENTALES	5	
	3.1	Performances énergétiques	5	
	3.2	Matériaux	6	
	3.3	Gestion de l'eau	6	
	3.4	Gestion des déchets	7	
	3.5	Paysage et biodiversité	7	
4	CC	ONFORT ET BIEN-ETRE	8	
	4.1	Bruits et nuisances	8	
	4.2	Confort visuel	9	
	4.3	Qualité de l'air	9	
	4.4	Confort hygrothermique	9	
5	DE	EPLACEMENTS	10	
6	CH	HANTIER A FAIBLE IMPACT ENVIRONNEMENTAL	11	

Suivi des modifications

Version	Phase	Date	Modifications
V1	PC	27/11/2019	Version Pré-PC
V2	PC	12/02/2020	Mise à jour notice CAP

1 INTRODUCTION

Le projet consiste en la construction d'un immeuble de bureaux, d'un restaurant et d'un livepoint au RDC, situé à proximité du Boulevard Jean-Jacques BOSC à Bordeaux (33). Le projet s'inscrit dans la ZAC Saint-Jean Belcier, il sera situé sur la future rue de la Louisiane. La surface SDP de l'opération est d'environ 20 000 m².

La Maîtrise d'Ouvrage COVIVIO souhaite inscrire cette opération dans une stratégie de développement durable ambitieuse où les certifications nationales et internationales sont considérées comme un outil d'amélioration continue de la qualité environnementale.

Les principaux enjeux environnementaux retenus sont les suivants :

La création d'espaces très confortables pour les usagers, et contribuant à une amélioration de leur confort, de leur santé et leur bien-être.

Une amélioration de l'impact environnemental par rapport au projet initial : choix des matériaux à faible émission de COV, préservation et amélioration de la valeur écologique du site, etc.

Une optimisation des performances énergétiques et de l'empreinte carbone de l'opération.

Désignation d'un acousticien pour améliorer la qualité acoustique des espaces.

La mise en place d'équipements permettant de faciliter la mobilité douce des futurs utilisateurs.

2 CERTIFICATIONS ENVIRONNEMENTALES VISÉES

Pour s'inscrire dans cette ambition, le projet vise les certifications et labels suivants : La certification BREEAM New Construction 2016, SD 233 V2.0, Niveau VERY GOOD. La certification HQE Bâtiment Durable 2016, V3 de Janvier 2019, Niveau EXCELLENT. La certification Ready 2 Services, V1 de Janvier 2018, niveau 1 Etoile Le label Energie Carbone niveaux Energie 2 Carbone 1, d'après le référentiel de juillet 2017.

CERTIFICATIONS/LABELS	NIVEAUX ENGAGES
BREEAM®	VERY GOOD
HQE BÂTIMENT DURABLE	EXCELLENT
READY@SERVICES	*
É † PÉNERDE C PÉSTIVE G RÉQUETION G ARGONE	E2 C1

3 AMBITIONS ENVIRONNEMENTALES

3.1 Performances énergétiques

3.1.1 ENVELOPPE

Les hypothèses de l'enveloppe thermique du bâtiment, proposées par ALTO, sont rappelées ci-après (note du 05/02/2020).

Les épaisseurs d'isolants sont données à titre indicatif. Seul le coefficient de transmission thermique de paroi Up est à considérer.

Murs verticaux

Mur RDC: 14 cm d'isolation intérieure - Up = 0.20 W/m².K

Les murs intérieurs donnant sur les locaux suivants doivent être isolés (liste non exhaustive) :

- Ascenseurs.
- Locaux techniques non chauffés ou chauffés à une température inférieure à 12 °C,
- Trémies d'air neuf,
- Ventilation haute de parking.

Planchers bas

Les poutres de parking doivent être isolées sur leurs faces verticales

Planchers hauts

• Toiture : 20cm d'isolation extérieure - Up = 0.11 W/m².K

Menuiseries extérieures

Les menuiseries sont en double vitrage avec cadre en aluminium à rupture de pont thermique.

Les protections solaires seront de type stores extérieurs ou intérieurs.

La perméabilité à l'air du bâtiment est prise par défaut, soit égale à 1,2 m³/h.m².

- Menuiseries Bureaux (Mur rideau):
 - \circ Ucw = 1.06 W/m².K
 - \circ Sg = 0.40 au SE/SO et 0.30 au NE/NO
 - \circ Stores extérieurs (SE à SO) avec un Sws = 0.05 et protections intérieures (NE à NO) avec un Sws = 0.14
- Menuiseries Showroom / RIE :
 - \circ Uw = 1.30 W/m².K
 - \circ Sg = 0.28 / Sw = 0.25 / Sws = 0.16
 - o Stores intérieurs
- Menuiseries Live Point :
 - \circ Uw = 1.30 W/m².K
 - o Sg = 0.28 / Sw = 0.25 / Sws = 0.16
 - o Stores intérieurs
- Menuiseries Hall / Paliers :
 - \circ Uw = 1.30 W/m².K
 - o Sg = 0.28 / Sw = 0.24
 - o Pas de stores

3.1.2 PRODUCTIONS DE CHAUFFAGE, VENTILATION ET CLIMATISATION

Le projet sera raccordé sur le réseau de chaleur Saint Jean BELCIER pour la production de chauffage.

La production de froid sera assurée par des groupes froids localisés dans le bâtiment.

Les espaces de bureaux et les espaces associés seront ventilés à l'aide de centrale de traitement d'air double flux avec récupération à roue.

Tout au long de la conception, les qualités thermiques des matériaux et les performances énergétiques des équipements seront évaluées et tendront à être optimisées afin de satisfaire aux exigences des certifications environnementales visées.

3.1.3 INTEGRATION D'ENERGIES RENOUVELABLES

La mise en place de panneaux photovoltaïques en toiture est à l'étude.

3.2 Matériaux

Une attention particulière sera portée sur le choix des futurs matériaux. Cette volonté permettra de limiter fortement les émissions de COV et de formaldéhydes dans les espaces qui seront occupés quotidiennement par l'utilisateur et donc de garantir un espace sain. Pour cela, l'équipe projet préconisera des matériaux avec un étiquetage de classe A+ pour la qualité de l'air intérieur et des écolabels reconnus : NF Environnement, EU Ecolabel, Ange bleu, cradle to cradle, moquette GUT etc.

Nous veillerons dès la conception à choisir des matériaux ayant des données environnementales et sanitaires connues via les Fiches de Déclaration Environnementales et Sanitaires (FDES).

Par ailleurs, tous les produits à base de bois utilisés sur le projet, proviendront d'une source légale et certifiée (bois FSC/PEFC).

Les aspects environnementaux et sanitaires des matériaux seront contrôlés en phase chantier auprès des entreprises titulaires du Marché (fiches techniques, FDES, certificats PEFC/FSC...).

Une Analyse de Cycle de Vie sera réalisée pour piloter l'impact carbone du projet et privilégier les solutions dites bas carbone. Les produits choisis lors de la phase conception et installés en phase exécution correspondront aux recommandations de l'étude ACV réalisée en phase PRO.

En matière de choix de matériaux, le projet prend en compte les enjeux suivants :

- o Connaissance de l'origine des matériaux
- o Limitation des impacts environnementaux des matériaux
- o Maitrise de l'adaptabilité et de la durabilité des matériaux
- o Achats responsables

3.3 Gestion de l'eau

Le projet intègre des solutions pour préserver la ressource en eau, à la fois en limitant l'usage de l'eau potable et en utilisant les eaux pluviales.

3.3.1 GESTION DES EAUX PLUVIALES

La stratégie de gestion des eaux pluviales consiste à :

Favoriser la présence de surfaces végétalisées sur la parcelle et en toiture :

- o Parvis et patio végétalisés plus de 50 cm d'épaisseur de terre
- Terrasses et toitures végétalisée 50 cm d'épaisseur de terre a minima pour la majorité des surfaces
- O Un coefficient de végétalisation est imposé par le PLU de Bordeaux à hauteur de 0,15 pour les bureaux

Créer un maximum de surfaces perméables

Rétention des eaux pluviales

o Le débit de fuite de la parcelle imposé par le PLU de Bordeaux est de 3 L/s/ha.

O Une bâche de rétention spécifique des eaux pluviales sera mise en œuvre. Elle sera dimensionnée pour respecter le débit de fuite du PLU.

3.3.2 EQUIPEMENTS HYDRO-ECONOMES

Le projet vise une intégration d'équipements hydro-économes, afin d'améliorer le pourcentage de réduction de consommation d'eau : 40% par rapport à la référence.

- Robinets sanitaire: 1,9 l/min

- WC: 4/6 l/min (voir moins si possible)

Douche: 6l/minUrinoir: 1 l/ChasseRobinet cuisine: 5 l/min

Une étude approfondie sera réalisée pour atteindre cet objectif de réduction considérable des consommations en eau.

Les consommations d'eau seront suivies de manière précise par la GTB afin d'éviter toute dérive. La GTB disposera d'un programme de coupure automatique permettant d'agir en temps réel en cas de consommation anormale (en particulier durant la nuit).

3.4 Gestion des déchets

La gestion des déchets du bâtiment sera optimisée en assurant un tri des déchets à la source et en facilitant les opérations de stockage et d'évacuation, de telle sorte que la valorisation soit améliorée.

Déchets « activités bureaux » (Papier/carton, DI, Canettes, Plastiques, Verre) :

- o Accessibilité : un local déchet accessible par une entrée secondaire située au RDC
- O Hygiène : les locaux disposent d'une extraction spécifique et de moyens de nettoyage adéquats (robinet et siphon d'évacuation).
- o Surface : les locaux seront suffisamment dimensionnés, avec 58 m2 minimum disponibles pour les déchets d'activités.

Déchets Restauration » (Ordures ménagères, déchets fermentescibles, verres, plastiques, papier cartons, canettes) :

- o Accessibilité : un local déchet accessible par une entrée secondaire située au RDC
- o Hygiène : les locaux disposent d'une extraction spécifique et de moyens de nettoyage adéquats (robinet et siphon d'évacuation).
- o Surface : les locaux seront suffisamment dimensionnés, avec 19 m2 minimum disponibles pour le stockage des déchets de restauration.

3.5 Paysage et biodiversité

Le projet s'intègre de manière harmonieuse avec son environnement, principalement selon le critère de la biodiversité. Un écologue intervient en cours de conception afin d'analyser les espèces floristiques et faunistiques sur ce site, de créer des continuités écologiques sur la parcelle, en lien avec le PLU de Bordeaux. Les actions principales suivantes seront menées :

État des lieux de la biodiversité existante

Création d'habitats nouveaux et de strates végétales diversifiées

Mise en œuvre d'espèces locales, bien adaptées au climat, non invasives, non allergènes, et complémentaires entre elles

Intégration d'aménités pour la faune telles que des hôtels à insectes.

4 CONFORT ET BIEN-ETRE

4.1 Bruits et nuisances

Le projet intègre une vigilance particulière sur la minimisation des nuisances et la création d'une ambiance acoustique agréable pour les occupants ainsi que pour le voisinage.

4.1.1 OBJECTIFS ACOUSTIQUES

Les objectifs acoustiques seront fixés afin de respecter les exigences de la certifications BREEAM HQE BD 2016

4.1.2 TRAITEMENTS ACOUSTIQUES MIS EN ŒUVRE

L'ensemble des dispositions constructives seront étudiées d'un point de vue acoustique, afin de définir les moyens techniques permettant de respecter les contraintes acoustiques et notamment :

Façades

Les différents éléments de l'enveloppe du bâtiment participent à l'isolement global des pièces vis-à-vis de l'espace extérieur. Une attention particulière sera portée sur les façades rideaux. La constitution des murs extérieurs devra justifier d'un indice d'affaiblissement acoustique, certifié par un rapport d'essais en laboratoire.

Séparatifs intérieurs entre locaux

De la même manière, des études particulières seront réalisées pour le dimensionnement des parois horizontales et des parois verticales. Ces études seront réalisées en relation avec le BET structure et en tenant compte des contraintes architectural du projet.

Les revêtements de sol seront définis avec une performance de réduction de bruit de choc adaptée aux exigences acoustiques.

Confort acoustique intérieurs

L'acoustique interne des espaces de bureaux, en répondant aux principes architecturaux, sera assurée par la mise en œuvre de plafonds rayonnants munis d'un absorbant en laine minérale ou équivalent techniques. Le revêtement de sol souple de type moquette contribue au confort acoustique des utilisateurs des locaux ainsi qu'à l'atteinte des exigences des référentiels.

Concernant, les autres espaces associés, compte tenu de l'ampleur et de l'importance portée aux espaces de vie du RDC, les traitements acoustiques doivent être optimisés de manière à créer des espaces conviviaux.

Équipements techniques intérieurs

Les bruits des équipements dans ces locaux sensibles seront traités de manière à favoriser le confort des utilisateurs des locaux et vérifier le respect des exigences.

Locaux techniques

Que ce soit pour protéger les locaux du projet ou le voisinage, les équipements techniques comporteront des traitements acoustiques et vibratoires spécifiques permettant de maîtriser les nuisances sonores et vibratoires susceptibles d'être générées lors de leur fonctionnement.

4.2 Confort visuel

L'opération accorde un soin particulier à la qualité visuelle des espaces et de l'ouvrage, aussi bien pour les usagers que pour les riverains.

Choix des matériaux

 Choix des matériaux : Revêtements clairs afin de renvoyer la lumière (LRV : Plafond > 0,8 ; Murs > 0,7 ; Mobiliers > 0,5)

Éclairage artificiel

- o Les espaces de bureaux disposeront d'éclairages intérieurs confortables
 - Éclairement moyen de 300 lux dans les bureaux.
 - Uniformité de l'éclairage Emin/Emoy > 0,6
 - IRC ≥ 80 (Indice de Rendu des Couleurs)
 - Température de couleur comprise entre 3 300 à 5300 K.
 - UGR (Unified Glare Rating) ou Taux d'éblouissement de classe 19.

Les luminaires seront de type LED à très haut rendement et à éclairage direct avec une détection de présence, couplée à une sonde de luminosité pour les espaces de bureaux en premier jour.

L'éclairage intérieur sera zoné pour permettre le contrôle par l'occupant.

L'éclairage extérieur limitera la pollution lumineuse nocturne vis-à-vis des riverains et de la faune locale.

4.3 Qualité de l'air

Les questions de santé dans le bâtiment font partie intégrante des choix de conception du Maitre d'Ouvrage. Les dispositions suivantes seront mises en œuvre sur le projet :

Un plan de qualité de l'air intérieur lors des phases de conception, construction et exploitation sera mis en place afin de permettre :

- o Un contrôle et un retrait des sources de contamination.
- o Une procédure de purge avant occupation.
- o Un maintien de la qualité de l'air intérieur en fonctionnement.

Système de traitement de l'air permettant une filtration efficace des polluants avant insufflation d'air neuf dans les espaces.

Matériaux et produits

- o Sélection de matériaux intérieurs à faible émission de COV : peintures, isolants, revêtements de sols, colles et enduits.
- o Les éléments mobiliers ou de décorations répondront à des teneurs en COV maitrisées.

4.4 Confort hygrothermique

Les questions de confort dans le bâtiment sont traitées par les dispositifs techniques suivant : Minimisation des vitesses d'air dans les espaces de bureaux (réduire les sensations de « courants d'air ») Dispositif de contrôle permettant aux usagers de maitriser l'ambiance thermique locale.

5 DEPLACEMENTS

L'opération s'intègre dans un nouveau quartier en construction à Bordeaux, la ZAC Saint Jean Belcier, quartier dont l'offre de services de transports existante va se développer et s'étoffer dans le même temps que la construction du quartier. A termes, l'offre de service du nouveau quartier devra contribuer à des modes de transports fluides et efficaces.

Véhicules

Le site comporte 111 places de stationnement, dont 11 places équipées de bornes de recharges pour véhicules électriques (10% de la capacité conformément au PLU).

Vélos

Le site comporte un local vélo de 400 m², conformément aux exigences du PLU. Le local est facilement accessible au rez-de-chaussée du bâtiment. Afin d'encourager la mobilité douce.

Transports en commun

Le site est à proximité de 3 lignes de bus rejoignant le centre de Bordeaux en moins de 20 minutes. Sur le boulevard Jean-Jacques Bosc, à moins de 300m de l'opération, se trouve les arrêts « Cité SNCF » et « Voltaire » où passeront les lignes de bus n°11 et 26. La fréquence sur ces lignes est d'un bus toutes les 15 minutes en semaine et toutes les 20 à 30 minutes le week-end, de 5h du matin à 23h45 (1h plus tard les jeudi, vendredi et samedi).

La ligne de tramway C dessert les arrêts de la Gare de Blanquefort/ Parc des expositions à la station Villenave Pyrénées. Elle est accessible par l'arrêt « Carle Vernet » à 10 minutes à pieds et 4 minutes en voiture via l'accès sud (900m).

6 CHANTIER A FAIBLE IMPACT ENVIRONNEMENTAL

Une **charte chantier à faibles nuisances** sera rédigée lors de la phase DCE, elle sera pièce constitutive du Marché des entreprises. Elle comportera l'ensemble des dispositions demandées dans l'annexe 1-5 RCFN du cahier des charges de EPA pour la ZAC (et ses annexes associées) ainsi que les exigences demandées dans les certifications environnementales BREEAM et HQE.

Un bilan de chantier sera réalisé à la livraison, il présentera notamment l'ensemble des actions et dispositions qui ont été prises lors de la phase travaux pour se conformer à la charte chantier à faibles nuisances ainsi qu'aux exigences de l'EPA.

Gestion de chantier

Un responsable chantier faible nuisance (CFN) sera nommé par la Maîtrise d'Ouvrage au plus tard au commencement de la période de préparation de chantier.

Le Plan d'Installation de Chantier devra comporter l'ensemble des éléments utiles à la compréhension de la gestion de chantier : accès, base vie, flux (visiteurs, véhicules, livraison, stationnements...), aire de stockage et livraison, centrale à béton, aire de lavage des camions, aire de tri des déchets, panneau d'informations ...

Communication

Un panneau d'information de chantier sera installé à côté du panneau réglementaire, il présentera notamment les intervenants du chantier. Des réunions d'informations au voisinage seront réalisées conformément aux demandes de l'EPA. Un suivi des plaintes sera effectué, avec enregistrement des actions correctives réalisées.

Limitation des nuisances acoustiques

Les exigences de l'annexe 1-5 "règlement de chantier a faibles nuisances" du cahier des charges de l'EPA pour la ZAC concernant la gestion des nuisances acoustiques seront respectées.

Les équipements utilisés sur le chantier (compresseur, marteau piqueur, engins de manutention) devront être en conformité avec les règlementations en matière de nuisances sonores. Des mesures de bruit avec objectifs d'émergences pourront être imposées aux entreprises. Il va de soi que des horaires de chantier raisonnables seront fixés afin de limiter les nuisances, en conformité avec l'arrêté municipale de la ville de Bordeaux relatif au bruit de voisinage.

Limitation des nuisances visuelles

Les entreprises auront la responsabilité du nettoyage du chantier, de l'entretien des espaces extérieurs et des clôtures. Des nettoyages réguliers seront réalisés également à titre préventif pour maintenir une qualité visuelle satisfaisante.

Limitation des nuisances dues au trafic

La mise au point d'un Plan d'Installation de Chantier (PIC) intègrera une réflexion sur les stationnements et les accès pour réduire l'impact du chantier sur la circulation locale. Les exigences de l'annexe 1-5 "règlement de chantier a faibles nuisances" du cahier des charges de l'EPA pour la ZAC concernant les nuisances dues au trafic seront respectées.

Limitation des nuisances dues à la poussière, à la boue et aux laitances

L'entretien du chantier, l'arrosage des voies de circulations en été, et le nettoyage des engins et des roues des camions de livraisons seront imposés aux entreprises :

- o Arrosage des zones de travail générant de la poussière par temps secs
- o Nettoyage systématique de voiries en cas de salissures

o Aire de lavage des roues des camions

En complément, les engins de chantier devront être modernes, conformes aux contrôles techniques et aux réglementations en vigueur.

Le brûlage des déchets est interdite sur le chantier.

Limitation des pollutions et des consommations sur le chantier

De façon à limiter la pollution des eaux et du sol, les dispositions suivantes pourront être imposées aux entreprises :

- Sensibiliser les ouvriers aux risques de pollutions,
- o Disposer l'ensemble des cuves (fuel, huile de décoffrage ...) sur des rétentions adaptées : bacs de rétention double peau,
- o Prévenir tout risque de pollution par la mise à disposition de kit anti-pollution,
- o Prévenir toute pollution des réseaux par la création de zones spécifiques de lavages des bennes avec rétention et décantation,
- o Prévenir toute pollution de l'air en interdisant tout brûlage sur le chantier.

Limiter les consommations de ressources

Les dispositions suivantes seront imposées pour limiter les consommations de ressources :

- o Cantonnements équipés de systèmes hydro-économes et détecteurs de présence,
- o Suivi régulier par comptage des consommations d'eau et d'électricité sectorisés permettant d'identifier un éventuel dysfonctionnement et de réagir en cas de surconsommations.

Optimisation des déchets de chantier et de déconstruction :

- Optimiser la collecte, le tri et le regroupement des déchets de chantier
- Un diagnostic déchet sera réalisé en amont du démarrage des travaux. Il permettra d'évaluer les quantités de déchets par typologie qui seront produits pour les phases de déconstruction puis de construction.
- Le chantier fera l'objet d'un Schéma d'Organisation, de Gestion et d'Elimination des Déchets (SOGED). Ce document permettra de fixer et de suivre des objectifs en termes de valorisation.
- o Traçabilité de l'excavation, de la collecte et du traitement des terres polluées

^{bordeaux} Eulratlantique

EPA EURATLANTIQUE

Lot 6.1 Ancien site ferroviaire Gattebourse à BORDEAUX (33)

Evaluation de l'état des milieux

Rapport

Réf: CSSPSO191369 / RSSPSO09919-01

MAMA / MICE / VBE

12/11/2019

EPA EURATLANTIQUE

Lot 6.1

Ancien site ferroviaire Gattebourse à BORDEAUX (33)

Evaluation de l'état des milieux

Pour cette étude, le chef du projet est Mickael Capdouze

Objet de l'indice	Date	Indice	Rédaction Nom / signature	Vérification Nom / signature	Validation Nom / signature
Rapport	12/11/19	01	M.MARILL	M.CAPDOUZE	V.BERNARDINI
Tapport	12,11,10			Contraction	Consideration of the control of the

Numéro de contrat / de rapport :	Réf : CSSPSO191369 / RSSPSO09919-01
Numéro d'affaire :	A50088
Domaine technique :	SP02
Mots clé du thésaurus	DIAGNOSTIC DE QUALITE ENVIRONNEMENTALE SITES ET SOLS POLLUES DEBLAIS

BURGEAP Agence Sud-Ouest • 4 Boulevard Jean-Jacques Bosc - Les portes de Bègles – 33130 Bègles - Tél : 05.56.49.38.22 • Fax : 05.56.49.89.69 • burgeap.bordeaux@groupeginger.com

SOMMAIRE

Synt 1. 2.						
۷.	2.1 2.2	Objet de l'étude				
3. 4.		de site (A100)9 es disponibles sur l'état des milieux11				
	4.1 4.2	Synthèse de l'étude historique11Synthèse des investigations réalisées114.2.1 Investigations sur les sols124.2.2 Investigation sur les eaux souterraines13				
5.	Investi	gations sur les sols (A200)14				
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Nature des investigations				
6.	Schém	a conceptuel21				
	6.1 6.2 6.3	Projet d'aménagement				
7.	Synthè	ese et recommandations22				
	7.1 7.2	Synthèse				
8.	Limites	s d'utilisation d'une étude de pollution23				
FIG	SURE	S				
		isation du lot 6.19 de synthèse de la visite de site				

TABLEAUX

Tableau 1 : Localisation et environnement du site	9
Tableau 2 : Investigations réalisées sur les sols	
Tableau 3 : Analyses réalisées sur les sols	16
Tableau 4 : Résultats d'analyses sur les sols - remblais (1/2)	18

Tableau 5 : Résultats d'anal	yses sur les sols – argiles	(2/2) 1	19

ANNEXES

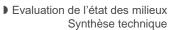
Annexe 1. Reportage photographique

Annexe 2. Fiches d'échantillonnage des sols

Annexe 3. Méthodes analytiques, LQ et flaconnage

Annexe 4. Bordereaux d'analyse des sols

Annexe 5. Propriétés physico-chimiques


Annexe 6. Glossaire

12/11/2019

Synthèse technique

Client	EPA EURATLANTIQUE
Informations sur le site	 Intitulé/adresse du site: Lot 6.1 – Ancien site ferroviaire Gattebourse Bordeaux (33) Parcelles cadastrales: une partie des parcelles 22 et 217 de la section BX de la commune de Bordeaux Superficie totale du lot: 4 570 m² Propriétaire actuel: SNCF/RFF Occupation du site: partie d'un bâtiment de l'ancien site ferroviaire (ouest), cours de tennis et chemins gravillonnés actuellement inoccupés.
Contexte de l'étude	Projet d'aménagement du lot 6.1 : bâtiment à usage de bureaux sur un niveau de sous-sol total
Données des précédentes études	Etude GOLDER ASSOCIATE: Trois sondages de sol ont été réalisés au droit du lot 6.1 (zone des terrains de sport). Ils mettent en avant: • Des anomalies en métaux ainsi que des traces en HAP, BTEX et hydrocarbures totaux au sein des remblais noirâtres des sondages GA19 (entre 0,1 et 0,8 m) et GA60 (entre 1 et 1,5 m). • Une anomalie en métaux ainsi que des traces en HAP au droit des argiles marron/grises entre 1 et 2 m de profondeur. Ces anomalies sont associées à des mesure PID positives. Un piézomètre est présent au nord (latéral), à proximité du lot. Il met en évidence un niveau d'eau recoupé à 2,15 m de profondeur (février 2012) et l'absence d'impact au droit des eaux souterraines. Etude historique ARCAGEE: Cette étude a mis en avant les points suivant: • Avant d'être occupé par des terrains de tennis (configuration actuelle depuis 1993), le lot abritait des hangars. • Une nappe sous-jacente serait non vulnérable (horizons argileux sus-jacent) à une éventuelle pollution en provenance du site; • La présence de nombreux sites BASIAS à proximité aurait pu impacter les sols au droit du site. Recommandation: réalisation de 10 sondages complémentaires repartis de manière homogène sur l'ensemble du lot afin de statuer sur la qualité environnementale des remblais et vérifier la qualité environnementale des terres naturelles sous-jacentes
Investigations réalisées	10 sondages de sols à la tarière mécanique (3,00 m de profondeur).
Polluants recherchés	Sols : Pack ISDI et 12 métaux (antimoine, arsenic, baryum, cadmium, chrome, cuivre, molybdène, sélénium, zinc, mercure, plomb, nickel).
Impacts identifiés lors de cette étude – gestion des déblais	Les résultats ont mis en avant : • des impacts généralisés en métaux lourds sur brut au droit des remblais sableux noirâtres ; • l'absence d'impact notable en HCT, HAP, BTEX et PCB au droit de l'ensemble des lithologies rencontrées ; • le caractère non inerte des remblais sableux noirâtres ;

	 le caractère inerte des remblais argilo-graveleux ocres et les argiles beiges/verdâtres; le caractère banalisable des argiles beiges/grises.
	Compte-tenu du projet d'aménagement envisagé, aucune recommandation n'est émise d'un point de vue sanitaire. Cependant, dans le cas où le projet d'aménagement serait modifié, les remblais présents sur site devront être confinés sous une barrière physique (dalle béton, enrobé ou à minima 0,30 m de terre végétale).
	L'ensemble des déblais excédentaires générés devront être éliminés en filières adéquates.
Conclusions/	Une attention particulière devra être réalisée :
recommandations	 Sur l'hygiène et la sécurité des travailleurs lors des travaux d'aménagement notamment au droit des remblais sablo-graveleux noirs qui présentent des impacts notables en métaux lourds (qualité environnementale et sanitaire médiocre). Il conviendra de prévoir les EPI et EPC adéquats aux travaux à réaliser;
	 A la présence au droit du lot, d'infrastructures bétonnées résiduelles potentielles pouvant présenter une épaisseur notable. Il conviendra de considérer cet élément dans le cadre de la gestion des futurs déblais qui seront générés par le projet.

12/11/2019

1. Codification des prestations

Notre étude est conforme à la méthodologie nationale de gestion des sites et sols pollués d'avril 2017 et aux exigences de la **norme AFNOR NF X 31-620-2 « Qualité du sol – Prestations de services relatives aux sites et sols pollués »**, pour le domaine A : « Etudes, assistance et contrôle ». Elle comprend les prestations suivantes :

élém	tations entaires (A)	Objectifs
	ernées	
\boxtimes	A100	Visite du site
	A110	Etudes historiques, documentaires et mémorielles
	A120	Etude de vulnérabilité des milieux
	A130	Elaboration d'un programme prévisionnel d'investigations
\boxtimes	A200	Prélèvements, mesures, observations et/ou analyses sur les sols
	A210	Prélèvements, mesures, observations et/ou analyses sur les eaux souterraines
	A220	Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles et/ou les sédiments
	A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol
	A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques
	A250	Prélèvements, mesures, observations et/ou analyses sur les denrées alimentaires
	A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées
	A270	Interprétation des résultats des investigations
	A300	Analyse des enjeux sur les ressources en eaux
	A310	Analyse des enjeux sur les ressources environnementales
	A320	Analyse des enjeux sanitaires
	A330	Identification des différentes options de gestion possibles et réalisation d'un bilan coûts/avantages
	A400	Dossiers de restriction d'usage, de servitudes

Prestations globales (A) concernées	Objectifs
AMO Assistance à Maîtrise d'ouvrage en phase études	Assister et conseiller son client pendant tout ou partie de la durée du projet, en phase études.
LEVE	Le site relève-t-il de la politique nationale de gestion des sites pollués, ou bien est-il « banalisable » ?
INFOS	Réaliser les études historiques, documentaires et de vulnérabilité, afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations.
DIAG	Investiguer des milieux (sols, eaux souterraines, eaux superficielles et sédiments, gaz du sol, air ambiant) afin d'identifier et/ou caractériser les sources potentielles de pollution, l'environnement local témoin, les vecteurs de transfert, les milieux d'exposition des populations et identifier les opérations nécessaires pour mener à bien le projet (prélèvements, analyses)
PG Plan de gestion dans le cadre d'un projet de réhabilitation ou d'aménagement d'un site	Etudier, en priorité, les modalités de suppression des pollutions concentrées. Cette prestation s'attache également à maîtriser les impacts et les risques associés (y compris dans le cas où la suppression des pollutions concentrées s'avère techniquement complexe et financièrement disproportionnée) et à gérer les pollutions résiduelles et diffuses. Réalisation d'un bilan coûts-avantages (A330) qui permet un arbitrage entre les différents scénarios de gestion possibles (au moins deux), validés d'un point de vue sanitaire (A320) Préconisations sur la nécessité de réaliser, ou non, les prestations PCT (dont B111 et/ou B112 (voir NF X 31-620-3)), CONT, SUIVI, A400, et la définition des modalités de leur mise en œuvre ; ces préconisations peuvent également concerner l'organisation, la sécurité et l'encadrement des travaux à réaliser ; Préciser les mécanismes de conservation de la mémoire en lien avec les scénarios de gestion proposés
IEM Interprétation de l'Etat des Milieux	La prestation IEM est mise en œuvre en cas de : mise en évidence d'une pollution historique sur une zone où l'usage est fixé (installation en fonctionnement, quartier résidentiel, etc.); mise en évidence d'une pollution hors des limites d'un site; signal sanitaire. Comparable à une photographie de l'état des milieux et des usages, la prestation IEM vise à s'assurer que l'état des milieux d'exposition est compatible avec les usages existants [9]. Elle permet de distinguer les situations qui : ne nécessitent aucune action particulière; peuvent faire l'objet d'actions simples de gestion pour rétablir la compatibilité entre l'état des milieux et leurs usages constatés; nécessitent la mise en œuvre d'un plan de gestion
SUIVI	Suivi environnemental
BQ Bilan quadriennal	Interpréter les résultats des données recueillies au cours des quatre dernières années de suivi Mettre à jour l'analyse des enjeux concernés par le suivi sur la période sur les ressources en eau, environnementales et l'analyse des enjeux sanitaires.
CONT Contrôles	Vérifier la conformité des travaux d'investigation ou de surveillance Contrôler que les mesures de gestion sont réalisées conformément aux dispositions prévues
	Expertise dans le domaine des sites et sols pollués
VERIF Evaluation du passif environnemental	Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise

2. Introduction

2.1 Objet de l'étude

Dans le cadre de la réalisation d'un bâtiment à usage de bureaux avec un niveau de sous-sol et suite aux recommandations de l'étude historique, documentaire et mémorielle réalisée par ARCAGEE (rapport - RC18196rev1/ML – 14/12/2018), l'EPA EURATALANTIQUE a missionné BURGEAP pour la réalisation d'une évaluation de l'état des milieux au droit du lot 6.1 localisé sur l'ancien site ferroviaire Gattebourse à Bordeaux (33).

2.2 Documents de référence

Dans le cadre de cette étude, les documents suivants nous ont été transmis par l'EPA:

- Rapport GOLDER ASSOCIATES « Diagnostic des sols et des eaux souterraines Etape B » référencé 011503181043_SG_V1 et daté de février 2012;
- Rapport ArcaGée « Étude historique et documentaire Lot 6.1 Secteur Gattebourse Ars à Bordeaux (33) » référencé RC18196rev1/ML en date du 14/12/18;
- Rapport ArcaGée « Plan de gestion Site Gattebourse Bordeaux (33) » RC13033-A/XF et daté du 22 février 2013 ;
- Etude capacitaire: « ZAC BORDEAUX ST JEAN BELCIER Secteur Ars/ Brienne/ Gattebourse étude capacitaire des ilots 6.1 et 6.2 » d'INSOLITES ARCHITECTURES du 26/02/2018.
- Plan du projet : ESIQUISSE 2 réalisé par VALODE&PISTRE pour le compte de COVIVIO (28/01/2019).

12/11/2019

3. Visite de site (A100)

Tableau 1 : Localisation et environnement du site

Adresse du site	Lot 6.1 – Bordeaux (33)				
Parcelles cadastrales	Partie des parcelles n°217 (ouest du site) et 22 (centre et est du site) de la feuille BX de la commune de Bordeaux				
Superficie	4 570 m²				
Altitude moyenne / Topographie	5 m NGF (Nivellement Général de la France) / terrain globalement plat				
Propriétaire du site	SNCF/RFF, en cours d'acquisition par l'EPA				
Occupation du site	Ancien site ferroviaire de la SNCF/RFF et terrain de sport (cours de tennis) actuellement inoccupé.				
Abords du site	Les abords immédiats du site : • au nord, un cours de tennis et des chantiers d'aménagement; • au nord-ouest, un parking recouvert d'enrobé; • a l'ouest, une zone inoccupée (ancien site ferroviaire), • au sud, un bâtiment de logement collectif; • au sud-est, un terrain de pelote basque; • a l'est, un chantier d'aménagement.				

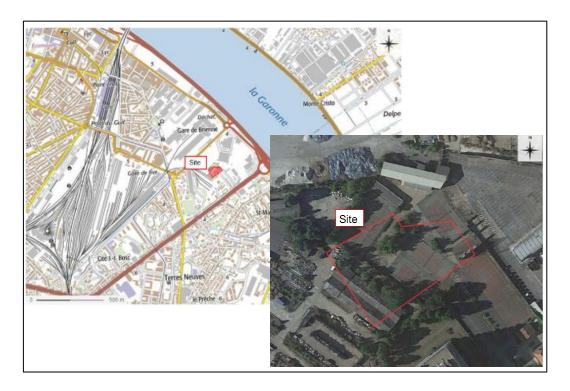


Figure 1 : Localisation du lot 6.1

BURGEAP a réalisé une visite de la zone d'étude (lot 6.1), le 14 octobre 2019, préalablement à la réalisation des investigations de terrain afin de vérifier les accès au site et réaliser l'implantation des sondages.

Le lot 6.1 est libre d'accès. Il correspond à un ensemble de cours de tennis séparé par des chemins gravillonnés au centre et à l'est du site ainsi qu'un ancien bâtiment du site ferroviaire entouré d'enrobé à l'ouest du site (**Figure 2**).

Les accès au bâtiment ayant été condamnés, il n'a pu être visité.

Le reportage photographique de la visite de site est présenté en Annexe 1.

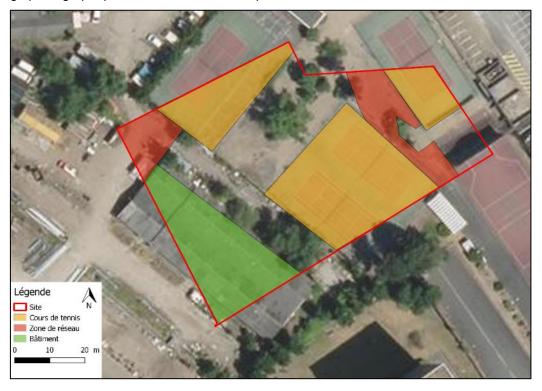


Figure 2 : Plan de synthèse de la visite de site

4. Données disponibles sur l'état des milieux

4.1 Synthèse de l'étude historique

Selon l'étude historique, documentaire et de vulnérabilité réalisée par ARCAGEE en 2018 (rapport - RC18196rev1/ML), le lot 6.1 était occupé par des hangars entre 1924 et 1969. Entre 1969 et 1993, les bâtiments sont progressivement démolis pour laisser place aux cours de tennis. Depuis 1993, le site à une configuration similaire à celle retrouvée actuellement.

20 m

Figure 3: Extrait des photographies aériennes historique de 1947, 1969, 1980 et 1993

4.2 Synthèse des investigations réalisées

L'étude des documents transmis par l'EPA a mis en évidence la présence de trois sondages de sols effectués par GOLDER ASSOCIATE (GA10, GA19 et GA60) au droit de la zone d'étude lors des campagnes d'investigations en 2012. Aucun sondage n'a été effectué par ArcaGée au droit du lot 6.1.

Aucun piézomètre n'est présent sur site, cependant, le PzGA 3 (GOLDER 2012) est présent à proximité du site au nord (latéral hydrogéologique)

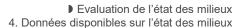
4.2.1 Investigations sur les sols

Figure 4 : Localisation des sondages réalisés sur le lot 6.1

La lithologie mise en évidence lors des investigations est la suivante :

- une couche de terre végétale d'environ 0,40 m d'épaisseur ;
- des remblais limoneux marron à noirs jusqu'à 1,00 à 1,50 m de profondeur ;
- des argiles marron sur une épaisseur de 1,00 m;
- des argiles grises sur 0,50 à 1,00 mètre d'épaisseur.

A noter:


- au droit du sondage GA60 :
 - une dalle béton d'environ 0,10 m est présente sous la couche de terre végétale ;
 - les horizons argileux sont inversés.
- Au droit de GA19 :
 - absence de terre végétale ;
 - présence de mâchefer suspectée au droit des remblais entre 0,10 et 0,60 m de profondeur.

Des réponses PID positives ont été relevées au droit des remblais de GA10 et GA60 ainsi qu'au sein des argiles de GA10.

Les remblais des sondages GA19 et GA60 ont été analysés pour les paramètres suivants : 8 métaux, HCT, HAP, BTEX et COHV. Les argiles du sondage GA10 ont été analysées pour les 8 métaux, HCT, HAP, BTEX.

Les résultats analytiques ont révélé :

• la présence d'anomalies en métaux ainsi que des traces en HAP, BTEX et hydrocarbures totaux au sein des remblais noirâtres des sondages GA19 (entre 0,1 et 0,6 m) et GA60 (entre 1 et 1,5 m).

• une anomalie en métaux ainsi que des traces en HAP au droit des argiles marron/grises entre 1 et 2 m de profondeur au droit de GA10 (entre 1 et 2 m).

4.2.2 Investigation sur les eaux souterraines

Le niveau d'eau relevé en février 2012 au droit du PzGA-3, était de 2,15 m par rapport au sol.

Les investigations sur les eaux souterraines ont mis en avant :

- La quantification de métaux lourds (arsenic, baryum, cadmium, et sélénium) sous forme de trace ;
- L'absence de quantification des autres métaux (antimoine, chrome, cuivre, mercure, plomb, zinc nickel et molybdène) et autre composés recherchés (BTEX, COHV, HAP et HCT).

Réf : CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 13/24

5. Investigations sur les sols (A200)

5.1 Nature des investigations

Date d'intervention	15/10/19 et 16/10/19				
Prestataire de forage Technique de forage	GEOTEC Tarière mécanique de diamètre 70/80 mm				
Investigations menées	Cf. Tableau 2 et Figure 5.				
Ecarts au programme prévisionnel (cf. Figure 5)	Le programme analytique a été adapté en raison de : la présence de nombreux réseaux traversant le site ; l'interdiction d'effectuer des sondages au droit des cours de tennis ; la présence de dalle béton plus ou moins importante entrainant des refus de la machine de sondage. La présence du bâtiment à l'ouest				
Repli en fin de chantier	Sondages rebouchés avec les déblais de forage. Réfection des surfaces : oui – enrobé à froid Déchets de chantier : repris par BURGEAP (petits matériels de prélèvements)				

Les sondages ont été suivis par un collaborateur de BURGEAP.

Le reportage photographique des investigations réalisées est présenté en Annexe 1.

Les investigations menées sur site sont celles décrites dans le Tableau 2. Elles sont localisées en Figure 5.

Tableau 2 : Investigations réalisées sur les sols

Milieux			Qté	Profondeur	Analyses en laboratoire		
reconnus	Prestations	Localisation		(m)	Analyses réalisées	Nombre d'échantillons	
Sols	Sondage à la tarière mécanique	Répartis sur le site en fonction des contraintes précités	10	3,00	ISDI et 12 métaux	10 (composite) 1 (unitaire)	

On présente en Annexe 5 les propriétés chimiques des polluants recherchés et en Annexe 6 un glossaire.

Figure 5: Localisation des investigations

5.2 Observations et mesures de terrain

Les terrains recoupés en sondage ont été décrits avant échantillonnage. Une partie des échantillons a fait l'objet d'analyses chimiques en laboratoire. Les descriptions ont porté sur leur lithologie et la présence ou non de niveaux jugés suspects.

Les niveaux de sol sont jugés suspects s'ils présentent des traces de souillures, des caractéristiques organoleptiques anormales (odeur, couleur, texture), ou qu'ils renferment des matériaux de type déchets, mâchefers, verre, bois....

La présence de composés organiques volatils dans les gaz du sol et au niveau de chaque échantillon prélevé a été évaluée au moyen d'un détecteur à photo-ionisation (PID) équipé d'une lampe 10,6 eV régulièrement calibré.

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante :

- ponctuellement, des remblais sablo-graveleux beiges à marron au droit des sondages BGP5, BGP8 et BGP9 sur une épaisseur maximum de 0,10 m;
- localement, des remblais sablo-graveleux beiges à ocre sur une épaisseur maximum de 0,50 m au droit des sondages BGP1, BGP2, BGP3, BGP5 et BGP10;
- des remblais sablo-graveleux marron à noirâtres d'une épaisseur maximum de 1,10 m au droit de l'ensemble des sondages. A l'ouest du site, au droit de BGP8 et BGP9 ces remblais sont mélangés de sables graveleux beige et verdâtres. Des morceaux de briques sont présents dans ces remblais;

- des argiles beiges à verdâtres au droit des sondages BGP1, BGP2, BGP5, BGP8 et BGP9 sur une épaisseur maximum de 2,00 m;
- des argiles beiges à grises au droit des sondages BGP3, BGP4, BGP6, BGP7 BGP9 et BGP10 jusqu'à la fin des sondages (3,00 m de profondeur).

Il est à noter l'inversion des couches de remblais sablo-graveleux noirâtres et beiges/ocre au droit des sondages BGP5 et BGP10.

De plus, au droit du site ferroviaire (ouest) : une couche d'enrobé, une dalle béton et des briques surmontent les terrains rencontrés sur environ 0,40 m d'épaisseur (BGP8, BGP9 et BGP10).

Entre les cours de tennis : une dalle béton d'une vingtaine de centimètres surmonte les terrains (BGP4, BGP5, BGP6 et BGP7). Elle peut être recouverte de graviers mélangés à de la terre végétale.

Aucune venue d'eau n'a été constatée lors de la réalisation des investigations.

Les mesures réalisées au PID sur chaque échantillon se sont révélées négatives (0 ppmV).

L'intégralité des observations figure dans les fiches d'échantillonnage de sols rassemblées en Annexe 2.

5.3 Stratégie et mode opératoire d'échantillonnage

Après la levée de la coupe du sondage, le collaborateur de BURGEAP a procédé au prélèvement des échantillons de sols selon le protocole détaillé ci-après :

- un échantillon pour chaque horizon lithologique homogène ;
- un échantillon par mètre, si l'épaisseur de l'horizon dépasse 1,00 m;
- un échantillon de chaque niveau lithologique suspect.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 370 ml.

5.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire (24 h après prélèvements).

5.5 Programme analytique sur les sols

Les analyses chimiques ont été réalisées par le laboratoire EUROFINS.

Les échantillons soumis à analyse en laboratoire ont été choisis en fonction des observations de terrain et du projet d'aménagement (analyse préférentielle des échantillons de surface en l'absence de niveau de soussol). Les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en Annexe 3.

Tableau 3 : Analyses réalisées sur les sols

Polluants recherchés	Nombre d'échantillons analysés
12 métaux et métalloïdes (antimoine, arsenic, baryum, cadmium, chrome, cuivre, molybdène, sélénium, zinc, mercure, plomb, nickel)	11
Pack ISDI conformément à l'arrêté du 12/12/2014	11

Réf: CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 16/24

Bap290/14

5.6 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus sur le site sera pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Métaux et métalloïdes sur sol brut La gamme de concentrations qui sera utilisée pour comparaison est cel évidence dans les sols naturels ordinaires (sans anomalie géochimiqu cadre du programme INRA-ASPITET. A défaut, nous utiliserons éga valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease					
Gestion des déblais	 Les concentrations sur le sol brut et sur l'éluat ont été comparées : aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes ; à la Décision du Conseil du 19 décembre 2002 « établissant des critères et des procédures d'admission des déchets dans les décharges, conformément à l'article 16 et à l'annexe II de la directive 1999/31/CE » ; aux valeurs couramment utilisées par les exploitants d'installations de stockage de déchets. Il s'agit ici de données issues de notre expérience et de notre connaissance du marché local¹. 				

5.7 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans les Tableaux 4 et 5.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 4.

Réf : CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 17/24

¹ Rappelons que ces critères n'ont pas de valeur réglementaire mais l'acceptation des terres dans un centre de stockage de déchets dépend de l'accord de l'exploitant, dernier décisionnaire quant à l'acceptation des terres au regard de ses arrêtés préfectoraux et de sa stratégie pour l'exploitation de son installation.

Tableau 4 : Résultats d'analyses sur les sols - remblais (1/2)

				Localisation	Lot 6.1				
				Nom de l'échantillon	BGP1 0,2-1,3 m	EC2	EC5	EC7	EC4
				Sondage	-	BGP1 0,2-1,3 m BGP2 0,5-1 m	BGP3 0,5-1,5 m BGP7 0,2-0,9 m	BGP4 0,3-1 m BGP5 0,3-0,8 m BGP6 0.25-0.8 m	BGP2 0-0,5 m BGP10 1-1,5 m
		Bruit de fond (b)	Valeurs limite des ISDI*	Lithologie	Remblais sablo- graveleux noirâtres avec des morceaux de briques	Remblais sablo- argilo-graveleux beiges / ocre avec des morceaux de briques			
ANALYSES SUR SOL BRUT									
Matière sèche COT	%	-	-		86.7	78.9	81.9	84.3	91.4
COT Carbone Organique Total (a)	mg/kg Ms	-	30 000		291 000	331 000	295 000	270 000	10 000
Métaux et métalloïdes Antimoine (Sb)	mg/kg Ms	1.5			53.7	69.4	47.8	41.1	4.49
Arsenic (As)	mg/kg Ms	25			49.5	53.3	54.7	89.7	16.1
Baryum (Ba)	mg/kg Ms	3000 0.45			473 2.1	532 1.52	472 1.52	364 1.38	54.3 0.86
Cadmium (Cd) Chrome (Cr)	mg/kg Ms mg/kg Ms	90	Résultats de lixiviation		29.8	28.2	21.5	22.3	21
Cuivre (Cu)	mg/kg Ms	20	conformes aux seuils définis pour les		3450	4920	3520	1380	87.8
Molybdène (Mo)	mg/kg Ms	-	déchets inertes dans		4.86	5.84	5.27	10.3	<1.00
Nickel (Ni) Plomb (Pb)	mg/kg Ms mg/kg Ms	60 50	l'arrêté du 12/12/2014		39.3 2550	36.1 3360	42.7 1880	65.6 1390	16 93.1
Sélénium (Se)	mg/kg Ms	0.7			<1.00	<1.00	<1.00	<1.00	<1.00
Zinc (Zn) Mercure (Hg)	mg/kg Ms mg/kg Ms	100 0.1			770 2.22	871 3.23	693 1.37	552 0.8	65.6 <0.10
Indice hydrocarbure C10-C40	ing/ng ivis	V. 1			2.22	3.23	1.37	0.0	NO. 10
Fraction C10-C16	mg/kg Ms	-	-		9.64	18.3	14.7	17	<4.00
Fraction C16-C22 Fraction C22-C30	mg/kg Ms mg/kg Ms	-	-		29.9 52.5	80.3 113	71.4 78.5	67.5 102	<4.00 <4.00
Fraction C30-C40	mg/kg Ms	-	-		40.7	75.2	48.2	57.6	<4.00
Somme des hydrocarbures C10-C40	mg/kg Ms	-	500		133	287	213	244	<15.0
HAP Naphtalène	mg/kg Ms	-	-		0.21	0.61	0.31	0.57	<0.05
Fluorène	mg/kg Ms	-	=		0.061	0.18	0.071	0.062	<0.05
Phénanthrène	mg/kg Ms	-	-		1.4 2.2	3.8 4.1	2.2 3.3	2.3 5.7	<0.05 <0.05
Pyrène Benzo(a)anthracène	mg/kg Ms mg/kg Ms	-	-		2.2	2.2	2.1	4.1	<0.05
Chrysène	mg/kg Ms	-	-		1.6	3.7	3.1	6.2	<0.05
Indéno(1,2,3-cd)pyrène Dibenzo(a,h)anthracène	mg/kg Ms mg/kg Ms	-	-		1.5 0.54	1.8 1.7	1.6 0.95	3.3 1.9	<0.05 <0.05
Acénaphtylène	mg/kg Ms	-	-		0.16	0.25	0.095	0.36	<0.05
Acénaphtène	mg/kg Ms	-	-		< 0.05	0.34	0.12	0.11	<0.05
Anthracène Fluoranthène	mg/kg Ms mg/kg Ms	-	-		0.38 2.4	1.1 5	0.33 3.7	0.82 7	<0.05 <0.05
Benzo(b)fluoranthène	mg/kg Ms	-	-		2.2	3.8	3.8	6.8	<0.05
Benzo(k)fluoranthène	mg/kg Ms	-	-		0.67	3.2	1.5	2.7	<0.05
Benzo(a)pyrène Benzo(g,h,i)pérylène	mg/kg Ms mg/kg Ms	-	-		1.7 1.2	2.7 1.7	2.4 1.3	2.9	<0.05 <0.05
Somme des HAP	mg/kg Ms	-	50		17	36	27	49	<0.05
Benzène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Toluène	mg/kg Ms	-	-		0.06	<0.05	0.06	<0.05	<0.05
Ethylbenzène	mg/kg Ms	-	-		<0.05	< 0.05	< 0.05	< 0.05	<0.05
o-Xylène m,p-Xylène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Somme des BTEX	mg/kg Ms	-	6		0.06	<0.0500	0.06	<0.0500	<0.0500
PCB (20)	ma/ka Ma				-0.01	-0.01	-0.01	-0.04	-0.01
PCB (28) PCB (52)	mg/kg Ms mg/kg Ms	-	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
PCB (101)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	< 0.01
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	-	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
PCB (153)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	< 0.01
PCB (180) Somme des PCB	mg/kg Ms mg/kg Ms	-	- 1		<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010
ANALYSES SUR ELUAT	mg/kg ivis	-	-		<0.010	<0.010	<0.010	<0.010	<0.010
Paramètres généraux									
рН	-	-	-		8.2	8	8.1	8.3	8
Conductivité corrigée à 25 °C Fraction soluble (c)	µS/cm	-	4000		125 <2000	128 <2000	155 <2000	332 3020	83 <4000
Carbone organique total	mg/kg M.S. mg/kg M.S.	-	500		<2000 <51	<50	<50	<50	<4000 <50
Indice phénol	mg/kg M.S.		1		<0.51	<0.50	<0.50	<0.50	<0.50
Anions Fluorures	mg/kg M.S.	-	10		<5.00	5.36	6.11	<5.00	<5.00
Chlorures (***)	mg/kg M.S.	-	800		31	22.8	21.7	97.7	19.8
Sulfates (***)	mg/kg M.S.		1000		152	136	110	1060	115
Métaux et métalloïdes Antimoine	mg/kg M.S.	-	0.06		0.11	0.19	0.1	0.19	0.018
Arsenic	mg/kg M.S.	-	0.5		<0.20	<0.20	<0.20	<0.20	<0.20
Baryum	mg/kg M.S.	-	20		1.89	0.76	0.47	0.58	0.3
Cadmium Chrome	mg/kg M.S. mg/kg M.S.	-	0.04 0.5		<0.002 <0.10	<0.002 0.14	<0.002 <0.10	<0.002 <0.10	<0.002 <0.10
Cuivre	mg/kg M.S.	-	2		1.54	2.78	0.62	0.2	<0.20
Mercure Molybdène	mg/kg M.S. mg/kg M.S.	-	0.01 0.5		<0.001 0.069	<0.001	<0.001	<0.001 0.145	<0.001 0.044
Nickel	mg/kg M.S.	-	0.5		<0.10	<0.10	<0.10	<0.10	<0.10
Plomb	mg/kg M.S.	-	0.5		0.75	1.56	0.18	<0.10	0.2
Zinc Selenium	mg/kg M.S. mg/kg M.S.	-	4 0.1		1.02 <0.01	1.26 <0.01	<0.20 <0.01	<0.20 0.019	<0.20 <0.01
<u> </u>			Ų. i		-0.01	10.01	10.01	. 0.010	-0.01

LQ : Limite de quantification du laboratoire Concentrations supérieures aux limites ISDI.

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériels et des critères communément appliqués par les centres de stockage

(a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut-être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluât, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Tableau 5 : Résultats d'analyses sur les sols – argiles (2/2)

				Localisation	Lot 6.1				
				Nom de l'échantillon	EC1	EC3	EC6	EC8	EC10
				Sondage	BGP8 1-2 m BGP9 1,3-2 m	BGP1 1,5-2,5 m BGP2 2-3 m	BGP3 1,5-2,5 m BGP7 1,5-2,5 m	BGP4 2-3 m BGP6 1,5-2,5 m	BGP9 2-3 m BGP10 2-3 m
	Bruit de fond (b)	Valeurs limite des ISDI*	Lithologie	Argiles beiges / verdâtres	Argiles beiges / verdâtres	Argiles grises / beiges	Argiles beiges / grises	Argiles beiges / grises	
ANALYSES SUR SOL BRUT									
Matière sèche	%	-	-		77.7	78.1	80.2	77.5	78.9
COT Carbone Organique Total (a)	mg/kg Ms	-	30 000		6 160	7 930	4 050	3 890	3 280
Métaux et métalloïdes	Tig/kg ivis		30 000		0 100	7 330	4 030	3 030	3 200
Antimoine (Sb)	mg/kg Ms	1.5			3.19	3.85	2.71	2.79	2.62
Arsenic (As) Baryum (Ba)	mg/kg Ms mg/kg Ms	25 3000			20.8 104	23 102	22.4 103	22.7 77.7	21.8 74.9
Cadmium (Cd)	mg/kg Ms	0.45			0.54	0.54	<0.40	0.47	<0.40
Chrome (Cr)	mg/kg Ms	90	Résultats de lixiviation conformes aux seuils		37.3	37.3	33.6	39.2	34.4
Cuivre (Cu)	mg/kg Ms	20	définis pour les		19.3	36	19	20.5	17.3
Molybdène (Mo) Nickel (Ni)	mg/kg Ms mg/kg Ms	60	déchets inertes dans		<1.00 33.2	<1.02 34.3	<1.00 29.5	<1.02 35	<1.00 29.9
Plomb (Pb)	mg/kg Ms	50	l'arrêté du 12/12/2014		39	73.6	29.4	32.2	25.9
Sélénium (Se)	mg/kg Ms	0.7			<1.00	<1.02	<1.00	<1.02	<1.00
Zinc (Zn)	mg/kg Ms	100			98.4	112	85.3	104	92.6
Mercure (Hg) Indice hydrocarbure C10-C40	mg/kg Ms	0.1			<0.10	<0.10	<0.10	<0.10	<0.10
Fraction C10-C16	mg/kg Ms	-	-		<4.00	2.72	4.57	3.15	<4.00
Fraction C16-C22	mg/kg Ms	-	-		<4.00	3.19	5.78	3.08	<4.00
Fraction C22-C30	mg/kg Ms	-	-		<4.00	5.19	3.6	3.88	<4.00
Fraction C30-C40 Somme des hydrocarbures C10-C40	mg/kg Ms mg/kg Ms	-	500		<4.00 <15.0	9 20.1	4.45 18.4	5.86 16	<4.00 <15.0
HAP			555		47070	2011	10.1		170.0
Naphtalène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Fluorène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Phénanthrène Pyrène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.051 <0.05	<0.05 <0.05
Benzo(a)anthracène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Chrysène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.053	<0.053
Indéno(1,2,3-cd)pyrène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo(a,h)anthracène Acénaphtylène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Acénaphtène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.051	<0.05
Anthracène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	< 0.05
Fluoranthène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Benzo(a)pyrène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(g,h,i)pérylène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	< 0.05
Somme des HAP	mg/kg Ms	-	50		<0.05	<0.05	<0.05	<0.053	<0.053
BETEX Benzène	mg/kg Ms	_	-		<0.05	<0.05	<0.05	<0.05	<0.05
Toluène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	< 0.05
o-Xylène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
m,p-Xylène Somme des BTEX	mg/kg Ms mg/kg Ms	-	6		<0.05 <0.0500	<0.05 <0.0500	<0.05 <0.0500	<0.05 <0.0500	<0.05 <0.0500
PCB	Tighty Wo		Ů		40.0000	40.0000	40.0000	40.0000	40.0000
PCB (28)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	< 0.01	<0.01
PCB (52)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	<0.01
PCB (101) PCB (118)	mg/kg Ms mg/kg Ms	-	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
PCB (138)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	<0.01
PCB (153)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	<0.01
PCB (180) Somme des PCB	mg/kg Ms mg/kg Ms	-	- 1		<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010
ANALYSES SUR ELUAT	mg/ng IVIS		'		NO.010	\.U.U1U	\0.010	\.U.U1U	NO.010
Paramètres généraux									
pH	-	-	-		8.1	8.2	8.2	8.5	8.1
Conductivité corrigée à 25 °C	μS/cm	-	-		129	153	107	130	124
Fraction soluble (c)	mg/kg M.S.	-	4000		<2000	<2000	<2000	2250	<4000
Carbone organique total Indice phénol	mg/kg M.S. mg/kg M.S.	-	500		<51 <0.51	69 <0.50	80 <0.50	<50 <0.50	61 <0.50
Anions	gring ivi.o.				30.07	30.00	30.00	30.00	10.00
Fluorures	mg/kg M.S.	-	10		5.2	6	10	12.8	11
Chlorures (***)	mg/kg M.S.	-	800		49.4	61.5	24.9	24.1	80.9
Sulfates (***) Métaux et métalloïdes	mg/kg M.S.	-	1000		<50.7	57.4	50.4	102	214
Antimoine	mg/kg M.S.	-	0.06		0.02	0.017	0.006	0.007	0.007
Arsenic	mg/kg M.S.	-	0.5		<0.20	<0.20	<0.20	<0.20	<0.20
Baryum	mg/kg M.S.	-	20		0.45	0.2	0.26	0.14	0.34
Cadmium Chrome	mg/kg M.S. mg/kg M.S.	-	0.04 0.5		<0.002 0.12	<0.002 <0.10	<0.002 <0.10	<0.002 <0.10	<0.002 <0.10
Cuivre	mg/kg M.S.	-	2		<0.20	<0.20	<0.20	<0.20	<0.20
Mercure	mg/kg M.S.	-	0.01		< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Molybdène Niekol	mg/kg M.S. mg/kg M.S.	-	0.5		0.05	0.049	0.091	0.067	0.093
Nickel Plomb	mg/kg M.S. mg/kg M.S.	-	0.4 0.5		<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10
Zinc	mg/kg M.S.	-	4		<0.20	<0.20	<0.20	<0.20	<0.20
Selenium	mg/kg M.S.	-	0.1		<0.01	0.01	<0.01	<0.01	< 0.01

Selenium mg/kg M.S. 0.1 0.01 0.01

* Valeurs limites indicatives issues des textes européens, des arrêtés ministériels et des critères communément appliqués par les centres de stockage

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériels et des critéres communément appliqués par les centres de stockage

(a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut-être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluât, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

LQ : Limite de quantification du laboratoire

Concentrations supérieures aux limites ISDI.

Les résultats d'analyses ont mis en évidence :

- concernant les remblais sableux noirâtres (EC 2, 5, 7 et BGP1/0,20-1,30 m) :
 - un impact généralisé en métaux lourds sur brut (antimoine, arsenic, cadmium, cuivre, plomb, zinc et mercure);
 - des dépassements en COT sur brut ;
 - des dépassements pour les métaux sur éluât (antimoine, cuivre et plomb)
 - un bruit de fond en HCT et en HAP dans des teneurs inferieures au seuils d'acceptation en ISDI au droit des autres échantillons (EC 2, 5, 7 et BGP1/0,20-1,30 m);
 - l'absence de quantification ou des teneurs sous forme de traces (de l'ordre de grandeur de la limite de quantification du laboratoire) pour les BTEX;
 - l'absence de quantification des PCB.
- concernant les remblais sableux ocre/beige (EC4)
 - des anomalies en métaux lourds sur brut (antimoine, cadmium, cuivre, plomb et zinc);
 - l'absence de quantification pour les BTEX, PCB, HAP et HCT ;
 - des teneurs inférieures aux valeurs seuils réglementaire pour l'ensemble des autres paramètres.
- concernant les argiles beiges/verdâtres (EC1 et 3) :
 - des anomalies en métaux lourds sur brut (antimoine, cadmium, cuivre, plomb et zinc);
 - la quantification d'HCT sous forme de trace au droit de EC3;
 - l'absence de quantification des BTEX, PCB et HAP;
 - des teneurs inférieures aux valeurs seuils réglementaire pour l'ensemble des autres paramètres
- concernant les argiles beiges/grises (EC6, 8 et 10) :
 - des anomalies en métaux sur brut (antimoine, cadmium, cuivre, et zinc);
 - un dépassement de la valeur seuil défini par l'arrêté ministériel du 12/12/14 pour le fluorure au droit de EC8 et EC10;
 - la quantification d'HCT sous forme de trace pour les échantillons (EC6 et 8)
 - l'absence de quantification des BTEX, PCB et HAP;
 - l'absence de dépassement des valeurs seuils réglementaires au droit des autres échantillons testés.

Au regard de l'ensemble des résultats obtenus, dans le cadre de la réalisation d'un potentiel sous-sol enterré et de l'élimination hors site des déblais excédentaires, il apparaît que :

- les remblais sableux noirâtres présents au droit du lot ne sont pas inertes d'un point de vue réglementaire;
- les remblais argilo-graveleux ocres et les argiles beiges/verdâtres sont inertes d'un point de vue réglementaire;

Les argiles beiges/grises apparaissent globalement comme non inertes d'un point de vue réglementaire du fait de légers dépassements pour le paramètre fluorure. Pour rappel ce paramètre n'est pas indicatif d'une pollution anthropique du gisement, mais plus probablement imputable à la composition géochimique de cette lithologie. De ce fait, cette lithologie peut être considérée comme banalisable et éliminé en ISDI sous réserve de l'accord préalable de l'installation.

Réf : CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 20/24

6. Schéma conceptuel

6.1 Projet d'aménagement

Le projet d'aménagement correspond à la construction d'un bâtiment de bureaux avec un niveau de sous-sol potentiel sur l'ensemble du lot 6.1.

Le plan du projet est présenté ci-après :

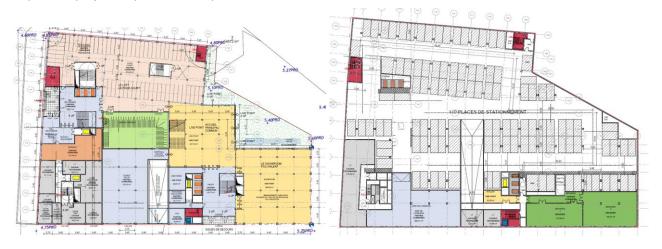


Figure 6 : Plan du RDC et du sous-sol du projet (source : VALODE&PISTRE)

6.2 Synthèse des impacts dans les différents milieux

Au droit des zones investiguées, un impact généralisé en métaux lourds a été mis en évidence au droit des remblais sableux noirâtres.

6.3 Schéma conceptuel

Le schéma conceptuel est présenté de façon à visualiser :

- la ou les sources de pollution ou les milieux (potentiellement impactés) : sols ;
- les enjeux à protéger : futurs travailleurs ;
- les voies de transfert possibles : aucune ;
- les milieux d'exposition : aucun.

Dans l'état futur du site, compte-tenu du projet d'aménagement qui induira le décaissement de l'intégralité du lot pour la réalisation du niveau de sous-sol enterré, l'ensemble des remblais du site seront terrassés et éliminés en filière adéquate. Dans le cas ou des remblais subsisterait sur le lot, les pollutions métalliques seraient in fine confinés sous les aménagements du projet. De ce fait, aucune voie d'exposition n'est à considérer. Par conséquent, le schéma conceptuel n'a pas lieu d'être.

7. Synthèse et recommandations

7.1 Synthèse

Dans le cadre de la réalisation d'un bâtiment de bureau sur un niveau de sous-sol intégral, l'EPA a missionné BURGEAP pour la réalisation d'une évaluation de l'état des milieux au droit du lot 6.1 localisé sur l'ancien site ferroviaire Gattebourse à Bordeaux (33).

Avant 1969, le site abritait des hangars. Entre 1969 et 1993, les hangars ont été démolis pour laisser place aux installations sportives. Depuis 1993, le site a une configuration similaire à celle retrouvée actuellement, à savoir, des cours de tennis, des chemins gravillonnés et un bâtiment. Le bâtiment étant condamné, il n'a pu être visité.

En 2012, GOLDER a réalisé 3 sondages au droit de la zone d'étude. Aucun sondage n'a été effectué par ARCAGEE.

Un piézomètre (GOLDER-2012) est également présent au nord (latéral), à proximité du site. La nappe a été recoupée autour de 2,15 m.

Au total, 10 sondages de sols (3,00 m de profondeur), ont été mis en œuvre par BURGEAP en 2019, à la tarière mécanique.

Les investigations réalisées ont mis en avant :

Pour les sols :

- des impacts généralisés en métaux lourds sur brut au droit des remblais sableux noirâtres ;
- l'absence d'impact en HCT, HAP, BTEX et PCB;
- le caractère non inerte des remblais sableux noirâtres ;
- le caractère inerte des remblais argilo-graveleux ocres et les argiles beiges/verdâtres;
- le caractère banalisable des argiles beiges/grises.

Il est à noter l'absence d'information quant à la qualité des déblais présents au droit des cours de tennis, du bâtiment de la SNCF ou des zones de réseaux.

Pour les eaux souterraines :

• l'absence d'impact en HCT, HAP,BTEX, COHV et Métaux lourds (antimoine arsenic, baryum, cadmium, chrome, cuivre, mercure, plomb, molybdène, nickel, sélénium et zinc)

7.2 Recommandations

Compte-tenu du projet d'aménagement envisagé, aucune recommandation n'est émise d'un point de vue sanitaire. Cependant, dans le cas où le projet d'aménagement serait modifié, les remblais présents sur site devront être confinés sous une barrière physique (dalle béton, enrobé ou à minima 0,30 m de terre végétale).

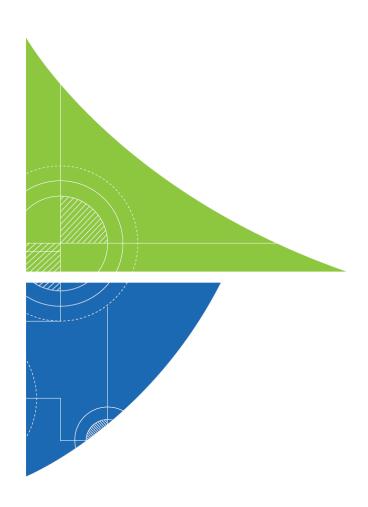
L'ensemble des déblais excédentaires générés devront être éliminés en filières adéquates.

Une attention particulière devra être réalisée :

- Sur l'hygiène et la sécurité des travailleurs lors des travaux d'aménagement notamment au droit des remblais sablo-graveleux noirs qui présentent des impacts notables en métaux lourds (qualité environnementale et sanitaire médiocre). Il conviendra de prévoir les EPI et EPC adéquats aux travaux à réaliser;
- A la présence au droit du lot, d'infrastructures bétonnées résiduelles potentielles pouvant présenter une épaisseur notable. Il conviendra de considérer cet élément dans le cadre de la gestion des futurs déblais qui seront générés par le projet.

Réf: CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 22/24

8. Limites d'utilisation d'une étude de pollution


- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.

La responsabilité de BURGEAP ne pourra être engagée si les préconisations ne sont pas mises en œuvre.

 Réf : CSSPSO191369 / RSSPSO09919-01
 MAMA / MICE / VBE
 12/11/2019
 Page 23/24

ANNEXES

Annexe 1. Reportage photographique

Visite de site

Investigations réalisées

Remblais sablo-graveleux noirâtre

Visite de site et investigations Page 1/2

Investigations réalisées

Argile beiges/verdatres

Remblais sablo-argilo-graveleux beiges/ocre

Visite de site et investigations Page 2/2

Annexe 2. Fiches d'échantillonnage des sols

CINIC	23D	EPA		/ A 50	8800	1	В	ORDEAUX(33)		Anne	xe 1
GIN (BURGE	AP -	F	FICHE D'E	CHANTILL	ONNA	GE DES S	OLS	S			SO09919 SO131969
Sondage n° Intervenant I Date: 14/1 Condition me	BURGEAI 10/19	Heure: 16h20	Technique of Profondeur	nt: GEOTEC de forage: T atteinte (m/so e forage (mm)	arière me l) : 3			Confection d'échant Sous échantillons :		ictuel -	BGP 105/10
Localisation X: 41984 Projection:	15 Y	6419824	Réf. Matérie	e terrain : PIE	tion PLN	Л		Préparation de l'éch	antillon : homogé	néisatio	on
Z (sol) - m N	IGF: 5	un piézomètre proche		O de l'air ambi échantillonnaç		pmV		Méthode d'échantille true	onnage : elle / pelle	à main	/autre
Pz n° :	N	IS (m/sol):	Doublons :	non				Conditionnement de	s échant ot sol brut		orro)
Sondage po	ur échant	illons témoins : non	Laboratoire	: EUROFIN	S			Conservation des éc		•	
Remarques	:			i au laboratoir	e: 17/1	10/2016				cière	
Prof.		COUPE GEOL	OGIQUE	T				VATIONS ET M			
(m) _{0,00} –	Lithologie			Venues d'eau / humidité des sols				tions angers	Analy de ter		N°
· =	* * * * * * 1	Terre végétale									
0,20	\triangleright	 Remblais sablo-graveleu des morceaux de brique 	x avec beige/ocre						0 ppm\	/	
-	\bigcirc	•									
0,40	Ϋ.,										
=	.п.	•									
0,60	. <i>v</i> .										
=======================================	፟.	Remblais sablo-graveleu des morceaux de brique	x avec noirâtre						0 ppm\	/	BGP1(0. 2-1.3m)
0,80 — - - - -											,
1,00	·\\ \.										
=======================================		•									
1,20	· <u>·</u>										
=======================================	<u> </u>	<u> </u> - <u>-</u>		-							
1,40											
=											
1,60		- - -									
1,80		- - -									
		<u>-</u>]									BGP1(1.
2,00		1									5-2.5m)
		Argiles beige/verdâtre							0 ppm\	/	
2,20		<u>-</u> -									
2,40 — - - - -		- - - -									
2,60		- 									
2,80											
		3									

GIN	23D	EPA		/ A50	0088 /	В	ORDEAUX(33)		Anne	
BURGE	AP AP	F	FICHE D'E	CHANTILLO	ONNAGE DES SO	OL:	S		RSSP	SO09919 SO131969
Sondage n° Intervenant I Date: 15/1	BURGEAF 10/19	Heure: 15h20	Technique of Profondeur	atteinte (m/sol	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel	BGP 105/10
		que : couvert		e forage (mm)			Préparation de l'éch	antillon :		
Localisation X: 41980 Projection:)2 Y:	6419785	Analyses de Réf. Matérie	<u>e terrain</u> : PID el : PID Loca) tion PLM		r reparation de rech	homogé	néisatio	n
Z (sol) - m N	IGF: 5	un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantille true	onnage : elle / pelle	à main	/autre
Pz n°: 0	N:	S (m/sol): 0	Doublons :				Conditionnement de			
Sondage po	ur échantil	lons témoins : non	Laboratoire	: EUROFINS	3	_	Conservation des é	ot sol brut		erre)
Remarques	:		Date d'envo	i au laboratoire	e: 17/10/2016		Conservation des et		s . cière	
		COUPE GEOL	OGIOLIE		ORS	FR	VATIONS ET M			
Prof. (m)	Lithologie		OGIQUE	Venues d'eau /	Obse			Analys		N°
0,00 -	Littiologie	Description Enrobé		humidité des sols	Corps	étra	angers	de terr	ain	IN
5,55		Elliobe								
=										
0,20 —		Dalle béton								
=										
0,40	•									
=	\Box									
=	^									
0,60 —	abla .									
=		Remblais sablo-graveleu	x noirâtre					0 ppm\	/	
0,80	. V .									
=	٠.									
	`. ·									
1,00	<u> </u>									
1,20										DOD40/4
	<u></u>	Remblais sablo-argileux graveleux beige/ocre	et					0 ppm\	/	BGP10(1 -1.5m)
=										
1,40 —	_47									
=										
1,60										
=										
=										BGP10(1 .5-2m)
1,80 —										,
=										
2,00 —										
=		•								
=										
2,20		Argiles beige/grise						0 ppm\	,	
=								''		
2,40										
										BGP10(2
										-3m)
2,60										
2,80										
Ξ										

GIN	CID	EPA		/ A5 0	0088 /	В	ORDEAUX(33)		Annex	
BURGE	AP AP	F	FICHE D'E	CHANTILL	ONNAGE DES	s sol	S		RSSP CSSP	SO09919 SO131969
Sondage n° Intervenant Date : 14/ Condition m	BURGEAF 10/19	P: MAMA Heure: 16h50 que: Soleil	Technique d Profondeur	t: GEOTEC le forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3)	Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation X : 41983 Projection :	34 Y	6419820	Réf. Matérie	<u>terrain</u> : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N	NGF: 5	un piézomètre proche		de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	N	S (m/sol): 0	Doublons :				Conditionnement de	s échanti ot sol brut		erre)
Sondage po	our échanti	llons témoins : non	Laboratoire	: EUROFINS	6		Conservation des éc			
Remarques	:		Date d'envo	i au laboratoir	e: 17/10/2016				cière	
Prof.		COUPE GEOL	OGIQUE	ı			RVATIONS ET M			
(m)	Lithologie	Description		Venues d'eau / humidité des sols		Observa orps étr		Analy: de teri		N°
0,00		Remblais sablo-argilo-gra avec des morceaux de bi beige/ocre	aveleux rique					0 ppm\	/	BGP2(0- 0.5m)
0,60		Remblais sablo-argilo-gravec des morceaux de b	aveleux rigue					0 ppm\	,	BGP2(0. 5-1m)
1,20		noirâtre								
1,60										
2,00		Argiles beige/verdâtre						0 ppm\	,	BGP2(2- 3m)

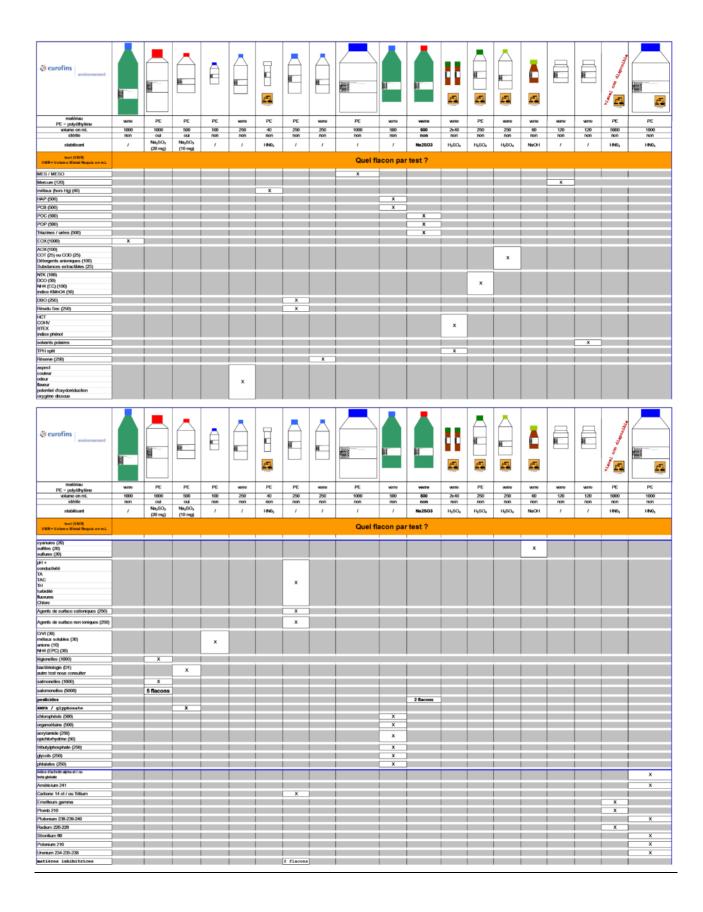
Z GIN(23D	EPA		/ A50	/ 8800	В	ORDEAUX(33)		Anne	
BURGE/	AP	F	FICHE D'E	CHANTILLO	ONNAGE DES S	SOL	S			SO09919 SO131969
Sondage n° Intervenant I Date: 14/1 Condition me	BURGEA 0/19	P: MAMA Heure: 17h05 ique: Soleil	Technique of Profondeur	t: GEOTEC le forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation X: 41980 Projection:)4 Y	6419833	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N	IGF: 5	'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	1	NS (m/sol): 0	Doublons :				Conditionnement de	s échanti ot sol brut		erre)
Sondage por	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:			i au laboratoir	e: 17/10/2016				cière	
Prof.		COUPE GEOL	OGIQUE	T			RVATIONS ET M			
(m)	Lithologi			Venues d'eau / humidité des sols			ations angers	Analys de teri		N°
0,00 =		Terre végétale Remblais limoneux beige	e/ocre					0 ppm\	/	BGP3(0. 05-0.5m)
0,60 — 0,80 — 1,00 — 1,20 —	· P. A. P. · A. · . O · P.	Remblais sablo-graveleu des morceaux de brique	x avec noirâtre					0 ppm\	·	BGP3(0. 5-1.5m)
1,60 — 1,80 — 2,00 — 2,20 —		Argiles beige/grise						0 ppm\	′	BGP3(1. 5-2.5m)
2,60 —										

Z GIN(2 1D	EPA		/ A5 0	0088 /	ВС	RDEAUX(33)		Anne	
BURGE/	AP	F	FICHE D'E	CHANTILL	ONNAGE DES SO	OLS	}			SO09919 SO131969
Sondage n° Intervenant I Date: 15/1 Condition m	BURGEA 10/19		Technique of Profondeur	<u>at</u> : GEOTEC de forage: Te atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation X: 41980 Projection:)O Y	6419817	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N	IGF: 5	'un piézomètre proche	au poste d'e	O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	I	NS (m/sol): 0	Doublons :				Conditionnement de	s échant ot sol brut		erre)
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3	-	Conservation des éc			
Remarques	:			i au laboratoir	e: 17/10/2016				cière	
Prof.		COUPE GEOL	OGIQUE	T			VATIONS ET M			
(m) _{0,00} –	Litholog			Venues d'eau / humidité des sols	Obse Corps			Analy de ter		N°
	000	Graviers et terre végétale	•							
0,20 		Dalle béton								
0,40 — 	.♡ ∧·	•								
0,60	D.	Remblais sablo-graveleu des morceaux de brique	x avec noirâtre					0 ppm\	/	BGP4(0. 3-1m)
0,80	∴									
1,00 —		N								
1,20 —										
1,40—										
1,60										BGP4(1- 2m)
1,80										
2,00		Argiles beige/grise						0 ppm\	/	
2,20 —										
2,40										DOD4/0
2,60										BGP4(2- 3m)
2,80										

E GINA	GID	EPA		/ A5 0	/ 8800	В	ORDEAUX(33)		Anne	
GIN BURGE	AP AP	F	FICHE D'E	CHANTILLO	ONNAGE DES	SOL	S			SO09919 SO131969
Sondage n°	° : BGP5		Sous-traitan	t: GEOTEC			Confection d'échanti	illon :	COOI	BGP 105/10
Intervenant Date: 15/	BURGEA 10/19	P:MAMA Heure:9h10 ique:couvert	Technique of Profondeur	le forage : Tatteinte (m/sole forage (mm)	arière mécanique) : 3		Sous échantillons :		ctuel -	
Localisation X : 41978 Projection :	81 Y	: 6419814	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatic	n
Z (sol) - m N	NGF: 5	'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	١	IS (m/sol): 0	Doublons :				Conditionnement de	s échanti ot sol brut		erre)
Sondage po	our échant	illons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:			i au laboratoir	e: 17/10/2016			glad	cière	
Prof.		COUPE GEOL	OGIQUE				RVATIONS ET M	ESURE	S	
(m)	Lithologi	e Description		Venues d'eau / humidité des sols		observa orps étr		Analy: de teri		N°
0,00 -							ego.re			
		Dalle béton								
0,20 — - - - - -	$\dot{\triangleright}$	 Remblais sablo-graveleu marron/beige foncé 	х					0 ppm\	/	
0,40	.▽	•								
0,60	· · ·	Remblais sablo-graveleu	x noirâtre					0 ppm\	/	BGP5(0. 3-0.8m)
-	₽.	•								
0,80										
1,00		Remblais sablo-limoneux	(0 ppm\	/	
1,20		beige/ocre								
1,40										
1,60										
1,80										
2,00										BGP5(1. 5-2.5m)
2,20		Argiles beige/verdâtre						0 ppm\	/	
=										
2,40										
2,60										
2,80										
=										
_					1			i		

Z GIN(CID	EPA		/ A5	8800	1	В	ORDEAUX(33)		Anne	
BURGE	AP	F	FICHE D'E	CHANTILL	ONNA	GE DES S	OL	S			SO09919 SO131969
Sondage n°			Sous-traitan	t: GEOTEC	;			Confection d'échant	illon :	0001	BGP 105/10
Intervenant I Date : 15/1 Condition m	10/19	P: MAMA Heure: 9h44 lique: couvert	Profondeur	de forage: T atteinte (m/so e forage (mm)	l): 3			Sous échantillons :	por	ctuel -	
Localisation X: 41978 Projection:	33 Y	6419824	Réf. Matérie	e terrain : PII	tion PLN	И		Préparation de l'éch	antillon : homogé	néisatio	on
Z (sol) - m N	IGF: 5	'un piézomètre proche	au poste d'	D de l'air ambi échantillonnaç	ge: 0 p	pmV		Méthode d'échantille true	onnage : elle / pelle	à main	/autre
Pz n°: 0	1	NS (m/sol): 0	Doublons :					Conditionnement de			
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFIN	S			Conservation des éc	ot sol brut		verre)
Remarques	:		Date d'envo	i au laboratoir	e: 17/1	10/2016			gla	cière	
Prof.		COUPE GEOL	OGIQUE					RVATIONS ET M	ESURE	S	
(m)	Litholog	Description		Venues d'eau / humidité des sols				ations angers	Analy de ter		N°
0,00 _	0000	Graviers et terre végétale)			ООТРО	o our	angoro	40 (0)		
0,20		Dalle béton									
0,40—	.\	•									
0,60	.Δ.·	Remblais sablo-graveleu des morceaux de brique marron mélangé	x avec noirâtre et						0 ppm\	V	BGP6(0. 25-0.8m)
=											
0,80	-^- <u>-</u>										
1,00											
· =											
1,20											
1,40		=									
		<u>:</u>									
		<u></u>									
1,60											
1,80											
		_ − Argiles beige/grise							0 ppm\	,	
		- Arglies beige/grise							о ррпп	V	BGP6(1.
2,00		<u> </u>									5-2.5m)
=		=									
2,20											
		=======================================									
=		∷									
2,40		::									
=		3									
2,60		3									
2,00		=									
		=======================================									
2,80		<u>:</u>									
		=									

CIN	CID	EPA		/ A5 0	0088 /	В	ORDEAUX(33)		Annex	
GIN BURGE	AP AP	F	FICHE D'E	CHANTILL	ONNAGE DES	SOL	S			SO09919 SO131969
Sondage n°			Sous-traitan	t: GEOTEC			Confection d'échanti	illon :	0001	BGP 105/10
Intervenant Date: 15/ Condition m	10/19	P: MAMA Heure: 10h30 ique: couvert	Technique of Profondeur	de forage : Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Sous échantillons :	pon	ctuel -	
Localisation X: 41979 Projection:	92 Y	6419833	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N	NGF: 5	'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	1	NS (m/sol): 0	Doublons :				Conditionnement de	s échanti ot sol brut		erre)
Sondage po	our échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:			i au laboratoir	e: 17/10/2016			glad	cière	
Prof.		COUPE GEOL	OGIQUE	1			RVATIONS ET M			
(m)	Lithologi	Description		Venues d'eau / humidité des sols		Observa orps étr		Analy: de teri		N°
0,00 -	0000	Graviers et terre végétale	Э				5			
0.20	-	Dalle béton								
0,20 — - - - -		•								
0,40	Δ·.									
0,60	∵∇.	Remblais sablo-graveleu des morceaux de brique marron mélangé	x avec noirâtre et					0 ppm\	/	BGP7(0. 2-0.9m)
0,80										
1,00								0 ppm\	,	
1,20		Algites beige verdatie						о ррин		
1,40										
1,60										
1,80										
2,00										BGP7(1. 5-2.5m)
2,20		Argiles beige/grise						0 ppm\	/	
2,40										
2,60										
2,80										
=		3								


GING	23D	EPA		/ A50	088 /	В	ORDEAUX(33)		Anne	
BURGE	AP	F	ICHE D'E	CHANTILLO	ONNAGE DES S	OL	S			SO09919 SO131969
Sondage n° Intervenant I Date: 15/1 Condition me	BURGEA 10/19	P:MAMA Heure:16h ique:couvert	Technique d Profondeur	t: GEOTEC le forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation X: 41976 Projection:	66 Y	: 6419812	Réf. Matérie	terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatic	n
Z (sol) - m N	IGF: 5	'un piézomètre proche) de l'air ambia échantillonnag			Méthode d'échantille true	onnage : elle / pelle	à main	/autre
Pz n°: 0	١	NS (m/sol): 0	Doublons :				Conditionnement de	es échanti ot sol brut		erre)
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:			i au laboratoire	e: 17/10/2016				cière	
Prof.		COUPE GEOL	OGIQUE				RVATIONS ET M			
(m)	Lithologi	e Description		Venues d'eau / humidité des sols			ations angers	Analy: de ter		N°
0,00		Enrobé Dalle béton et brique rou	ge							
=		Remblais sablo-graveleu	x beige					0 ppm\	/	BGP8(0. 5-0.6m)
0,60		Remblais argilo-limoneux graveleux verdâtre, beige noirâtre mélangé	c et e et					0 ppm\	/	BGP8(0. 6-1m)
1,00 —		Argiles beige/verdâtre						0 ppm\	,	BGP8(1- 2m)
2,20		Tuginos bolgo, voltulus						S ppill		BGP8(2- 3m)

GIN	CID	EPA		/ A5 0	0088 /	В	ORDEAUX(33)	I .	Annex	
BURGE	AP AP	ı	FICHE D'E	CHANTILLO	ONNAGE DES S	SOL	S			SO09919 SO131969
Sondage no Intervenant Date: 15/1 Condition m	BURGEA 10/19	P: MAMA Heure: 16h39 ique: couvert	Technique of Profondeur	nt: GEOTEC de forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :			BGP 105/10
Localisation X: 41978 Projection: Z (sol) - m N	85 Y Lambert	: 6419800	Analyses de Réf. Matérie	e terrain : PID el : PID Loca D de l'air ambia) tion PLM		Préparation de l'éch Méthode d'échantille	homogén	éisatio	on
	a nappe d'	'un piézomètre proche NS (m/sol): 0	au poste d'	échantillonnag	je: 0 ppmV			elle / pelle à		/autre
		illons témoins : non	Laboratoire	· FUDOEING				ot sol brut (erre)
Remarques		- HOH			e: 17/10/2016		Conservation des éc	chantillons glaci		
		COUPE GEOL	OGIQUE		OB!	SEF	RVATIONS ET M	ESURES		
Prof. (m)	Lithologi			Venues d'eau /	Obs	serva	ntions	Analyse	es	N°
0,00 -				humidité des sols	Corp	s etr	angers	de terra	ıın	
0,20		Dalle béton								
0,40	• :	Remblais sablo-graveleu	ix avec					0 ppmV		
	• >	des morceaux de brique	beige					Оррин		
0,60	0 .									BGP9(0.
0,80	· · ·	 Remblais argilo-limoneux graveleux verdâtre, beige noirâtre mélangé 	x et e et					0 ppmV		5-1m)
1,00	• - •									
1,20 —	o`•,									
1,40										
1,60		Argiles beige/verdâtre						0 ppmV		BGP9(1. 3-2m)
1,80										
2,00	====	<u>-</u>		_						
2,20		1								
2,40										
2,60		Argiles beige/grise						0 ppmV		BGP9(2- 3m)
2,80										
2,0U - - - - - - - -										

Annexe 3. Méthodes analytiques, LQ et flaconnage

Méthode	n° CAS	Molécules	Eaux peu	chargées	Matrice	s solides		Air	
Wethode	II CAS	Wolecules	LQI	Unité	LQI	Unité	µg/tube	μg/filtre	μg/l
COHVs/B	TEXs (Cor	nposés Organo Halogénés Vola	atils / BTEX	s)					13
Méthode par	HS/GC/MS								
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	563-58-6	1,1 Dichloropropène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	630-20-6	1,1,1,2 Tétrachloroéthane	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS HS/GC/MS	71-55-6 79-00-5	1,1,1-Trichloroethane 1,1,2 Trichloroéthane	2 5	μg/l μg/l	0,1 0,2	mg/kgMS mg/kgMS	10 25		
HS/GC/MS	79-00-5	1,1,2 Tichloroethane	5	μg/l μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-34-3	1,1-dichloroéthane	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS HS/GC/MS	106-93-4 590-12-5	1,2 Dibromoéthane 1,2 Dibromoéthène	1 10	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	10	μg/l μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	µg/l	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	120-82-1	1,2,4 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	107-06-2	1,2-Dichloroéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	541-73-1	1,3 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	100.07.0	1,3,5 Trichlorobenzène	5	μg/l	0,2	mg/kgMS	-		
HS/GC/MS	108-67-8	1,3,5 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	106-46-7	1,4-dichlorobenzène	1	µg/l	0,1	mg/kgMS	5		
HS/GC/MS HS/GC/MS	95-49-8	2-Chlorotoluène 2-Ethyltoluène	1 5	μg/l μg/l	0,1 0,2	mg/kgMS mg/kgMS	5		
HS/GC/MS	106-43-4	4-Chlorotoluène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	71-43-2	Benzène	0,5	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	74-97-5	Bromochlorométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS HS/GC/MS	75-27-4 108-90-7	Bromodichlorométhane Chlorobenzène	5 1	μg/l ug/l	0,2 0.1	mg/kgMS mg/kgMS	25 5		
HS/GC/MS	100-90-7	Chloroéthane	50	μg/l μg/l	2	mg/kgMS	5		
HS/GC/MS		Chlorométhane	50	μg/l	2	mg/kgMS			
HS/GC/MS	75-01-4	Chlorure de vinyle	0,5	μg/l	0,02	mg/kgMS	2		
HS/GC/MS HS/GC/MS	156-59-2 10061-01-5	Cis 1,2-dichloroéthylène Cis 1,3-dichloropropène	2 5	μg/l μg/l	0,1 0,2	mg/kgMS mg/kgMS	10 25		
HS/GC/MS	124-48-1	Dibromochlorométhane	2	μg/I μg/I	0,2	mg/kgMS	10		
HS/GC/MS	74-95-3	Dibromométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-09-2	Dichlorométhane	5	μg/I	0,05	mg/kgMS	25		
HS/GC/MS	100-41-4	Ethylbenzène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS		Ethyl-Tert-ButylEther	5 5	μg/l	0,2	mg/kgMS			
HS/GC/MS		Hexachloroéthane Iso-butylbenzène	5	μg/l	0,2	mg/kgMS mg/kgMS			
HS/GC/MS	98-82-8	Isopropylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	108-33-3	m+p-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	106-42-3	Méthyl-Tert-Butyl Ether	5	μg/l	0,05	mg/kgMS			
HS/GC/MS	108-33-3	m-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	104-51-8	n-butylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	103-65-1	n-Propyl benzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	95-47-6	o-xylène	1	μg/l	0,5	mg/kgMS	5		
HS/GC/MS HS/GC/MS	106-42-3	Pentachloroéthane p-xylène	5 1	μg/l μg/l	0,2 0,05	mg/kgMS mg/kgMS	5		
HS/GC/MS	135-98-8	sec-butylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	100-42-5	Styrène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS	98-06-6 127-18-4	tert-butylbenzène Tétrachloroéthylène	1	μg/l μg/l	0,1 0,05	mg/kgMS mg/kgMS	5 5		
HS/GC/MS	56-23-5	Tétrachlorométhane	1	μg/I μg/I	0,05	mg/kgMS	5		
HS/GC/MS	108-88-3	Toluène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	156-60-5	Trans-1,2-Dichloroéthylène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS HS/GC/MS	10061-02-6 75-25-2	Trans-1,3-Dichloropropène Tribromométhane	5 5	μg/l μg/l	0,2 0,2	mg/kgMS mg/kgMS	25 25		
HS/GC/MS	75-25-2	Tribromométhane	0,25	μg/l μg/l	0,2	mg/kgivio	20		
HS/GC/MS	79-01-6	Trichloroéthylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	67-66-3	Trichlorométhane	2	μg/l	0,1	mg/kgMS	10		
	carbures Vol	latils par HS/GC/MS							
HS/GC/MS	-	>MeC5-nC8	30	μg/l	1	mg/kgMS	100		
HS/GC/MS	-	>nC8-nC10	30	μg/l	1	mg/kgMS	100		
HS/GC/MS	-	>nC10-nC12					100		

Méthode	n° CAS	Molécules	•	chargées		s solides		Air	
00111/ /5	TEV (0		LQI	Unité	LQI	Unité	µg/tube	μg/filtre	μg/l
	•	nposés Organo Halogénés Vol	atils / B I EX	.S)					
Méthode pa	r HS/GC/MS								1
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
110/00/140	500 50 0	4.4 Diablasses 3	0	//	0.4		40		
HS/GC/MS HS/GC/MS	563-58-6	1,1 Dichloropropène	2 1	μg/l	0,1 0,1	mg/kgMS mg/kgMS	10		
HS/GC/MS	630-20-6 71-55-6	1,1,1,2 Tétrachloroéthane 1,1,1-Trichloroethane	2	μg/l	0,1		5 10		
HS/GC/MS	79-00-5	1,1,2 Trichloroéthane	5	μg/l μg/l	0,1	mg/kgMS mg/kgMS	25		
HS/GC/MS	79-00-5	1,1,2 Tichloroethane	5	μg/l μg/l	0,2	mg/kgMS	23		
HS/GC/MS	75-34-3	1,1-dichloroéthane	2	μg/l	0,2	mg/kgMS	10		
HS/GC/MS	106-93-4	1,2 Dibromoéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	590-12-5	1,2 Dibromoéthène	10	μg/l	0,00	ing/kgine	- Č		
		,					_		
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,2	mg/kgMS			
HS/GC/MS	120-82-1	1,2,4 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
TPH Split Ar	omatiques /								
-	-	C5 – C6	10	μg/l	10	mg/kgMS	10		
-	-	>C6 – C8	10	μg/l	10	mg/kgMS	10		
-	-	>C8 – C10	10	μg/l	10	mg/kgMS	10		
-	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 - C16	10	μg/l	10	mg/kgMS	10		
-	-	>C16 - C21	10	μg/l	10	mg/kgMS			
-	-	>C21 – C35	10	μg/l	10	mg/kgMS			
-	-	>C35	10	μg/l	10 80	mg/kgMS	50		
<u> </u>	-	Somme Fractions aliphatiques >C6 – C7	80 10	μg/l	10	mg/kgMS mg/kgMS	50 10		
<u> </u>	-	>C6 - C7 >C7 - C8	10	μg/l μg/l	10	mg/kgMS mg/kgMS	10		
	-	>C7 - C6 >C8 - C10	10	μg/l μg/l	10	mg/kgMS	10		
	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 – C16	10	μg/l	10	mg/kgMS	10		
-	-	>C16 – C21	10	μg/l	10	mg/kgMS			
-	-	>C21 – C35	10	μg/l	10	mg/kgMS			
-	-	>C35	10	μg/l	10	mg/kgMS			
-	-	Somme Fractions aromatiquess	80	μg/l	80	mg/kgMS	50		
-	-	TPH (somme)	160	μg/l	160	mg/kgMS	100		
HAPs (Hy	drocarbure	s Aromatiques Polycycliques)							
	91-20-3	Naphtalène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	91-57-6	2-Méthyl Naphtalène	0,01	μg/l	0,05	mg/kgMS			
		Acénaphtylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,1	
		Acénaphtène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluorène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Phénanthrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		2-Methylfluoranthène Benzo(a)anthracène	0,01	μg/l	0,05 0,05	mg/kgMS mg/kgMS	0.05	0.05	
			0,01 0,01	μg/l	0,05	mg/kglviS mg/kgMS	0,05 0,05	0,05	
	 	Chrysène Benzo(b)fluoranthène	0,01	μg/l μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(k)fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	1	Benz(a)pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	1	Dibenzo(a,h)anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Indéno-(1,2,3,c,d)-pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(g,h,i)pérylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(b+k)fluoranthène	0,02	μg/l	0,1	mg/kgMS	0,1	0,1	
HCTs (Hv	drocarbure	s, Fractions aliphatiques, Fract	•		Split Ali/A				
CPG	-	Hydrocarbures totaux	0,03	mg/l	15	mg/kgMS			
CPG		Hydrocarbures dissous	0,05	mg/l					
UPG									
	oar méthod								
	oar méthod		0,02	mg/l	1	mg/kgMS		0,25	0,005
METAUX	oar méthod	e ICP AES	0,02 0,005	mg/l mg/l	1	mg/kgMS mg/kgMS		0,25 2,5	0,005 0,05
METAUX ICP-AES	-	e ICP AES Antimoine			1 1 1				
METAUX ICP-AES ICP-AES ICP-AES ICP-AES	-	e ICP AES Antimoine Arsenic	0,005	mg/l	1	mg/kgMS mg/kgMS mg/kgMS		2,5	0,05 0,005 0,005
METAUX ICP-AES ICP-AES ICP-AES		e ICP AES Antimoine Arsenic Baryum	0,005 0,005	mg/l mg/l	1	mg/kgMS mg/kgMS		2,5 0,25	0,05 0,005
ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	- - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre	0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l	1 1 5 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25	0,05 0,005 0,005 0,005 0,005
ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène	0,005 0,005 0,005 0,005 0,01 0,005	mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5	0,05 0,005 0,005 0,005 0,005 0,005
METAUX I ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	- - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuiwe Molybdène Nickel	0,005 0,005 0,005 0,005 0,005 0,01 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25	0,05 0,005 0,005 0,005 0,005
METAUX I ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb	0,005 0,005 0,005 0,005 0,001 0,001 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
METAUX I ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	- - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
METAUX ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
METAUX ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5 10 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuive Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105	0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,001 0,002 escence At	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5 10 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149	0,005 0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,001 0,002 escence At	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5 10 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149 PCB 170	0,005 0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,001 0,002 escence A	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 1 5 10 5 0,01	mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149 PCB 170 PCB 18	0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,001 0,01 0,	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 1 5 10 5 10 5 10 0,1	mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149 PCB 170	0,005 0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,001 0,002 escence A	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 1 5 10 5 0,01	mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005

Annexe 4. Bordereaux d'analyse des sols

BURGEAP
Monsieur Mickaël CAPDOUZE
4 Boulevard Jean-Jacques Bosc
Les portes de Bègles
33130 BEGLES

RAPPORT D'ANALYSE

Dossier N°: 19E152062 Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01 Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Coordinateur de Projets Clients : Mathieu Hubner / MathieuHubner@eurofins.com / +33 3 88 02 33 81

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

	Commande : BD19261		
N° Ech	Matrice		Référence échantillon
001	Sol	(SOL)	BGP1 0,2-1,3
002	Sol	(SOL)	BGP1 1,5-2,5
003	Sol	(SOL)	BGP2 0-0,5
004	Sol	(SOL)	BGP2 0,5-1
005	Sol	(SOL)	BGP2 2-3
006	Sol	(SOL)	BGP3 0,05- 0,5
007	Sol	(SOL)	BGP3 0,5-1
800	Sol	(SOL)	BGP3 1,5-3
009	Sol	(SOL)	BGP4 0,3- 1
010	Sol	(SOL)	BGP4 1-2
011	Sol	(SOL)	BGP4 2-3
012	Sol	(SOL)	BGP5 0,3-0,8
013	Sol	(SOL)	BGP5 1,5-2,5
014	Sol	(SOL)	BGP6 0,25-0,8
015	Sol	(SOL)	BGP6 1,5-2,5
016	Sol	(SOL)	BGP7 0,2-0,9
017	Sol	(SOL)	BGP7 0,9-1,3
018	Sol	(SOL)	BGP7 1,5-2,5
019	Sol	(SOL)	BGP8 0,6-1
020	Sol	(SOL)	BGP8 1-2
021	Sol	(SOL)	BGP8 2-3
022	Sol	(SOL)	BGP9 0,5-1
023	Sol	(SOL)	BGP9 1,3-2
024	Sol	(SOL)	BGP9 2-3
025	Sol	(SOL)	BGP10 1-1,5
026	Sol	(SOL)	BGP10 1,5-2
027	Sol	(SOL)	BGP10 2-3
028	Sol	(SOL)	EC1 (BGP8 1-2/BGP9 1,3-2)
029	Sol	(SOL)	EC2 (BGP1 0,2-1,3/BGP2 0,5-1)
030	Sol	(SOL)	EC3 (BGP1 1,5-2,5)/BGP2 2-3)
031	Sol	(SOL)	EC4 (BGP2 0-0,5/BGP10 1-1,5)
032	Sol	(SOL)	EC5 (BGP3 0,5-1,5/BGP7 0,2-0,9)
033	Sol	(SOL)	EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)
034	Sol	(SOL)	EC7 (BGP4 0,3-1/BGP5 0,3-0,8/BGP6 0,25-0,8)
035	Sol	(SOL)	EC8 (BGP4 2-3/BGP6 (1,5-2,5)

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

037 Sol (SOL) EC10 (BGP9 2-3/BGP10 2-3)

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon		001	002	003	004	005	006
Référence client :		BGP1 0,2-1,3	BGP1 1,5-2,5	BGP2 0-0,5	BGP2 0,5-1	BGP2 2-3	BGP3 0,05- 0,5
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C
		Ad	ministratif				
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour réaliser un mélange	g/kg	Fait	Fait	Fait		Fait	
	P	réparation	Physico-C	himique			
XXS06 : Séchage à 40°C		* -					
LS896 : Matière sèche	% P.B.	* 86.7					
XXS07 : Refus Pondéral à 2 mm	% P.B.	* 14.0					
		Indice	s de polluti	ion			
LS08X : Carbone Organique Total (COT)	mg/kg M.S.	* 291000					
			Métaux				
XXS01 : Minéralisation eau		* -					
régale - Bloc chauffant LS863 : Antimoine (Sb)	mg/kg M.S.	* 53.7					
LS865 : Arsenic (As)	mg/kg M.S.	* 49.5					
LS866 : Baryum (Ba)	mg/kg M.S.	* 473					
LS870 : Cadmium (Cd)	mg/kg M.S.	* 2.10					
LS872 : Chrome (Cr)	mg/kg M.S.	* 29.8					
LS874 : Cuivre (Cu)	mg/kg M.S.	* 3450					
LS880 : Molybdène (Mo)	mg/kg M.S.	* 4.86					
LS881 : Nickel (Ni)	mg/kg M.S.	* 39.3					

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		001 BGP1 0,2-1,3	002 BGP1 1,5-2,5	003 BGP2 0-0,5	004 BGP2 0,5-1	005 BGP2 2-3	006 BGP3 0,05- 0,5		
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C		
			Métaux						
LS883 : Plomb (Pb)	mg/kg M.S.	* 2550							
LS885 : Sélénium (Se)	mg/kg M.S.	<1.00							
LS894 : Zinc (Zn)	mg/kg M.S.	* 770							
LSA09 : Mercure (Hg)	mg/kg M.S.	* 2.22							
Hydrocarbures totaux									
LS919 : Hydrocarbures totaux (4 tran	nches)								
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg M.S.	* 133							
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.	9.64							
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.	29.9							
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.	52.5							
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.	40.7							
Н	ydrocarbı	ires Aroma	atiques Pol	ycycliques	(HAPs)				
LSRHU : Naphtalène	mg/kg M.S.	* 0.21							
LSRHI : Fluorène	mg/kg M.S.	* 0.061							
LSRHJ : Phénanthrène	mg/kg M.S.	* 1.4							
LSRHM : Pyrène	mg/kg M.S.	* 2.2							
LSRHN : Benzo-(a)-anthracène	mg/kg M.S.	* 1.0							
LSRHP : Chrysène	mg/kg M.S.	* 1.6							
LSRHS : Indeno (1,2,3-cd) Pyrène	mg/kg M.S.	* 1.5							
LSRHT : Dibenzo(a,h)anthracène	mg/kg M.S.	* 0.54							

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon			001	002	003	004	005 BCB2 2 2	006		
Référence client :			BGP1 0,2-1,3	BGP1 1,5-2,5	BGP2 0-0,5	BGP2 0,5-1	BGP2 2-3	BGP3 0,05- 0,5		
Matrice :			SOL	SOL	SOL	SOL	SOL	SOL		
Date de prélèvement :			/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019		
Date de début d'analyse : Température de l'air de l'enceinte :		19	/10/2019 12°C	19/10/2019 12°C	19/10/2019 12°C	18/10/2019 12°C	19/10/2019 12°C	18/10/2019 12°C		
							12 0	12 0		
Hydrocarbures Aromatiques Polycycliques (HAPs)										
LSRHV : Acénaphthylène	mg/kg M.S.	*	0.16							
LSRHW : Acénaphtène	mg/kg M.S.	*	<0.05							
LSRHK : Anthracène	mg/kg M.S.	*	0.38							
LSRHL : Fluoranthène	mg/kg M.S.	*	2.4							
LSRHQ: Benzo(b)fluoranthène	mg/kg M.S.	*	2.2							
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.	*	0.67							
LSRHH : Benzo(a)pyrène	mg/kg M.S.	*	1.7							
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	*	1.2							
LSFF9: Somme des HAP	mg/kg M.S.		17							
	F	Poly	chloro	biphényles	(PCBs)					
LS3U7 : PCB 28	mg/kg M.S.	*	<0.01							
LS3UB : PCB 52	mg/kg M.S.	*	<0.01							
LS3U8 : PCB 101	mg/kg M.S.	*	<0.01							
LS3U6 : PCB 118	mg/kg M.S.	*	<0.01							
LS3U9 : PCB 138	mg/kg M.S.	*	<0.01							
LS3UA : PCB 153	mg/kg M.S.	*	<0.01							
LS3UC : PCB 180	mg/kg M.S.	*	<0.01							
LSFEH: Somme PCB (7)	mg/kg M.S.		<0.010							
			Comp	osés Volat	ils					
LS0XU : Benzène	mg/kg M.S.	*	<0.05							

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :			001 BGP1 0,2-1,3	002 BGP1 1,5-2,5	003 BGP2 0-0,5	004 BGP2 0,5-1	005 BGP2 2-3	006 BGP3 0,05- 0,5	
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			SOL /10/2019 0/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	
Composés Volatils									
LS0Y4 : Toluène	mg/kg M.S.	*	0.06						
LS0XW : Ethylbenzène	mg/kg M.S.	*	<0.05						
LS0Y6 : o-Xylène	mg/kg M.S.	*	<0.05						
LS0Y5 : m+p-Xylène	mg/kg M.S.	*	<0.05						
LS0IK : Somme des BTEX	mg/kg M.S.		0.0600						
			Li	ixiviation					
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures		*	Fait						
Refus pondéral à 4 mm	% P.B.	*	4.3						
XXS4D : Pesée échantillon lixiviation Volume	ml	*	240						
Masse	g	*	23.5						
	A	na	lyses in	nmédiates s	sur éluat				
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		*	8.2						
Température de mesure du pH	°C		20						
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm	*	125						
Température de mesure de la conductivité	°C		20.7						
LSM46 : Résidu sec à 105°C (Fraction s sur éluat Résidus secs à 105 °C	mg/kg M.S.	*	<2000						

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :			001 BGP1 0,2-1,3	002 BGP1 1,5-2,5	003 BGP2 0-0,5	004 BGP2 0,5-1	005 BGP2 2-3	006 BGP3 0,05- 0,5
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			SOL 10/2019 /10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C
	A	nal	yses in	nmédiates s	sur éluat			
LSM46 : Résidu sec à 105°C (Fraction s sur éluat Résidus secs à 105°C (calcul)	% MS	*	<0.2					
	l	Indi	ces de	pollution s	ur éluat			
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg M.S.	*	<51					
LS04Y : Chlorures sur éluat	mg/kg M.S.		31.0					
LSN71 : Fluorures sur éluat	mg/kg M.S.		<5.00					
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.		152					
LSM90 : Indice phénol sur éluat	mg/kg M.S.	*	<0.51					
			Méta	ux sur élua	ıt			
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.	*	<0.20					
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.	*	1.89					
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.	*	<0.10					
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.	*	1.54					
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.		0.069					
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.	*	<0.10					
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.	*	0.75					
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.	*	1.02					
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.	*	<0.001					
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.	*	0.11					

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon	001	002	003	004	005	006
Référence client :	BGP1	BGP1 1,5-2,5	BGP2 0-0,5	BGP2 0,5-1	BGP2 2-3	BGP3 0,05-
	0,2-1,3					0,5
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019
Date de début d'analyse :	19/10/2019	19/10/2019	19/10/2019	18/10/2019	19/10/2019	18/10/2019
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C

Métaux sur éluat

mg/kg M.S. <0.002 LSN05: Cadmium (Cd) sur éluat LSN41 : Sélénium (Se) sur éluat mg/kg M.S. <0.01

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon	007	800	009	010	011	012				
Référence client :	BGP3 0,5-1	BGP3 1,5-3	BGP4 0,3- 1	BGP4 1-2	BGP4 2-3	BGP5 0,3-0,8				
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL				
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019				
Date de début d'analyse :	19/10/2019	19/10/2019	19/10/2019	18/10/2019	19/10/2019	19/10/2019				
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C				
Administratif										
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour g/kg réaliser un mélange	Fait	Fait	Fait		Fait	Fait				

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon	013	014	015	016	017	018
Référence client :	BGP5	BGP6	BGP6 1,5-2,5	BGP7 0,2-0,9	BGP7 0,9-1,3	BGP7 1,5-2,5
	1,5-2,5	0,25-0,8				
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019
Date de début d'analyse :	18/10/2019	19/10/2019	19/10/2019	19/10/2019	18/10/2019	19/10/2019
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C
	Ad	ministratif				
LS0IR : Mise en réserve de						
l'échantillon (en option)						
LSRGJ : Echantillon utilisé pour 9 ^{/kg} réaliser un mélange		Fait	Fait	Fait		Fait

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon	019	020	021	022	023	024				
Référence client :	BGP8 0,6-1	BGP8 1-2	BGP8 2-3	BGP9 0,5-1	BGP9 1,3-2	BGP9 2-3				
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL				
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019				
Date de début d'analyse :	18/10/2019	19/10/2019	18/10/2019	18/10/2019	19/10/2019	19/10/2019				
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C				
Administratif										

Administratif									
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour réaliser un mélange		Fait			Fait	Fait			

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3	028 EC1 (BGP8 1-2/BGP9 1,3-2)	029 EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3)			
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 21/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C			
Administratif										
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour réaliser un mélange	g/kg	Fait		Fait						
	P	réparation	Physico-C	himique						
XXS06 : Séchage à 40°C					* -	* -	* -			
LS896 : Matière sèche	% P.B.				* 77.7	* 78.9	* 78.1			
XXS07 : Refus Pondéral à 2 mm	% P.B.				* 21.1	* 16.5	* 35.1			
LSL31 : Confection d'un échantillon moyen					Fait	Fait	Fait			
		Indice	s de polluti	on						
LS08X : Carbone Organique Total (COT)	mg/kg M.S.				* 6160	* 331000	* 7930			
			Métaux							
XXS01 : Minéralisation eau régale - Bloc chauffant					* -	* -	* -			
LS863 : Antimoine (Sb)	mg/kg M.S.				3.19	* 69.4	3.63			
LS865 : Arsenic (As)	mg/kg M.S.				* 20.8	* 53.3	23.0			
LS866 : Baryum (Ba)	mg/kg M.S. mg/kg M.S.				* 104 * 0.54	* 532 * 1.52	* 102 * 0.54			
LS870 : Cadmium (Cd)					* 37.3	* 28.2	* 37.3			
LS872 : Chrome (Cr)	mg/kg M.S. mg/kg M.S.				* 19.3	* 4920	* 36.0			
LS874 : Cuivre (Cu)	mg/kg w.s.				19.5	4920	30.0			

ACCREDITATION

Nº 1- 1488

Site de saverne

www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3		028 C1 (BGP8 -2/BGP9 1,3-2)),2-	029 2 (BGP1 1,3/BGP2 0,5-1)		030 C3 (BGP1 ,5-2,5)/BGP 2 2-3)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C		SOL 6/10/2019 9/10/2019 12°C	SOL 16/10/2019		SOL 16/10/2019 19/10/2019 12°C	
Métaux										
LS880 : Molybdène (Mo)	mg/kg M.S.				*	<1.00	*	5.84	*	<1.02
LS881 : Nickel (Ni)	mg/kg M.S.				*	33.2	*	36.1	*	34.3
LS883 : Plomb (Pb)	mg/kg M.S.				*	39.0	*	3360	*	73.6
LS885 : Sélénium (Se)	mg/kg M.S.					<1.00		<1.00		<1.02
LS894 : Zinc (Zn)	mg/kg M.S.				*	98.4	*	871	*	112
LSA09 : Mercure (Hg)	mg/kg M.S.				*	<0.10	*	3.23	*	<0.10
Hydrocarbures totaux										
LS919: Hydrocarbures totaux (4 trans (C10-C40)	ches)								Г	
Indice Hydrocarbures (C10-C40)	mg/kg M.S.				*	<15.0	*	287	*	20.1
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.					<4.00		18.3		2.72
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.					<4.00		80.3		3.19
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.					<4.00		113		5.19
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.					<4.00		75.2		9.00
Hydrocarbures Aromatiques Polycycliques (HAPs)										
LSRHU : Naphtalène	mg/kg M.S.				*	<0.05	*	0.61	*	<0.05
LSRHI: Fluorène	mg/kg M.S.				*	<0.05	*	0.18	*	<0.05
LSRHJ : Phénanthrène	mg/kg M.S.				*	<0.05	*	3.8	*	<0.05
LSRHM : Pyrène	mg/kg M.S.				*	<0.05	*	4.1	*	<0.05
LSRHN : Benzo-(a)-anthracène	mg/kg M.S.				*	<0.05	*	2.2	*	<0.05

ACCREDITATION

Nº 1- 1488

Site de saverne

www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		025 BGP10 1-1,5 SOL 16/10/2019 19/10/2019 12°C	026 BGP10 1,5-2 SOL 16/10/2019 18/10/2019 12°C	027 BGP10 2-3 SOL 16/10/2019 19/10/2019 12°C	028 EC1 (BGP8 1-2/BGP9 1,3-2) SOL 16/10/2019 19/10/2019 12°C	029 EC2 (BGP1 J,2-1,3/BGP2 0,5-1) SOL 16/10/2019 21/10/2019 12°C	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3) SOL 16/10/2019 19/10/2019 12°C
	lydrocarbu	ures Aroma	ntiques Pol	ycycliques	(HAPs)		
LSRHP : Chrysène	mg/kg M.S.				* <0.05	* 3.7	* <0.05
LSRHS : Indeno (1,2,3-cd) Pyrène	mg/kg M.S.				* <0.05	* 1.8	* <0.05
LSRHT : Dibenzo(a,h)anthracène	mg/kg M.S.				* <0.05	* 1.7	* <0.05
LSRHV : Acénaphthylène	mg/kg M.S.				* <0.05	* 0.25	* <0.05
LSRHW : Acénaphtène	mg/kg M.S.				* <0.05	* 0.34	* <0.05
LSRHK : Anthracène	mg/kg M.S.				* <0.05	* 1.1	* <0.05
LSRHL : Fluoranthène	mg/kg M.S.				* <0.05	* 5.0	* <0.05
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.				* <0.05	* 3.8	* <0.05
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.				* <0.05	* 3.2	* <0.05
LSRHH : Benzo(a)pyrène	mg/kg M.S.				* <0.05	* 2.7	* <0.05
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.				* <0.05	* 1.7	* <0.05
LSFF9 : Somme des HAP	mg/kg M.S.				<0.05	36	<0.05
	F	Polychlorol	biphényles	(PCBs)			
LS3U7 : PCB 28	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3UB : PCB 52	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3U8 : PCB 101	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3U6 : PCB 118	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3U9 : PCB 138	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3UA : PCB 153	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3UC : PCB 180	mg/kg M.S.				* <0.01	* <0.01	* <0.01

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3	028 EC1 (BGP8 1-2/BGP9 1,3-2)	029 EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 21/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C
	i	Polychlorol	biphényles	(PCBs)			
LSFEH: Somme PCB (7)	mg/kg M.S.				<0.010	<0.010	<0.010
		Comp	osés Volat	ils			
LS0XU : Benzène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0Y4 : Toluène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0XW : Ethylbenzène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0Y6 : o-Xylène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0Y5 : m+p-Xylène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0IK : Somme des BTEX	mg/kg M.S.				<0.0500	<0.0500	<0.0500
		Li	xiviation				
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures					* Fait	* Fait	* Fait
Refus pondéral à 4 mm	% P.B.				* 1.1	* 21.1	* 1.4
XXS4D : Pesée échantillon lixiviation Volume	ml				* 240	* 240	* 240
Masse	g				* 24.2	* 24.2	* 24.2
	A	nalyses im	ımédiates s	sur éluat			
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)					* 8.1	* 8.00	* 8.2
Température de mesure du pH	°C				21	21	21
LSQ02 : Conductivité à 25°C sur éluat							

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon		025	026	027	028	029	030					
Référence client :		BGP10 1-1,5	BGP10 1,5-2	BGP10 2-3	EC1 (BGP8 1-2/BGP9 1,3-2)	EC2 (BGP1),2-1,3/BGP2 0,5-1)	EC3 (BGP1 1,5-2,5)/BGP 2 2-3)					
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL					
Date de prélèvement :		16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019					
Date de début d'analyse :		19/10/2019	18/10/2019	19/10/2019	19/10/2019	21/10/2019	19/10/2019					
Température de l'air de l'enceinte :		12°C	12°C	12°C	12°C	12°C	12°C					
Analyses immédiates sur éluat												
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm				* 129	* 128	* 153					
Température de mesure de la conductivité	°C				20.7	21.0	20.9					
LSM46 : Résidu sec à 105°C (Fraction s	soluble)											
sur éluat Résidus secs à 105 °C	mg/kg M.S.				* <2000	* <2000	* <2000					
Résidus secs à 105°C (calcul)	% MS				* <0.2	* <0.2	* <0.2					
Indices de pollution sur éluat												
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg M.S.				* <51	* <50	* 69					
LS04Y : Chlorures sur éluat	mg/kg M.S.				* 49.4	* 22.8	* 61.5					
LSN71 : Fluorures sur éluat	mg/kg M.S.				* 5.20	* 5.36	* 6.00					
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.				* <50.7	* 136	* 57.4					
LSM90 : Indice phénol sur éluat	mg/kg M.S.				* <0.51	* <0.50	* <0.50					
		Méta	ux sur élua	ıt								
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.				* <0.20	* <0.20	* <0.20					
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.				* 0.45	* 0.76	* 0.20					
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.				* 0.12	* 0.14	* <0.10					
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.				* <0.20	* 2.78	* <0.20					
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.				* 0.050	* 0.097	* 0.049					
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.				* <0.10	* <0.10	* <0.10					

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3	028 EC1 (BGP8 1-2/BGP9 1,3-2)	029 EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 21/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C
		Méta	ux sur élua	at			
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.				* <0.10	* 1.56	* <0.10
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.				* <0.20	* 1.26	* <0.20
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.				* <0.001	* <0.001	* <0.001
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.				* 0.02	* 0.19	* 0.017
LSN05 : Cadmium (Cd) sur éluat	mg/kg M.S.				* <0.002	* <0.002	* <0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg M.S.				* <0.01	* <0.01	* 0.01

RAPPORT D'ANALYSE

Dossier N°: 19E152062

N° de rapport d'analyse : AR-19-LK-177684-01

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Version du : 28/10/2019

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :)-0,5	031 4 (BGP2 5/BGP10 1-1,5) SOL 10/2019 /10/2019 12°C),ŧ	032 C5 (BGP3 5-1,5/BGP7 0,2-0,9) SOL 6/10/2019 9/10/2019 12°C	1,5 -	033 6 (BGP3 2,5/BGP7 1,5-2,5) SOL /10/2019 /10/2019 12°C	0, 0,3	034 C7 (BGP4 3-1/BGP5 3-0,8/BGP6 0,25-0,8) SOL 6/10/2019 9/10/2019 12°C	2-3 (1	035 8 (BGP4 3/BGP6 1,5-2,5) SOL 10/2019 /10/2019 12°C	
Préparation Physico-Chimique												
xxs06 : Séchage à 40°C		*	-	*	-	*	-	*	-	*	-	
LS896 : Matière sèche	% P.B.	*	91.4	*	81.9	*	80.2	*	84.3	*	77.5	
XXS07 : Refus Pondéral à 2 mm	% P.B.	*	21.3	*	11.8	*	44.8	*	44.2	*	20.2	
LSL31 : Confection d'un échantillon moyen			Fait		Fait		Fait		Fait		Fait	
Indices de pollution												
LS08X : Carbone Organique Total (COT)	mg/kg M.S.	*	10000	*	295000	*	4050	*	270000	*	3890	
				Me	étaux							
XXS01 : Minéralisation eau régale - Bloc chauffant LS863 : Antimoine (Sb)	mg/kg M.S.	*	4.49	*	- 47.8	*	2.71	*	- 41.1	*	2.79	
LS865 : Arsenic (As)	mg/kg M.S.	*	16.1	*	54.7	*	22.4	*	89.7	*	22.7	
LS866 : Baryum (Ba)	mg/kg M.S.	*	54.3	*	472	*	103	*	364	*	77.7	
LS870 : Cadmium (Cd)	mg/kg M.S.	*	0.86	*	1.52	*	<0.40	*	1.38	*	0.47	
LS872 : Chrome (Cr)	mg/kg M.S.	*	21.0	*	21.5	*	33.6	*	22.3	*	39.2	
LS874 : Cuivre (Cu)	mg/kg M.S.	*	87.8	*	3520	*	19.0	*	1380	*	20.5	
LS880 : Molybdène (Mo)	mg/kg M.S.	*	<1.00	*	5.27	*	<1.00	*	10.3	*	<1.02	
LS881 : Nickel (Ni)	mg/kg M.S.	*	16.0	*	42.7	*	29.5	*	65.6	*	35.0	
LS883 : Plomb (Pb)	mg/kg M.S.	*	93.1	*	1880	*	29.4	*	1390	*	32.2	
LS885 : Sélénium (Se)	mg/kg M.S.		<1.00		<1.00		<1.00		<1.00		<1.02	

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Référence client :											
	nce client :		EC4 (BGP2)-0,5/BGP10 1-1,5)		EC5 (BGP3),5-1,5/BGP7 0,2-0,9)		EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)		EC7 (BGP4 0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)		C8 (BGP4 -3/BGP6 (1,5-2,5)
Matrice :			SOL	١.,	SOL		SOL		SOL		SOL
Date de prélèvement : Date de début d'analyse :			10/2019 /10/2019		6/10/2019 9/10/2019		/10/2019 /10/2019		6/10/2019 9/10/2019		6/10/2019 9/10/2019
Température de l'air de l'enceinte :		19/10/20 12°C		ľ	12°C	13	12°C	١	12°C	13	12°C
				Μé	étaux						
LS894 : Zinc (Zn)	ng/kg M.S.	*	65.6	*	693	*	85.3	*	552	*	104
LSA09 : Mercure (Hg)	ng/kg M.S.	*	<0.10	*	1.37	*	<0.10	*	0.80	*	<0.10
Hydrocarbures totaux											
LS919 : Hydrocarbures totaux (4 tranches	s)			П							
(C10-C40) Indice Hydrocarbures (C10-C40)	ng/kg M.S.	*	<15.0	*	213	*	18.4	*	244	*	16.0
HCT (nC10 - nC16) (Calcul)	ng/kg M.S.		<4.00		14.7		4.57		17.0		3.15
HCT (>nC16 - nC22) (Calcul)	ng/kg M.S.		<4.00		71.4		5.78		67.5		3.08
HCT (>nC22 - nC30) (Calcul)	ng/kg M.S.		<4.00		78.5		3.60		102		3.88
HCT (>nC30 - nC40) (Calcul)	ng/kg M.S.		<4.00		48.2		4.45		57.6		5.86
Hydr	ocarbu	ıres	Aroma	atic	ques Pol	ycy	cliques	(HAPs)		
LSRHU : Naphtalène	ng/kg M.S.	*	<0.05	*	0.31	*	<0.05	*	0.57	*	<0.05
LSRHI : Fluorène	ng/kg M.S.	*	<0.05	*	0.071	*	<0.05	*	0.062	*	<0.05
LSRHJ : Phénanthrène	ng/kg M.S.	*	<0.05	*	2.2	*	<0.05	*	2.3	*	<0.051
LSRHM : Pyrène	ng/kg M.S.	*	<0.05	*	3.3	*	<0.05	*	5.7	*	<0.05
LSRHN : Benzo-(a)-anthracène	ng/kg M.S.	*	<0.05	*	2.1	*	<0.05	*	4.1	*	<0.05
LSRHP : Chrysène	ng/kg M.S.	*	<0.05	*	3.1	*	<0.05	*	6.2	*	<0.053
LSRHS: Indeno (1,2,3-cd) Pyrène	ng/kg M.S.	*	<0.05	*	1.6	*	<0.05	*	3.3	*	<0.05
LSRHT : Dibenzo(a,h)anthracène	ng/kg M.S.	*	<0.05	*	0.95	*	<0.05	*	1.9	*	<0.05
LSRHV : Acénaphthylène	ng/kg M.S.	*	<0.05	*	0.095	*	<0.05	*	0.36	*	<0.05

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon			031		032		033		034		035	
Référence client :			EC4 (BGP2)-0,5/BGP10 1-1,5)		EC5 (BGP3),5-1,5/BGP7 0,2-0,9)		1,5-2,5)		EC7 (BGP4 0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)		C8 (BGP4 -3/BGP6 (1,5-2,5)	
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			SOL //10/2019 0/10/2019 12°C		SOL 6/10/2019 9/10/2019 12°C		SOL 16/10/2019 19/10/2019 12°C		SOL 16/10/2019 19/10/2019 12°C		SOL 6/10/2019 6/10/2019 12°C	
	Hydrocarbı	Ire		atio		V		: (0	
	mg/kg M.S.		<0.05	*	•	y '	•	*	0.11	*	<0.0E1	
LSRHW: Acénaphtène	mg/kg M.S.		<0.05	*	0.12 0.33	*	<0.05 <0.05	*	0.11	*	<0.051 <0.05	
LSRHK : Anthracène	mg/kg M.S.		<0.05	*	3.7	*	<0.05	*	7.0	*	<0.05	
LSRHL: Fluoranthène	mg/kg M.S.			*	3.7	*	<0.05	*	6.8	*		
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.		<0.05 <0.05	*	3.8 1.5	*	<0.05	*	2.7	*	<0.05	
LSRHR : Benzo(k)fluoranthène								ı.			<0.05	
LSRHH : Benzo(a)pyrène	mg/kg M.S.		<0.05	ı.	2.4	_	<0.05	ľ	4.0	_	<0.05	
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	*	<0.05	*	1.3	*	<0.05	*	2.9	*	<0.05	
LSFF9: Somme des HAP	mg/kg M.S.		<0.05		27		<0.05	L	49		<0.053	
	ı	ol	ychloro	bip	phényles	; (PCBs)					
LS3U7 : PCB 28	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3UB : PCB 52	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3U8 : PCB 101	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3U6 : PCB 118	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3U9 : PCB 138	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3UA: PCB 153	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3UC : PCB 180	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LSFEH: Somme PCB (7)	mg/kg M.S.		<0.010		<0.010		<0.010		<0.010		<0.010	
Composés Volatils												
LS0XU : Benzène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	

SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon		031			032	033			034		035	
Référence client :		EC4 (BGP2)-0,5/BGP10 1-1,5)			EC5 (BGP3),5-1,5/BGP7 0,2-0,9)		1,5-2,5)		EC7 (BGP4 0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)		C8 (BGP4 2-3/BGP6 (1,5-2,5)	
Matrice :		SOL		SOL		SOL		SOL		SOL		
Date de prélèvement :			/10/2019		6/10/2019		6/10/2019		16/10/2019		6/10/2019	
Date de début d'analyse : Température de l'air de l'enceinte :		19	/10/2019 12°C	1	12°C		19/10/2019 12°C		19/10/2019 12°C	1	9/10/2019 12°C	
remperature de l'air de l'enceinte .									12 0		12 0	
			Comp	005	sés Volat	ils	•					
LS0Y4 : Toluène	mg/kg M.S.	*	<0.05	*	0.06	*	<0.05	*	<0.05	*	<0.05	
LS0XW : Ethylbenzène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	
LS0Y6 : o-Xylène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	
LS0Y5 : m+p-Xylène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	
LS0IK : Somme des BTEX	mg/kg M.S.		<0.0500		0.0600		<0.0500		<0.0500		<0.0500	
Lixiviation												
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures		*	Fait	*	Fait	*	Fait	*	Fait	*	Fait	
Refus pondéral à 4 mm	% P.B.	*	28.8	*	17.7	*	21.6	*	35.6	*	9.6	
XXS4D : Pesée échantillon lixiviation Volume	ml	*	240	*	240	*	240	*	240	*	240	
Masse	g	*	24.2	*	23.8	*	24.6	*	24.00	*	24.4	
	A	nal	yses in	ım	édiates	su	r éluat					
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		*	8.00	*	8.1	*	8.2	*	8.3	*	8.5	
Température de mesure du pH	°C		20		20		21		20		20	
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm	*	83	*	155	*	107	*	332	*	130	
Température de mesure de la conductivité	°C		20.0		20.4		21.0		19.7		19.9	
LSM46 : Résidu sec à 105°C (Fraction s e sur éluat	oluble)											

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon			031		032		033		034		035	
Référence client :		EC4 (BGP2)-0,5/BGP10 1-1,5)		EC5 (BGP3),5-1,5/BGP7 0,2-0,9)		EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)		EC7 (BGP4 0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)		EC8 (BGP4 2-3/BGP6 (1,5-2,5)		
Matrice :			SOL		SOL		SOL		SOL		SOL	
Date de prélèvement :			/10/2019		6/10/2019		/10/2019		/10/2019		10/2019	
Date de début d'analyse :		19	9/10/2019	19	9/10/2019	19	9/10/2019	19	9/10/2019	19	/10/2019	
Température de l'air de l'enceinte :			12°C	_	12°C		12°C		12°C		12°C	
	A	na	lyses in	nm	édiates	sur	éluat					
LSM46 : Résidu sec à 105°C (Fraction	n soluble)											
sur éluat Résidus secs à 105 °C	mg/kg M.S.	*	<4000	*	<2000	*	<2000	*	3020	*	2250	
	0 0											
Résidus secs à 105°C (calcul)	% MS	•	<0.4	_	<0.2	•	<0.2		0.3		0.2	
Indices de pollution sur éluat												
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg M.S.	*	<50	*	<50	*	80	*	<50	*	<50	
LS04Y: Chlorures sur éluat	mg/kg M.S.	*	19.8	*	21.7	*	24.9	*	97.7	*	24.1	
LSN71 : Fluorures sur éluat	mg/kg M.S.	*	<5.00	*	6.11	*	10.0	*	<5.00	*	12.8	
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.	*	115	*	110	*	50.4	*	1060	*	102	
LSM90 : Indice phénol sur éluat	mg/kg M.S.	*	<0.50	*	<0.50	*	<0.50	*	<0.50	*	<0.50	
			Méta	ux	sur élua	at						
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.	*	<0.20	*	<0.20	*	<0.20	*	<0.20	*	<0.20	
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.	*	0.30	*	0.47	*	0.26	*	0.58	*	0.14	
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.	*	<0.10	*	<0.10	*	<0.10	*	<0.10	*	<0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.	*	<0.20	*	0.62	*	<0.20	*	0.20	*	<0.20	
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.	*	0.044	*	0.077	*	0.091	*	0.145	*	0.067	
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.	*	<0.10	*	<0.10	*	<0.10	*	<0.10	*	<0.10	
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.	*	0.20	*	0.18	*	<0.10	*	<0.10	*	<0.10	
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.	*	<0.20	*	<0.20	*	<0.20	*	<0.20	*	<0.20	

ACCREDITATION

Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		031 EC4 (BGP2)-0,5/BGP10 1-1,5)	032 EC5 (BGP3),5-1,5/BGP7 0,2-0,9)	033 EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)	034 EC7 (BGP4 0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)	035 EC8 (BGP4 2-3/BGP6 (1,5-2,5)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C
		Méta	ux sur élua	at		
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.	* <0.001	* <0.001	* <0.001	* <0.001	* <0.001
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.	* 0.018	* 0.1	* 0.006	* 0.19	* 0.007
LSN05 : Cadmium (Cd) sur éluat	mg/kg M.S.	* <0.002	* <0.002	* <0.002	* <0.002	* <0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg M.S.	* <0.01	* <0.01	* <0.01	* 0.019	* <0.01

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

 N° Echantillon
 037

 Référence client :
 EC10 (BGP9 2-3/BGP10 2-3)

 Matrice :
 SOL

 Date de prélèvement :
 16/10/2019

 Date de début d'analyse :
 19/10/2019

 Température de l'air de l'enceinte :
 12°C

Préparation Physico-Chimique

 XXS06 : Séchage à 40°C
 *

 LS896 : Matière sèche
 % P.B.
 * 78.9

 XXS07 : Refus Pondéral à 2 mm
 % P.B.
 * 43.1

 LSL31 : Confection d'un échantillon moyen
 Fait

Indices de pollution

LS08X : Carbone Organique Total mg/kg M.S. * 3280 (COT)

XXS01 : Minéralisation eau régale - Bloc chauffant

LS863 : Antimoine (Sb)	mg/kg M.S.	*	2.62
LS865 : Arsenic (As)	mg/kg M.S.	*	21.8
LS866 : Baryum (Ba)	mg/kg M.S.	*	74.9
LS870 : Cadmium (Cd)	mg/kg M.S.	*	<0.40
LS872 : Chrome (Cr)	mg/kg M.S.	*	34.4
LS874 : Cuivre (Cu)	mg/kg M.S.	*	17.3
LS880 : Molybdène (Mo)	mg/kg M.S.	*	<1.00
LS881 : Nickel (Ni)	mg/kg M.S.	*	29.9
LS883 : Plomb (Pb)	mg/kg M.S.	*	25.9
LS885 : Sélénium (Se)	mg/kg M.S.		<1.00

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

 N° Echantillon
 037

 Référence client :
 EC10 (BGP9 2-3/BGP10 2-3)

 Matrice :
 SOL

 Date de prélèvement :
 16/10/2019

 Date de début d'analyse :
 19/10/2019

 Température de l'air de l'enceinte :
 12°C

Métaux

LS894 : **Zinc (Zn)** mg/kg M.S. * 92.6 LSA09 : **Mercure (Hg)** mg/kg M.S. * <0.10

Hydrocarbures totaux

LS919: Hydrocarbures totaux (4 to	(C10-C40)						
Indice Hydrocarbures (C10-C40)	mg/kg M.S.	* <15.0					
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.	<4.00					
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.	<4.00					
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.	<4.00					
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.	<4.00					

Hydrocarbures Aromatiques Polycycliques (HAPs)

LSRHU: Naphtalène mg/kg M.S. < 0.05 < 0.05 mg/kg M.S. LSRHI: Fluorène LSRHJ: Phénanthrène mg/kg M.S. < 0.05 < 0.05 mg/kg M.S. LSRHM: Pyrène mg/kg M.S. <0.05 LSRHN: Benzo-(a)-anthracène mg/kg M.S. < 0.053 LSRHP: Chrysène mg/kg M.S. <0.05 LSRHS: Indeno (1,2,3-cd) Pyrène mg/kg M.S. <0.05 LSRHT: Dibenzo(a,h)anthracène mg/kg M.S. <0.05 LSRHV: Acénaphthylène

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

037 N° Echantillon EC10 (BGP9 Référence client : 2-3/BGP10 2-3) SOL Matrice: 16/10/2019 Date de prélèvement :

19/10/2019 Date de début d'analyse : 12°C Température de l'air de l'enceinte :

Hydrocarbures Aromatiques Polycycliques (HAPs)

LSRHW : Acénaphtène	mg/kg M.S.	*	<0.05
LSRHK : Anthracène	mg/kg M.S.	*	<0.05
LSRHL : Fluoranthène	mg/kg M.S.	*	<0.05
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.	*	<0.05
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.	*	<0.05
LSRHH : Benzo(a)pyrène	mg/kg M.S.	*	<0.05
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	*	<0.05
LSFF9 : Somme des HAP	mg/kg M.S.		<0.053

Polychlorobiphényles (PCBs)

LS3U7 : PCB 28	mg/kg M.S.	*	<0.01	
LS3UB : PCB 52	mg/kg M.S.	*	<0.01	
LS3U8 : PCB 101	mg/kg M.S.	*	<0.01	
LS3U6 : PCB 118	mg/kg M.S.	*	<0.01	
LS3U9 : PCB 138	mg/kg M.S.	*	<0.01	
LS3UA: PCB 153	mg/kg M.S.	*	<0.01	
LS3UC : PCB 180	mg/kg M.S.	*	<0.01	
LSFEH: Somme PCB (7)	mg/kg M.S.		<0.010	

Composés Volatils

LS0XU : Benzène mg/kg M.S. < 0.05

> ACCREDITATION Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

N° de rapport d'analyse : AR-19-LK-177684-01

Référence Dossier : N° Projet : EURATLANTIQUE Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Version du : 28/10/2019

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

N° Echantillon			037						
Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		2- 3	10 (BGP9 3/BGP10 2-3) SOL 5/10/2019 9/10/2019 12°C						
			Comp	osés Volat	ils				
LS0Y4 : Toluène	mg/kg M.S.	*	<0.05						
LS0XW : Ethylbenzène	mg/kg M.S.	*	<0.05						
LS0Y6 : o-Xylène	mg/kg M.S.	*	<0.05						
LS0Y5 : m+p-Xylène	mg/kg M.S.	*	<0.05						
LS0IK : Somme des BTEX	mg/kg M.S.		<0.0500						
Lixiviation									
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures		*	Fait						
Refus pondéral à 4 mm	% P.B.	*	1.1						
XXS4D : Pesée échantillon lixiviation Volume	ml	*	240						
Masse	g	*	25.00						
				/ 11 /	71 4				
	Α	ına	lyses im	nmédiates	sur eluat				
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		*	8.1						
Température de mesure du pH	°C		21						
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	μS/cm °C	*	124 20.9						
LSM46 : Résidu sec à 105°C (Fraction s	soluble)								
sur éluat Résidus secs à 105 °C	mg/kg M.S.	*	<4000						

ACCREDITATION

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

037 N° Echantillon **EC10 (BGP9** Référence client : 2-3/BGP10 2-3) SOL Matrice: 16/10/2019 Date de prélèvement : 19/10/2019 Date de début d'analyse : 12°C Température de l'air de l'enceinte :

Analyses immédiates sur éluat

LSM46 : Résidu sec à 105°C (Fraction soluble)

sur éluat

Résidus secs à 105°C (calcul) % MS

LSM04 : Arsenic (As) sur éluat

<0.4

<0.20

Indices de l	pollution	sur è	luat
--------------	-----------	-------	------

mg/kg M.S. 61 LSM68: Carbone Organique par oxydation (COT) sur éluat mg/kg M.S. 80.9 LS04Y: Chlorures sur éluat mg/kg M.S. LSN71: Fluorures sur éluat mg/kg M.S. 214 LS04Z: Sulfate (SO4) sur éluat mg/kg M.S. <0.50 LSM90 : Indice phénol sur éluat

mg/kg M.S.

			ur		

LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.	*	0.34
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.	*	<0.10
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.	*	<0.20
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.	*	0.093
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.	*	<0.10
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.	*	<0.10
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.	*	<0.20
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.	*	<0.001

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon 037
Référence client : EC10 (BGP9 2-3/BGP10

2-3)

Matrice: SOL

Date de prélèvement: 16/10/2019

Date de début d'analyse : 19/10/2019
Température de l'air de l'enceinte : 12°C

Métaux sur éluat

 LSM97 : Antimoine (Sb) sur éluat
 mg/kg M.S.
 * 0.007

 LSN05 : Cadmium (Cd) sur éluat
 mg/kg M.S.
 * <0.002</td>

 LSN41 : Sélénium (Se) sur éluat
 mg/kg M.S.
 * <0.01</td>

D : détecté / ND : non détecté z2 ou (2) : zone de contrôle des supports

Observations	N° Ech	Réf client
Lixiviation: Conformément aux exigences de la norme NF EN 12457-2, votre échantillonnage n'a pas permis de fournir les 2kg requis au laboratoire.	(001) (028) (029) (030) (031) (032) (033) (034) (035) (037)	BGP1 0,2-1,3 / EC1 (BGP8 1-2/BGP9 1,3-2) / EC2 (BGP1 0,2-1,3/BGP2 0,5-1) / EC3 (BGP1 1,5-2,5)/BGP2 2-3) / EC4 (BGP2 0-0,5/BGP10 1-1,5) / EC5 (BGP3 0,5-1,5/BGP7 0,2-0,9) / EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5) / EC7 (BGP4 0,3-1/BGP5 0,3-0,8/BGP6 0,25-0,8) / EC8 (BGP4 2-3/BGP6 (1,5-2,5) / EC10 (BGP9 2-3/BGP10 2-3) /
Lixiviation : La nature de l'échantillon rend la filtration difficile. Certains résultats sont susceptibles d'être sur-estimés	(001) (029) (031) (037)	BGP1 0,2-1,3 / EC2 (BGP1 0,2-1,3/BGP2 0,5-1) / EC4 (BGP2 0-0,5/BGP10 1-1,5) / EC10 (BGP9 2-3/BGP10 2-3) /

RAPPORT D'ANALYSE

Dossier N°: 19E152062

N° de rapport d'analyse : AR-19-LK-177684-01

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Version du : 28/10/2019

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Andréa Golfier Coordinateur Projets Clients

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 36 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Annexe technique

Dossier N°: 19E152062 N° de rapport d'analyse :AR-19-LK-177684-01

Emetteur: Commande EOL: 0067951432829

Nom projet: Référence commande : BD19261

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS04W	Mercure (Hg) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.001	mg/kg M.S.	Eurofins Analyse pour l'Environnement Franc
LS04Y	Chlorures sur éluat	Spectrophotométrie (UV/VIS) [Spectrométrie visible automatisée] - NF EN 16192 - NF ISO 15923-1	10	mg/kg M.S.	
LS04Z	Sulfate (SO4) sur éluat	1	50	mg/kg M.S.	7
LS08X	Carbone Organique Total (COT)	Combustion [sèche] - NF ISO 10694 - Détermination directe	1000	mg/kg M.S.	
LS0IK	Somme des BTEX	Calcul - Calcul		mg/kg M.S.	7
LS0IR	Mise en réserve de l'échantillon (en option)				7
LS0XU	Benzène	HS - GC/MS [Extraction méthanolique] - NF EN ISC 22155 (sol) Méthode interne (boue,séd)	0.05	mg/kg M.S.]
LS0XW	Ethylbenzène	1	0.05	mg/kg M.S.	7
LS0Y4	Toluène	1 1	0.05	mg/kg M.S.	7
LS0Y5	m+p-Xylène	1 1	0.05	mg/kg M.S.	7
LS0Y6	o-Xylène	- -	0.05	mg/kg M.S.	7
LS3U6	PCB 118	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 16167 (Sols) - XP X 33-012 (boue, sédiment)	0.01	mg/kg M.S.	
LS3U7	PCB 28	1	0.01	mg/kg M.S.	7
LS3U8	PCB 101	1 1	0.01	mg/kg M.S.	7
LS3U9	PCB 138	1 1	0.01	mg/kg M.S.	7
LS3UA	PCB 153	1	0.01	mg/kg M.S.	7
LS3UB	PCB 52	1 1	0.01	mg/kg M.S.	7
LS3UC	PCB 180	1 1	0.01	mg/kg M.S.	7
LS863	Antimoine (Sb)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISC 11885 - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog	1	mg/kg M.S.	
LS865	Arsenic (As)	<u> </u>	1	mg/kg M.S.	7
LS866	Baryum (Ba)	1 1	1	mg/kg M.S.	7
LS870	Cadmium (Cd)	1 1	0.4	mg/kg M.S.	7
LS872	Chrome (Cr)	1 1	5	mg/kg M.S.	7
LS874	Cuivre (Cu)	1 1	5	mg/kg M.S.	7
LS880	Molybdène (Mo)	1 1	1	mg/kg M.S.	7
LS881	Nickel (Ni)	1 1	1	mg/kg M.S.	7
LS883	Plomb (Pb)	- -	5	mg/kg M.S.	7
LS885	Sélénium (Se)	- -	1	mg/kg M.S.	7
LS894	Zinc (Zn)	- -	5	mg/kg M.S.	7
LS896	Matière sèche	Gravimétrie - NF ISO 11465	0.1	% P.B.	7
LS919	Hydrocarbures totaux (4 tranches) (C10-C40) Indice Hydrocarbures (C10-C40)	GC/FID [Extraction Hexane / Acétone] - NF EN ISO 16703 (Sols) - NF EN 14039 (Boue, Sédiments)	15	mg/kg M.S.	
	HCT (nC10 - nC16) (Calcul)			mg/kg M.S.	
	HCT (>nC16 - nC22) (Calcul)			mg/kg M.S.	
	HCT (>nC22 - nC30) (Calcul)			mg/kg M.S.	

Annexe technique

Dossier N°: 19E152062 N° de rapport d'analyse :AR-19-LK-177684-01

Emetteur: Commande EOL: 0067951432829

Nom projet : Référence commande : BD19261

LSA09	HCT (>nC30 - nC40) (Calcul) Mercure (Hg) Lixiviation 1x24 heures Lixiviation 1x24 heures	méthode SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog - NF ISO 16772 (Sol) - Méthode interne (Hors Sols) Lixiviation [Ratio L/S = 10 l/kg - Broyage par	0.1	mg/kg M.S. mg/kg M.S.	site de :
	Lixiviation 1x24 heures	l'eau régale] - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog - NF ISO 16772 (Sol) - Méthode interne (Hors Sols)	0.1	mg/kg M.S.	
LSA36		Lixiviation [Ratio L/S = 10 l/kg - Broyage par			
	Lixiviation 1x24 heures	concasseur à mâchoires] - NF EN 12457-2			
	Refus pondéral à 4 mm		0.1	% P.B.	
LSFEH	Somme PCB (7)	Calcul - Calcul		mg/kg M.S.	
LSFF9	Somme des HAP			mg/kg M.S.	
LSL31	Confection d'un échantillon moyen	Préparation - Méthode interne			
LSM04	Arsenic (As) sur éluat	ICP/AES - NF EN ISO 11885 / NF EN 16192	0.2	mg/kg M.S.	
LSM05	Baryum (Ba) sur éluat	1	0.1	mg/kg M.S.	
LSM11	Chrome (Cr) sur éluat	1	0.1	mg/kg M.S.	
LSM13	Cuivre (Cu) sur éluat	1	0.2	mg/kg M.S.	
LSM20	Nickel (Ni) sur éluat	1 1	0.1	mg/kg M.S.	
LSM22	Plomb (Pb) sur éluat	1 1	0.1	mg/kg M.S.	
LSM35	Zinc (Zn) sur éluat	1 1	0.2	mg/kg M.S.	
LSM46	Résidu sec à 105°C (Fraction soluble) sur éluat	Gravimétrie - NF T 90-029 / NF EN 16192			
	Résidus secs à 105 °C		2000	mg/kg M.S.	
	Résidus secs à 105°C (calcul)		0.2	% MS	
LSM68	Carbone Organique par oxydation (COT) sur éluat	Spectrophotométrie (IR) [Oxydation à chaud en milie acide] - NF EN 16192 - NF EN 1484 (Sols) - Méthor interne (Hors Sols)	50	mg/kg M.S.	
LSM90	Indice phénol sur éluat	Flux continu - NF EN ISO 14402 (adaptée sur sédiment,boue) - NF EN 16192	0.5	mg/kg M.S.	
LSM97	Antimoine (Sb) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.002	mg/kg M.S.	
LSN05	Cadmium (Cd) sur éluat	1	0.002	mg/kg M.S.	
LSN26	Molybdène (Mo) sur éluat	1	0.01	mg/kg M.S.	
LSN41	Sélénium (Se) sur éluat	1	0.01	mg/kg M.S.	
LSN71	Fluorures sur éluat	Electrométrie [Potentiometrie] - NF T 90-004 (adapt sur sédiment,boue) - NF EN 16192	5	mg/kg M.S.	
LSQ02	Conductivité à 25°C sur éluat	Potentiométrie [Méthode à la sonde] - NF EN 27888 NF EN 16192			
	Conductivité corrigée automatiquement à 25°C			μS/cm	
	Température de mesure de la conductivité			°C	
LSQ13	Mesure du pH sur éluat pH (Potentiel d'Hydrogène)	Potentiométrie - NF EN ISO 10523 / NF EN 16192			
	Température de mesure du pH			°C	
LSRGJ	Echantillon utilisé pour réaliser un mélange	Réalisation d'un échantillon moyen à partir de plusie échantillons - Méthode interne		g/kg	
LSRHH	Benzo(a)pyrène	GC/MS/MS [Extraction Hexane / Acétone] - NF ISO 18287 (Sols) - XP X 33-012 (boue, sédiment)	0.05	mg/kg M.S.	

Annexe technique

Dossier N°: 19E152062 N° de rapport d'analyse :AR-19-LK-177684-01

Emetteur: Commande EOL: 0067951432829

Nom projet : Référence commande : BD19261

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LSRHI	Fluorène		0.05	mg/kg M.S.	
LSRHJ	Phénanthrène	1	0.05	mg/kg M.S.	
LSRHK	Anthracène	1	0.05	mg/kg M.S.	
LSRHL	Fluoranthène	1	0.05	mg/kg M.S.	
LSRHM	Pyrène	1	0.05	mg/kg M.S.	
LSRHN	Benzo-(a)-anthracène	1	0.05	mg/kg M.S.	
LSRHP	Chrysène	1	0.05	mg/kg M.S.	
LSRHQ	Benzo(b)fluoranthène	1	0.05	mg/kg M.S.	
LSRHR	Benzo(k)fluoranthène	1	0.05	mg/kg M.S.	
LSRHS	Indeno (1,2,3-cd) Pyrène	1	0.05	mg/kg M.S.	
LSRHT	Dibenzo(a,h)anthracène	1	0.05	mg/kg M.S.	
LSRHU	Naphtalène	1	0.05	mg/kg M.S.	
LSRHV	Acénaphthylène	1	0.05	mg/kg M.S.	
LSRHW	Acénaphtène	1	0.05	mg/kg M.S.	
LSRHX	Benzo(ghi)Pérylène	1	0.05	mg/kg M.S.	
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide -			
XXS06	Séchage à 40°C	Séchage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du clier			
XXS07	Refus Pondéral à 2 mm	Tamisage [Le laboratoire travaillera sur la fraction < 2 2mm de l'échantillon sauf demande explicite du clier	1	% P.B.	
XXS4D	Pesée échantillon lixiviation	Gravimétrie -			
	Volume			ml	
	Masse			g	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 19E152062 N° de rapport d'analyse : AR-19-LK-177684-01

Emetteur: Commande EOL: 006-10514-519201

Nom projet: N° Projet: EURATLANTIQUE Référence commande: BD19261

EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
001	BGP1 0,2-1,3	16/10/2019 08:00:00	18/10/2019	18/10/2019	V05DA9148	374mL verre (sol)
002	BGP1 1,5-2,5	16/10/2019 08:00:00	18/10/2019	18/10/2019	V05DA6968	374mL verre (sol)
003	BGP2 0-0,5	16/10/2019 09:00:00	18/10/2019	18/10/2019	V05DA8382	374mL verre (sol)
004	BGP2 0,5-1	16/10/2019 09:00:00	18/10/2019	18/10/2019	V05DA7075	374mL verre (sol)
005	BGP2 2-3	16/10/2019 09:00:00	18/10/2019	18/10/2019	V05DA6970	374mL verre (sol)
006	BGP3 0,05- 0,5	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA6976	374mL verre (sol)
007	BGP3 0,5-1	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA6974	374mL verre (sol)
800	BGP3 1,5-3	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA6986	374mL verre (sol)
009	BGP4 0,3- 1	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA8372	374mL verre (sol)
010	BGP4 1-2	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA8367	374mL verre (sol)
011	BGP4 2-3	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA9155	374mL verre (sol)
012	BGP5 0,3-0,8	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA8386	374mL verre (sol)
013	BGP5 1,5-2,5	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA9154	374mL verre (sol)
014	BGP6 0,25-0,8	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA9153	374mL verre (sol)
015	BGP6 1,5-2,5	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA8377	374mL verre (sol)
016	BGP7 0,2-0,9	16/10/2019 12:00:00	18/10/2019	18/10/2019	V05DA9149	374mL verre (sol)
017	BGP7 0,9-1,3	16/10/2019 12:00:00	18/10/2019	18/10/2019	V05DA8402	374mL verre (sol)
018	BGP7 1,5-2,5	16/10/2019 12:00:00	18/10/2019	18/10/2019	V05DA9147	374mL verre (sol)
019	BGP8 0,6-1	16/10/2019 13:00:00	18/10/2019	18/10/2019	V05DA9166	374mL verre (sol)
020	BGP8 1-2	16/10/2019 13:00:00	18/10/2019	18/10/2019	V05DA9162	374mL verre (sol)
021	BGP8 2-3	16/10/2019 13:00:00	18/10/2019	18/10/2019	V05DA8383	374mL verre (sol)
022	BGP9 0,5-1	16/10/2019 14:00:00	18/10/2019	18/10/2019	V05DA9139	374mL verre (sol)
023	BGP9 1,3-2	16/10/2019 14:00:00	18/10/2019	18/10/2019	V05DA9152	374mL verre (sol)
024	BGP9 2-3	16/10/2019 14:00:00	18/10/2019	18/10/2019	V05DA9128	374mL verre (sol)
025	BGP10 1-1,5	16/10/2019 15:00:00	18/10/2019	18/10/2019	V05DA9133	374mL verre (sol)
026	BGP10 1,5-2	16/10/2019 15:00:00	18/10/2019	18/10/2019	V05DA9133	374mL verre (sol)
027	BGP10 2-3	16/10/2019 15:00:00	18/10/2019	18/10/2019	V05DA9161	374mL verre (sol)
028	EC1 (BGP8 1-2/BGP9 1,3-2)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9152/V05DA9162	374mL verre (sol)
029	EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9148/V05DA7075	374mL verre (sol)
030	EC3 (BGP1 1,5-2,5)/BGP2 2-3)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA6968/V05DA6970	374mL verre (sol)
031	EC4 (BGP2 0-0,5/BGP10 1-1,5)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9129V05DA8382	374mL verre (sol)
032	EC5 (BGP3 0,5-1,5/BGP7 0,2-0,9)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA6974/V05DA9149	374mL verre (sol)
033	EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9147/V05DA6986	374mL verre (sol)
034	EC7 (BGP4 0,3-1/BGP5 0,3-0,8/BG	GI 16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA8367/V05DA8386/V 5DA9153	374mL verre (sol)
035	EC8 (BGP4 2-3/BGP6 (1,5-2,5)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA8377/V05DA9155	374mL verre (sol)
037	EC10 (BGP9 2-3/BGP10 2-3)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9128/V05DA9161	374mL verre (sol)

- (1) : Date à laquelle l'échantillon a été réceptionné au laboratoire. Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).
- (2): Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

Annexe 5. **Propriétés physico-chimiques**

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

++ :Pv > 1000 PA (COV) - : 10 >P> 10-2 Pa (non COV)

++: S>100 mg/l +: 100>S>1

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV) mg/l -- : S<0.01 mg/l

CAS n°R Pv S symboles Mention de danger Classement cancérogénéicité

Wention de danger Classement cancérogénéicité

UE CIRC (IARC) EPA

METAUX ET METALLOIDES

METAUX ET ME	IALLOIDES	,						
Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	Α
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	1	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	Α
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+	-	-	1	-	D
Acenaphtène	83-29-9	-	+	-	-	-	-	-
Fluorène	86-73-7	-	+	-	-	-	3	D
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D
Pyrène Ponzo(a)anthracène	129-00-0 56-55-3				- H350, H400, H410	- C1B	3 2B	D P2
Benzo(a)anthracène Chrysene	218-01-9			SGH08, SGH09 SGH08, SGH09	H350, H400, H410 H350, H341, H400,	C1B C1B	2B 3	B2 B2
•			-	,	H410 H350, H400, H410	M2		
benzo(b)fluoranthène	205-99-2			SGH08, SGH09		C1B	2B	B2
benzo(k)fluoranthène Benzo(a)pyrène	207-08-9 50-32-8			SGH08, SGH09 SGH07, SGH08, SGH09	H350, H400, H410 H340, H350, H360FD, H317, H400, H410	C1B C1B M1B	2B 1	B2 B2
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-	-		3	D
	•		1	+	-		2B	B2

		LEGENDE	Volatilité :			LEGENDE Solu	ıbilité :	
	++ :Pv > 1000 PA	(COV)		- : 10 >P> 10-2 P	a (non COV)	++: S>100 mg/l	- : 1>S>	·0.01 mg/l
	+ : 1000 > Pv > 10 Pa (COV)		: 10-2 >P> 10-	5 Pa (non COV)	+ : 100>S>1 mg/l	: S<0.		
	CAC = OD	Volatilité	solubilité	Classement	Mention de danger	classement	cancérogéi CIRC	
	CAS n°R	Pv	S	symboles	3	UE	(IARC)	EPA
COMPOSES ARO	MATIQUE	<u>s mon</u>	<u>OCYLC</u>	IQUES	T.,,,,,		1	
benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	Α
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	-	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-
COMPOSES ORG	ANO-HAL	OGENE	S VOL		11333, 11313, 11411		<u> </u>	L
PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	Α
cis 1,2DCE (dichloroéthylène)	156-59-2		++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène) 156-60-5	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2B	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-
chlorobenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	-	D
HYDROCARBUR	ES SUIVAN	NT LES	TPH					
Aliphatic nC>5-nC6	non adéquat	++	+					
Aliphatic nC>6-nC8	"	++	+	white spirit, essences spéciales,				
Aliphatic nC>8-nC10 Aliphatic nC>10-nC12	"	+ +	-				-	
Aliphatic nC>12-nC16	п	-						
Aliphatic nC>16-nC35	"	-		solvants	tout type	classement		
Aliphatic nC>35	"			aromatiques d'hydrocarbures : légers, pétroles lampants		fonction des	<u> </u>	
Aromatic nC>5-nC7 benzène Aromatic nC>7-nC8 toluène	"	++	++			hydrocarbures	-	
Aromatic nC>8-nC10	II II	+	+	(kérosène) :				
Aromatic nC>10-nC12	"	+	+	SGH08				
Aromatic nC>12-nC16	"	-	+					
Aromatic nC>16-nC21	1 "	-	-				l	1

MENTIONS DE DANGER

28 mentions de danger physique

- H200 : Explosif instable
- H201: Explosif; danger d'explosion en masse
- H202 : Explosif ; danger sérieux de projection
- H203 : Explosif : danger d'incendie, d'effet de souffle ou de projection
- H204 : Danger d'incendie ou de projection
- H205: Danger d'explosion en masse en cas d'incendie
- H220 : Gaz extrêmement inflammable
- H221: Gaz inflammable
- H222 : Aérosol extrêmement inflammable
- H223: Aérosol inflammable
- H224 : Liquide et vapeurs extrêmement inflammables
- H225 : Liquide et vapeurs très inflammables
- H226: Liquide et vapeurs inflammables
- H228: Matière solide inflammable

- H240 : Peut exploser sous l'effet de la chaleur
- H241 : Peut s'enflammer ou exploser sous l'effet de la chaleur
- H242 : Peut s'enflammer sous l'effet de la chaleur
- H250 : S'enflamme spontanément au contact de l'ai
- H251: Matière auto-échauffante : peut s'enflammer
- H252 : Matière auto-échauffante en grandes quantités : peut s'enflammer
- H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
- H261: Dégage au contact de l'eau des gaz
- H270: Peut provoquer ou aggraver un incendie; comburant
- H271: Peut provoquer un incendie ou une explosion: comburant puissant
- H272: Peut aggraver un incendie; comburant
- H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
- H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
- H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

- H300: Mortel en cas d'ingestion
- H301: Toxique en cas d'ingestion
- H302: Nocif en cas d'ingestion
- H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires
- H310: Mortel par contact cutané
- H311 : Toxique par contact cutané
- H312: Nocif par contact cutané
- H314 : Provoque des brûlures de la peau et des lésions oculaires graves
- H315: Provoque une irritation cutanée

- H317 : Peut provoquer une allergie cutanée
- H318: Provoque des lésions oculaires graves
- H319: Provoque une sévère irritation des yeux
 - H330: Mortel par inhalation
- H331: Toxique par inhalation
- H332: Nocif par inhalation
- H334: Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation
- . H335 : Peut irriter les voies respiratoires
- H336: Peut provoquer somnolence ou vertiges
- H340 : Peut induire des anomalies génétiques «indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert>
- H350: Peut provoquer le cancer <indiquer la voie d'exposition s'il est H370: Risque avéré d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> < indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne dangera conduit au même danger> H351 : Susceptible de provoquer le cancer <indiquer la voie d'exposition s'il • H371 : Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils
- est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition danger>
- autre voie d'exposition ne conduit au même danger> H362 : Peut être nocif pour les bébés nourris au lait maternel
- ne conduit au même danger> H360 : Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'îl • H372 : Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont est connu> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition prolongée <indiquer la voie d'exposition ne conduit au même danger> formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est
 H373 : Risque présumé d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée cindiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

Pour certaines mentions de danger pour la santé des lettres sont ajoutées au code à 3 chiffres :

- H350i : Peut provoquer le cancer par inhalation
- H360F : Peut nuire à la fertilité H360D : Peut nuire au foetus
- H361f : Susceptible de nuire à la fertilité
- H361d : Susceptible de nuire au foetus
- H360FD: Peut nuire à la fertilité. Peut nuire au foetus
- H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus H360Fd: Peut nuire à la fertilité. Susceptible de nuire au foetus
- H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.
- ▶ 5 mentions de danger pour l'environnement H400 : Très toxique pour les organismes aquatiques
- H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H411 : Toxique pour les organismes aquatiques, entraı̂ne des effets néfastes à long terme
- H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H413: Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

- SHG01: Explosif (ce produit peut exploser au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures liées au froid (gaz liquéfiés réfrigérés).
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06: Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07: Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige - produit qui détruit la couche d'ozone).
- SGH08: Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires - peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit polluant provoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

Bap290/14

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC	
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :			
C1A: Substance dont le potentiel cancérogène pour l'être humain est avéré	A: Preuves suffisantes chez l'homme	1 : Agent ou mélange cancérigène pour l'homme	
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé			
	B1 : Preuves limitées chez l'homme		
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme	
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme	
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme	
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme	

De Classification en termes de mutagénicité

	UE
M1 (H340) : Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer	M1A : Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.
comme induisant des mutations héréditaires dans les cellules germinales des êtres humains. Substance dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée.	M1B: Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules

M2 (H341): Substance préoccupantes du fait qu'elle pourrait induire des mutations héréditaires dans les cellules germinales des êtres humains.

germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.

▶ Classification en termes d'effets reprotoxiques

UE					
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fd	R1A: Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.				
ou H360fD) : Reprotoxique avéré ou présumé	R1B : Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.				
classées dans cette catégorie lorsque les résultats des étu	ce suspectée d'être toxique pour la reproduction humaine. Les substances sont ides ne sont pas suffisamment probants pour justifier une classification dans la écitable sur la fonction sexuelle et la fertilité ou sur le dévelopmement				

Annexe 6. Glossaire

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle) : Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable) : Eau utilisée pour la production d'eau potable

ARIA (Analyse, Recherche et Information sur les Accidents) : base de données répertorie les incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'environnement.

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé): Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (Composés organo-halogénés volatils): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

DRIEE (Direction régionale et interdépartementale de l'environnement et de l'énergie) : Service déconcentré du Ministère en charge de l'environnement pour la région parisienne, la DRIEE met en œuvre sous l'autorité du Préfet de la Région les priorités d'actions de l'État en matière d'Environnement et d'Énergie et plus particulièrement celles issues du Grenelle de l'Environnement. Elle intervient dans l'ensemble des départements de la région grâce à ses unités territoriales (UT).

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10⁻ⁿ. Par exemple, un excès de risque individuel de 10⁻⁵ représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants..

HCT (Hydrocarbures Totaux): Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes): Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux) : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger) : Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT) ; la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.

CGEDD

A l'attention de Madame GARDET Caroll Tour Séquoia, La Défense Cedex

Paris, le 8 juillet 2020

Nos Réf.

: AA/TC - 2020/857

Opération Objet : Jardins de l'Ars – 33 000 Bordeaux : Complément Etude au cas par cas

Madame,

Pour faire suite au dépôt de notre dossier d'études au cas par cas en date du 29 juin 2020 pour le projet de Bordeaux Jardins de l'Ars lot 6.1 et à l'entretien téléphonique du 6 juillet 2020 avec mes équipes je vous prie de bien vouloir trouver ci-dessous les précisions architecturales et techniques demandées.

1 NATURE DU PROJET (4.1)

Le projet s'inscrit sur le territoire de la ZAC Saint-Jean Belcier à Bordeaux, au cœur du périmètre d'intérêt national « Bordeaux Euratlantique », dans le futur quartier des jardins de l'Ars en cours de construction.

Le futur immeuble de bureaux Covivio développé en partenariat avec One Point se situe sur le lot 6.1 de la ZAC en limite de la rue de la Louisiane, du groupe scolaire de Brienne, de la future école ESMA en cours de conception et du jardin de l'Ars. La conception des espaces publics du jardin de l'Ars est achevée. Le projet d'aménagement des espaces publics et des jardins rentre dans sa phase de réalisation sur la partie Sud de la ZAC notamment.

Dans le cadre des travaux d'aménagement de la ZAC, le terrain à bâtir, objet du futur immeuble de bureaux situé sur le lot 6.1, est un terrain naturel remanié et piloté par un aménagement global des voiries et des mails piétons créée par l'EPA. L'emprise foncière du site 6.1 est d'environ 4572 m² et permet d'y développer un immeuble de bureaux de 20 000m² de surface de plancher.

Cet immeuble est divisé en plusieurs compartiments abritant des surfaces de bureaux, un espace de formation et un restaurant inter entreprise. Le bâtiment est composé d'un socle minéral de 16m (R+3) continu sur l'emprise du terrain. Cette construction comporte de grandes baies orientées sur le paysage. Cette base est en béton de teinte blonde. La verticalité des percements du socle accentue le rythme des façades.

A l'aplomb du socle et détaché de celui-ci au niveau R+4, un autre corps s'ouvre en équerre sur le jardin. L'angle est orienté sur paysage et s'ouvre sur la Garonne.

1

Cinquième façade en toit plissé

R+5 à R+7/8 : volume nuage ciselé

R+4: Etage de rupture en retrait

RDC à R+3 : socle ouvert sur le jardin et sur la ville, arches à RDC

Vous trouverez en pièces jointes à ce courrier les plans tous niveaux, ainsi que les élévations du programme permettant d'apprécier le découpage des volumes de cet unique immeuble.

2 POLLUTION:

L'entreprise Burgeap a réalisé à l'automne 2019 une étude environnementale des sols (rapport RSSPSO09919-01 daté du 12/11/2019) dont les conclusions principales sont les suivantes :

- Sur les sols :
 - Des impacts généralisés en métaux lourds sur brut au droit des remblais sableux noirâtres :
 - L'absence d'impact en HCT, HAP, BTEX et PCB;
 - Le caractère non inerte des remblais sableux noirâtres ;
 - o Le caractère inerte des remblais argilo-graveleux ocres et les argiles beiges/verdâtres ;
 - Le caractère banalisable des argiles beiges/grises.
- Pour les eaux souterraines :
 - L'absence d'impact en HCT, HAP, BTEX, COHV et Métaux lourds (antimoine arsenic, baryum, cadmium, chrome, cuivre, mercure, plomb, molybdène, nickel, sélénium et zinc)
- Sur les gaz du sol :
 - o Aucune donnée

4

Vous trouverez ci-dessous le plan de repérage de ces sondages.

Le rapport conclut que dans l'état futur du site et compte-tenu du projet d'aménagement qui induira le décaissement de la quasi-totalité du lot pour la réalisation du niveau de sous-sol enterré, l'ensemble des remblais du site seront terrassés et éliminés en filière adéquate. Dans le cas ou des remblais subsisterait sur le lot, les pollutions métalliques seraient in fine confinées sous les aménagements du projet. De ce fait, aucune voie d'exposition n'est à considérer. Par conséquent, le schéma conceptuel n'a pas lieu d'être. Les terres présentes sur l'emprise du parvis seront traitées de la même manière et confinés sur à minima 30cm de terres végétales.

Compte-tenu du projet d'aménagement envisagé, aucune recommandation n'est émise d'un point de vue sanitaire. Cependant, dans le cas où le projet d'aménagement serait modifié, les remblais présents sur site devront être confinés sous une barrière physique (dalle béton, enrobé ou à minima 0,30 m de terre végétale).

L'ensemble des déblais excédentaires générés devront être éliminés en filières adéquates.

Une attention particulière devra être réalisée :

 Sur l'hygiène et la sécurité des travailleurs lors des travaux d'aménagement notamment au droit des remblais sablo-graveleux noirs qui présentent des impacts notables en métaux lourds (qualité environnementale et sanitaire médiocre). Il conviendra de prévoir les EPI et EPC adéquats aux travaux à réaliser;

 A la présence au droit du lot, d'infrastructures bétonnées résiduelles potentielles. Il conviendra de considérer cet élément dans le cadre de la gestion des futurs déblais qui seront générés par le projet.

3 PARKING INONDABLE:

Le site du projet est concerné par le Plan de de Prévention du Risque Inondation de l'agglomération Bordelaise secteurs Bordeaux Nord et Sud prescrit de 01 mars 2001 et approuvé par arrêté préfectoral de 07 juillet 2005. Le PPRI est en cours de révision.

Le site du projet est situé en Zone jaune du PPRI dont l'enjeu principal est de limiter l'implantation des établissements les plus sensibles. La zone jaune délimite le champ d'inondation de la crue exceptionnelle au-delà du champ d'expansion de la crue centennale. Sa définition correspond à la circulaire du 30 avril 2002 définissant la position de l'Etat en matière d'urbanisation dans les zones endiguées soumises à un risque de submersion marine ou d'inondation.

Les prescriptions en zone jaune selon le règlement du PPRI sont les suivantes : Sont interdits :

- Les installations soumises à la Directive 96/82/CE du 01.12.1996 (SEVESO) concernant la maîtrise des dangers liés aux accidents majeurs impliquant des substances dangereuses;
- Tout stockage au-dessous de la cote de seuil « CS exceptionnelle » de produits dangereux ou polluants tels que ceux identifiés dans la nomenclature des installations classées pour la protection de l'environnement ou dans la réglementation sanitaire départementale ou encore dans celle relative au transport de matières dangereuses.

Les occupations et les utilisations du sol autorisées soumises à conditions particulières sont les suivantes :

- Les centres de stockage et installations d'élimination de déchets visés aux rubriques 322 et 167 de la nomenclature des installations classées, sous réserve d'une mise hors d'eau pour la crue exceptionnelle (cote de seuil « CS exceptionnel ») ;
- La création de station d'épuration sous réserve d'une mise hors d'eau pour la crue exceptionnelle (cote de seuil « CS exceptionnel ») ;
- Les établissements sensibles sous réserve que le plancher de ces établissements soit situé audessus de la cote de seuil CS exceptionnelle.

Le tableau ci-dessous synthétise les prescriptions applicables aux différentes constructions neuves dans les zones constructibles sous conditions :

4

Type de bâtiments	En zone rouge hachurée bleue	En zone d'accumulation à l'intérieur de la zone rouge hachurée bleue	En zone jaune
ERP courants, boutique,	Règle générale Plancher au-dessus de CS 100	Règle générale Plancher au-dessus de CS 100 Niveau refuge	Pas de prescription spécifique
ERP accueillant des personnes vulnérables Crèches, écoles, jardins d'enfants, Haltes garderies	Règle générale Plancher au-dessus de CS 100	 Etude de vulnérabilité (zone d'accumulation) (*) Niveau de plancher audessus de la cote CS exceptionnel pour servir de refuge aux personnes et stocker les matériaux sensibles et coûteux 	Pas de prescription particulière

ERP pour personnes vulnérables et à mobilité réduite Hôpitaux, centre de rééducation, maisons de retraite	Plancher au-dessus de CS exceptionnel	 Plancher au-dessus de CS exceptionnel (zone hachurée) Le niveau refuge n'a pas lieu d'être puisque tous les planchers sont audessus de CS Except. 	Plancher audessus de CS exceptionnel
Etablissements à valeur économique élevée :	Plancher au-dessus de CS exceptionnel	INTERDIT	Plancher au- dessus de CS exceptionnel


(*) Cette étude est demandée lors de la création d'un nouvel ERP accueillant des personnes vulnérables de façon à s'assurer de la possible mise en sécurité minimale des personnes accueillies par ces établissements lors d'une crue exceptionnelle dans ce type d'établissement accueillant des personnes vulnérables mais pour lequel il n'est pas exigé la réalisation de l'ensemble des planchers au-dessus de la cote exceptionnelle comme pour les « établissements sensibles » Ce type de prescription, s'applique indépendamment des dispositions particulières liées à l'exercice d'une mission de service public imposées au chapitre 3 ci-après, aux responsables de tous les établissements de soins aux personnes, des établissements culturels et des administrations situés en zone inondable, existants lors de l'approbation du présent PPR ou réalisés ultérieurement, qui doivent faire une analyse détaillée de la vulnérabilité de leur établissement face à l'inondation en vue de la réalisation de plans « d'organisation » en cas de crue.

Le projet est donc compatible avec les prescriptions du zonage jaune du PPRI en vigueur.

Par ailleurs, le Dossier Loi sur l'eau de la ZAC Saint Jean Belcier prévoit une côte de seuil à 5.40m pour une partie du lot 6.1. La majeure partie du lot est en zone non inondable. Afin de se conformer au règlement PPRI et à la fiche de lot, la côte de seuil retenue est celle de 5.40 NGF.

Le parking (situé à la cote 1.90 NGF) est inondable. Les locaux techniques seront cuvelés, suivant les règles techniques du DTU 14.1) à savoir sur :

- Le sol
- Les murs périmétriques de la zone considérée
- Le plancher haut (retour d'un mètre)
- Les verticaux intermédiaires de la zone (remontées d'un mètre)

La zone de parking étant considérée comme une zone inondable, il sera mis en place un système d'évent. Des barbacanes associées à des cunettes périmétriques pour la récupération de ces eaux de ruissèlement seront mises en place sur les parois de soutènement.

En cas de crue, le parking sera inaccessible aux usagers et cela sera consigné dans le règlement intérieur de l'immeuble dont Covivio garde la gestion et l'exploitation de l'immeuble. La porte d'accès véhicules depuis la rue de la Louisiane sera condamnée, de même que l'accès piéton au parking depuis le hall A (escalier et ascenseur).

4 ILOT DE CHALEUR:

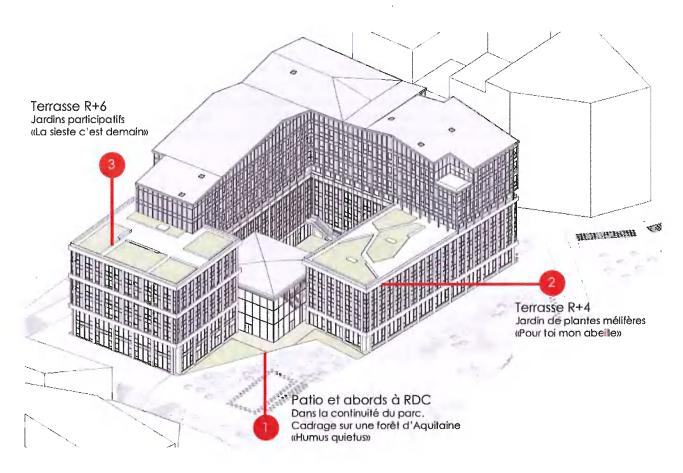
La lutte contre l'effet d'îlot de chaleur s'effectue selon trois axes sur notre projet : végétalisation maximum de la parcelle, gestion des eaux pluviales, choix des matériaux de façades/toiture.

Végétalisation:

A l'échelle de la ZAC, afin de favoriser la fraicheur du site, la présence de la végétation est primordiale. L'impact de cette végétation sur notre projet apparait à l'échelle du quartier, et à l'échelle de notre parcelle.

A l'échelle de la ZAC, notre projet du lot 6.1 s'inscrit dans le projet d'aménagement de la ZAC Saint Jean Belcier, en bordure d'un parc végétalisé de plusieurs hectares : le jardin de l'Ars.

Le Jardin de l'Ars sera, à terme, le poumon vert du secteur Brienne à Euratlantique et permettra des usages diversifiés pour les habitants du quartier. Le jardin s'inscrit dans un ensemble paysager plus vaste encore avec le bois de Gattebourse et le parc des berges. Le parc s'ouvre sur les berges de la Garonne. Cette « grande coulée verte » s'étend dans le quartier avec une végétation variée ponctuée de lieux de rencontre et d'équipements. Des cheminements doux permettent de relier le centre d'affaires d'Armagnac, les quais de la Garonne, et Bègles via le boulevard Jean-Jacques Bosc.

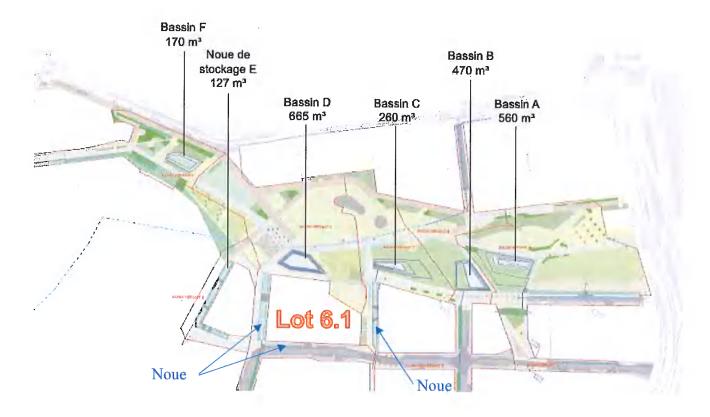

A l'échelle de notre projet, la parcelle possède une surface de 4572 m² et comportera un maximum de végétation :

- 134m2 de plantation en pleine terre (parvis coté parc)
- 805m2 de plantations avec un minimum de 50cm de terre (sur les terrasses du R+4, R+6 et R+7)
- 70 m2 de façade végétalisée (sur la terrasse du R+6)
- 100 m2 de pavés joints « moussus » (patio et parvis côté parc)

Sur les terrasses, les épaisseurs de terre sont suffisantes pour permettre de véritables cultures et le stockage temporaire l'eau de pluie. Les cheminements piétons à rez-de-chaussée sont constitués de pavés enherbés favorisant l'infiltration des eaux de pluie.

Gestion des eaux de pluie

A l'échelle de la ZAC, le système de gestion des eaux pluviales du projet repose sur un principe de collecte et de rétention des eaux pluviales gravitaire, à ciel ouvert et associé aux espaces végétalisés aménagés dans le jardin de l'Ars et dans les rues.


La rétention est assurée par cinq bassins à ciel ouvert ainsi qu'une noue de stockage localisés sur le plan ci-après. Il s'agit d'espaces paysagers, intégrés au jardin de l'ars avec des pentes douces et des profondeurs limitées. Ce principe de rétention à ciel ouvert présente d'autres intérêts : il permet notamment de créer des milieux plus frais, des îlots de fraîcheur et de biodiversité, des espaces animés par la présence de l'eau en temps de pluie...

La collecte des eaux pluviales est également assurée à ciel ouvert, par un réseau de noues végétalisées aménagées dans les rues en amont du jardin de l'ars. Les noues végétalisées dans les rues, régulièrement alimentées en eau, constitueront de réels « îlots de fraîcheur » permettant d'améliorer le confort thermique en été, et ainsi d'aménager une ville plus résiliente.

A l'échelle de notre projet, la gestion des eaux de pluie s'effectue avec un débit de fuite de 3L/s/ha. Une cuve de rétention des eaux (en béton étanché) sera installée dans le bâtiment (à R+1) pour permettre une évacuation régulée et gravitaire.

Matériaux de façades/toiture

Conformément à la fiche de lot et au PLU, l'ensemble des façades du projet est traité avec des matériaux de couleur blonde afin de limiter les surchauffes :

- Ossature en béton de teinte blonde pour les niveaux du socle (RDC à R+3)
- Ossature apparente en façade avec panneau minéral blond pour les niveaux supérieurs (R+4 à R+7)
- Panneaux vitrés ou panneaux métalliques teinte champagne doré pour les éléments de remplissage intégrés dans les 2 ossatures décrites ci-avant.

Les toitures sont métalliques de teinte gris clair, les toitures terrasses sont revêtues de dalles minérales claires pour les parties accessibles aux piétons (hors végétation).

Rappel Article 2.4.4 du PLU: Aménagement des abords et plantations « Les matières réfléchissant la lumière (Albédo élevé) et de teinte claire sont à privilégier afin de limiter le phénomène d'îlot de chaleur. »

Espérant avoir répondu à vos attentes, nous restons à votre entière disposition pour tout renseignement complémentaire, nous vous prions d'agréer, Madame, l'expression de nos salutations distinguées.

Benoît FRAGU Directeur du Développement

<u>P.J</u>:

- Plans tous niveaux de l'immeuble
- Elévations de l'immeuble

^{bordeaux} Eulratlantique

EPA EURATLANTIQUE

Lot 6.1 Ancien site ferroviaire Gattebourse à BORDEAUX (33)

Evaluation de l'état des milieux

Rapport

Réf: CSSPSO191369 / RSSPSO09919-01

MAMA / MICE / VBE

12/11/2019

EPA EURATLANTIQUE

Lot 6.1

Ancien site ferroviaire Gattebourse à BORDEAUX (33)

Evaluation de l'état des milieux

Pour cette étude, le chef du projet est Mickael Capdouze

Objet de l'indice	Date	Indice	Rédaction Nom / signature	Vérification Nom / signature	Validation Nom / signature
Rapport	12/11/19	01	M.MARILL	M.CAPDOUZE	V.BERNARDINI
Карроп	12/11/13	01		Contraction	Consideration of the control of the

Numéro de contrat / de rapport :	Réf : CSSPSO191369 / RSSPSO09919-01
Numéro d'affaire :	A50088
Domaine technique :	SP02
Mots clé du thésaurus	DIAGNOSTIC DE QUALITE ENVIRONNEMENTALE SITES ET SOLS POLLUES DEBLAIS

BURGEAP Agence Sud-Ouest • 4 Boulevard Jean-Jacques Bosc - Les portes de Bègles – 33130 Bègles - Tél : 05.56.49.38.22 • Fax : 05.56.49.89.69 • burgeap.bordeaux@groupeginger.com

SOMMAIRE

Synt		chnique5	
1.		cation des prestations7	
2.			
	2.1 2.2	Objet de l'étude	
3.	Visite (de site (A100)9	
4. Données disponibles sur l'état des milieux			
	4.1 4.2	Synthèse de l'étude historique11Synthèse des investigations réalisées114.2.1 Investigations sur les sols124.2.2 Investigation sur les eaux souterraines13	
5.	Investi	gations sur les sols (A200)14	
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Nature des investigations	
6.	Schém	a conceptuel21	
	6.1 6.2 6.3	Projet d'aménagement	
7.	Synthè	ese et recommandations22	
	7.1 7.2	Synthèse	
8.	Limites	s d'utilisation d'une étude de pollution23	
FIG	URE	S	

Figure 1: Localisation du lot 6.1	9
Figure 2 : Plan de synthèse de la visite de site	
Figure 3 : Extrait des photographies aériennes historique de 1947, 1969, 1980 et 1993	
Figure 4 : Localisation des sondages réalisés sur le lot 6.1	12
Figure 5 : Localisation des investigations	15
Figure 6 : Plan de masse et du sous-sol du projet (source : INSOLITES ARCHITECTURE)	

TABLEAUX

Tableau 1 : Localisation et environnement du site	9
Tableau 2 : Investigations réalisées sur les sols	
Tableau 3 : Analyses réalisées sur les sols	
Tableau 4 : Résultats d'analyses sur les sols - remblais (1/2)	

Tableau 5 : Résultats d'anal	yses sur les sols – argiles	(2/2) 1	19

ANNEXES

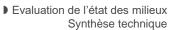
Annexe 1. Reportage photographique

Annexe 2. Fiches d'échantillonnage des sols

Annexe 3. Méthodes analytiques, LQ et flaconnage

Annexe 4. Bordereaux d'analyse des sols

Annexe 5. Propriétés physico-chimiques


Annexe 6. Glossaire

12/11/2019

Synthèse technique

Client	EPA EURATLANTIQUE
Informations sur le site	 Intitulé/adresse du site: Lot 6.1 – Ancien site ferroviaire Gattebourse Bordeaux (33) Parcelles cadastrales: une partie des parcelles 22 et 217 de la section BX de la commune de Bordeaux Superficie totale du lot: 4 570 m² Propriétaire actuel: SNCF/RFF Occupation du site: partie d'un bâtiment de l'ancien site ferroviaire (ouest), cours de tennis et chemins gravillonnés actuellement inoccupés.
Contexte de l'étude	Projet d'aménagement du lot 6.1 : bâtiment à usage de bureaux sur un niveau de sous-sol total
Données des précédentes études	Etude GOLDER ASSOCIATE: Trois sondages de sol ont été réalisés au droit du lot 6.1 (zone des terrains de sport). Ils mettent en avant: • Des anomalies en métaux ainsi que des traces en HAP, BTEX et hydrocarbures totaux au sein des remblais noirâtres des sondages GA19 (entre 0,1 et 0,8 m) et GA60 (entre 1 et 1,5 m). • Une anomalie en métaux ainsi que des traces en HAP au droit des argiles marron/grises entre 1 et 2 m de profondeur. Ces anomalies sont associées à des mesure PID positives. Un piézomètre est présent au nord (latéral), à proximité du lot. Il met en évidence un niveau d'eau recoupé à 2,15 m de profondeur (février 2012) et l'absence d'impact au droit des eaux souterraines. Etude historique ARCAGEE: Cette étude a mis en avant les points suivant: • Avant d'être occupé par des terrains de tennis (configuration actuelle depuis 1993), le lot abritait des hangars. • Une nappe sous-jacente serait non vulnérable (horizons argileux sus-jacent) à une éventuelle pollution en provenance du site; • La présence de nombreux sites BASIAS à proximité aurait pu impacter les sols au droit du site. Recommandation: réalisation de 10 sondages complémentaires repartis de manière homogène sur l'ensemble du lot afin de statuer sur la qualité environnementale des remblais et vérifier la qualité environnementale des terres naturelles sous-jacentes
Investigations réalisées	10 sondages de sols à la tarière mécanique (3,00 m de profondeur).
Polluants recherchés	Sols : Pack ISDI et 12 métaux (antimoine, arsenic, baryum, cadmium, chrome, cuivre, molybdène, sélénium, zinc, mercure, plomb, nickel).
Impacts identifiés lors de cette étude – gestion des déblais	Les résultats ont mis en avant : • des impacts généralisés en métaux lourds sur brut au droit des remblais sableux noirâtres ; • l'absence d'impact notable en HCT, HAP, BTEX et PCB au droit de l'ensemble des lithologies rencontrées ; • le caractère non inerte des remblais sableux noirâtres ;

	 le caractère inerte des remblais argilo-graveleux ocres et les argiles beiges/verdâtres; le caractère banalisable des argiles beiges/grises.
	Compte-tenu du projet d'aménagement envisagé, aucune recommandation n'est émise d'un point de vue sanitaire. Cependant, dans le cas où le projet d'aménagement serait modifié, les remblais présents sur site devront être confinés sous une barrière physique (dalle béton, enrobé ou à minima 0,30 m de terre végétale).
	L'ensemble des déblais excédentaires générés devront être éliminés en filières adéquates.
Conclusions/	Une attention particulière devra être réalisée :
recommandations	 Sur l'hygiène et la sécurité des travailleurs lors des travaux d'aménagement notamment au droit des remblais sablo-graveleux noirs qui présentent des impacts notables en métaux lourds (qualité environnementale et sanitaire médiocre). Il conviendra de prévoir les EPI et EPC adéquats aux travaux à réaliser;
	 A la présence au droit du lot, d'infrastructures bétonnées résiduelles potentielles pouvant présenter une épaisseur notable. Il conviendra de considérer cet élément dans le cadre de la gestion des futurs déblais qui seront générés par le projet.

1. Codification des prestations

Notre étude est conforme à la méthodologie nationale de gestion des sites et sols pollués d'avril 2017 et aux exigences de la **norme AFNOR NF X 31-620-2 « Qualité du sol – Prestations de services relatives aux sites et sols pollués »**, pour le domaine A : « Etudes, assistance et contrôle ». Elle comprend les prestations suivantes :

Prestations élémentaires (A)		Objectifs
	ernées	
\boxtimes	A100	Visite du site
	A110	Etudes historiques, documentaires et mémorielles
	A120	Etude de vulnérabilité des milieux
	A130	Elaboration d'un programme prévisionnel d'investigations
\boxtimes	A200	Prélèvements, mesures, observations et/ou analyses sur les sols
	A210	Prélèvements, mesures, observations et/ou analyses sur les eaux souterraines
	A220	Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles et/ou les sédiments
	A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol
	A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques
	A250	Prélèvements, mesures, observations et/ou analyses sur les denrées alimentaires
	A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées
	A270	Interprétation des résultats des investigations
	A300	Analyse des enjeux sur les ressources en eaux
	A310	Analyse des enjeux sur les ressources environnementales
	A320	Analyse des enjeux sanitaires
	A330	Identification des différentes options de gestion possibles et réalisation d'un bilan coûts/avantages
	A400	Dossiers de restriction d'usage, de servitudes

Prestations globales (A) concernées	Objectifs
AMO Assistance à Maîtrise d'ouvrage en phase études	Assister et conseiller son client pendant tout ou partie de la durée du projet, en phase études.
LEVE	Le site relève-t-il de la politique nationale de gestion des sites pollués, ou bien est-il « banalisable » ?
INFOS	Réaliser les études historiques, documentaires et de vulnérabilité, afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations.
DIAG	Investiguer des milieux (sols, eaux souterraines, eaux superficielles et sédiments, gaz du sol, air ambiant) afin d'identifier et/ou caractériser les sources potentielles de pollution, l'environnement local témoin, les vecteurs de transfert, les milieux d'exposition des populations et identifier les opérations nécessaires pour mener à bien le projet (prélèvements, analyses)
PG Plan de gestion dans le cadre d'un projet de réhabilitation ou d'aménagement d'un site	Etudier, en priorité, les modalités de suppression des pollutions concentrées. Cette prestation s'attache également à maîtriser les impacts et les risques associés (y compris dans le cas où la suppression des pollutions concentrées s'avère techniquement complexe et financièrement disproportionnée) et à gérer les pollutions résiduelles et diffuses. Réalisation d'un bilan coûts-avantages (A330) qui permet un arbitrage entre les différents scénarios de gestion possibles (au moins deux), validés d'un point de vue sanitaire (A320) Préconisations sur la nécessité de réaliser, ou non, les prestations PCT (dont B111 et/ou B112 (voir NF X 31-620-3)), CONT, SUIVI, A400, et la définition des modalités de leur mise en œuvre ; ces préconisations peuvent également concerner l'organisation, la sécurité et l'encadrement des travaux à réaliser ; Préciser les mécanismes de conservation de la mémoire en lien avec les scénarios de gestion proposés
La prestation IEM est mise en œuvre en cas de : mise en évidence d'une pollution historique sur une zou l'usage est fixé (installation en fonctionnement, qui résidentiel, etc.); mise en évidence d'une pollution hors des limites d'un site eignal sanitaire. Comparable à une photographie de l'état des milieux et des us la prestation IEM vise à s'assurer que l'état des milieux d'expo est compatible avec les usages existants [9]. Elle permi distinguer les situations qui : ne nécessitent aucune action particulière; peuvent faire l'objet d'actions simples de gestion pour réta compatibilité entre l'état des milieux et leurs usages constainées en œuvre d'un plan de gestion	
SUIVI	Suivi environnemental
BQ Bilan quadriennal	Interpréter les résultats des données recueillies au cours des quatre dernières années de suivi Mettre à jour l'analyse des enjeux concernés par le suivi sur la période sur les ressources en eau, environnementales et l'analyse des enjeux sanitaires.
CONT Contrôles	Vérifier la conformité des travaux d'investigation ou de surveillance Contrôler que les mesures de gestion sont réalisées conformément aux dispositions prévues
	Expertise dans le domaine des sites et sols pollués
VERIF Evaluation du passif environnemental	Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise

2. Introduction

2.1 Objet de l'étude

Dans le cadre de la réalisation d'un bâtiment à usage de bureaux avec un niveau de sous-sol et suite aux recommandations de l'étude historique, documentaire et mémorielle réalisée par ARCAGEE (rapport - RC18196rev1/ML – 14/12/2018), l'EPA EURATALANTIQUE a missionné BURGEAP pour la réalisation d'une évaluation de l'état des milieux au droit du lot 6.1 localisé sur l'ancien site ferroviaire Gattebourse à Bordeaux (33).

2.2 Documents de référence

Dans le cadre de cette étude, les documents suivants nous ont été transmis par l'EPA:

- Rapport GOLDER ASSOCIATES « Diagnostic des sols et des eaux souterraines Etape B » référencé 011503181043_SG_V1 et daté de février 2012;
- Rapport ArcaGée « Étude historique et documentaire Lot 6.1 Secteur Gattebourse Ars à Bordeaux (33) » référencé RC18196rev1/ML en date du 14/12/18;
- Rapport ArcaGée « Plan de gestion Site Gattebourse Bordeaux (33) » RC13033-A/XF et daté du 22 février 2013 ;
- Etude capacitaire: « ZAC BORDEAUX ST JEAN BELCIER Secteur Ars/ Brienne/ Gattebourse étude capacitaire des ilots 6.1 et 6.2 » d'INSOLITES ARCHITECTURES du 26/02/2018.
- Plan du projet: ESIQUISSE 2 réalisé par VALODE&PISTRE pour le compte de COVIVIO (28/01/2019).

12/11/2019

3. Visite de site (A100)

Tableau 1 : Localisation et environnement du site

Adresse du site	Lot 6.1 – Bordeaux (33)
Parcelles cadastrales	Partie des parcelles n°217 (ouest du site) et 22 (centre et est du site) de la feuille BX de la commune de Bordeaux
Superficie	4 570 m²
Altitude moyenne / Topographie	5 m NGF (Nivellement Général de la France) / terrain globalement plat
Propriétaire du site	SNCF/RFF, en cours d'acquisition par l'EPA
Occupation du site	Ancien site ferroviaire de la SNCF/RFF et terrain de sport (cours de tennis) actuellement inoccupé.
Abords du site	Les abords immédiats du site : • au nord, un cours de tennis et des chantiers d'aménagement; • au nord-ouest, un parking recouvert d'enrobé; • a l'ouest, une zone inoccupée (ancien site ferroviaire), • au sud, un bâtiment de logement collectif; • au sud-est, un terrain de pelote basque; • a l'est, un chantier d'aménagement.

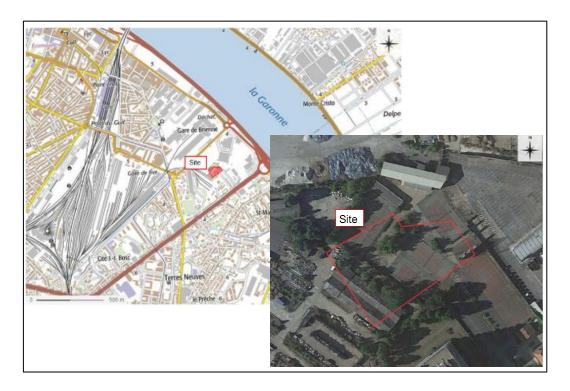


Figure 1 : Localisation du lot 6.1

BURGEAP a réalisé une visite de la zone d'étude (lot 6.1), le 14 octobre 2019, préalablement à la réalisation des investigations de terrain afin de vérifier les accès au site et réaliser l'implantation des sondages.

Le lot 6.1 est libre d'accès. Il correspond à un ensemble de cours de tennis séparé par des chemins gravillonnés au centre et à l'est du site ainsi qu'un ancien bâtiment du site ferroviaire entouré d'enrobé à l'ouest du site (**Figure 2**).

Les accès au bâtiment ayant été condamnés, il n'a pu être visité.

Le reportage photographique de la visite de site est présenté en Annexe 1.

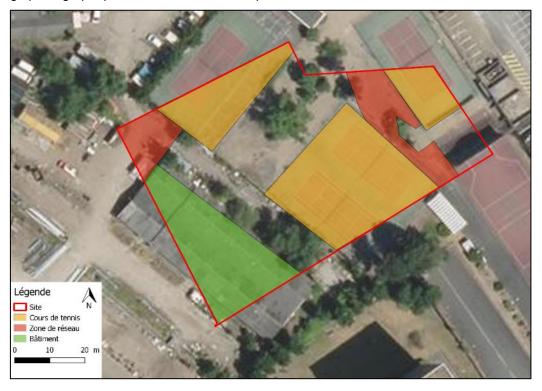


Figure 2 : Plan de synthèse de la visite de site

4. Données disponibles sur l'état des milieux

4.1 Synthèse de l'étude historique

Selon l'étude historique, documentaire et de vulnérabilité réalisée par ARCAGEE en 2018 (rapport - RC18196rev1/ML), le lot 6.1 était occupé par des hangars entre 1924 et 1969. Entre 1969 et 1993, les bâtiments sont progressivement démolis pour laisser place aux cours de tennis. Depuis 1993, le site à une configuration similaire à celle retrouvée actuellement.

20 m

Figure 3: Extrait des photographies aériennes historique de 1947, 1969, 1980 et 1993

4.2 Synthèse des investigations réalisées

L'étude des documents transmis par l'EPA a mis en évidence la présence de trois sondages de sols effectués par GOLDER ASSOCIATE (GA10, GA19 et GA60) au droit de la zone d'étude lors des campagnes d'investigations en 2012. Aucun sondage n'a été effectué par ArcaGée au droit du lot 6.1.

Aucun piézomètre n'est présent sur site, cependant, le PzGA 3 (GOLDER 2012) est présent à proximité du site au nord (latéral hydrogéologique)

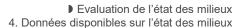
4.2.1 Investigations sur les sols

Figure 4 : Localisation des sondages réalisés sur le lot 6.1

La lithologie mise en évidence lors des investigations est la suivante :

- une couche de terre végétale d'environ 0,40 m d'épaisseur ;
- des remblais limoneux marron à noirs jusqu'à 1,00 à 1,50 m de profondeur ;
- des argiles marron sur une épaisseur de 1,00 m;
- des argiles grises sur 0,50 à 1,00 mètre d'épaisseur.

A noter:


- au droit du sondage GA60 :
 - une dalle béton d'environ 0,10 m est présente sous la couche de terre végétale ;
 - les horizons argileux sont inversés.
- Au droit de GA19 :
 - absence de terre végétale ;
 - présence de mâchefer suspectée au droit des remblais entre 0,10 et 0,60 m de profondeur.

Des réponses PID positives ont été relevées au droit des remblais de GA10 et GA60 ainsi qu'au sein des argiles de GA10.

Les remblais des sondages GA19 et GA60 ont été analysés pour les paramètres suivants : 8 métaux, HCT, HAP, BTEX et COHV. Les argiles du sondage GA10 ont été analysées pour les 8 métaux, HCT, HAP, BTEX.

Les résultats analytiques ont révélé :

• la présence d'anomalies en métaux ainsi que des traces en HAP, BTEX et hydrocarbures totaux au sein des remblais noirâtres des sondages GA19 (entre 0,1 et 0,6 m) et GA60 (entre 1 et 1,5 m).

• une anomalie en métaux ainsi que des traces en HAP au droit des argiles marron/grises entre 1 et 2 m de profondeur au droit de GA10 (entre 1 et 2 m).

4.2.2 Investigation sur les eaux souterraines

Le niveau d'eau relevé en février 2012 au droit du PzGA-3, était de 2,15 m par rapport au sol.

Les investigations sur les eaux souterraines ont mis en avant :

- La quantification de métaux lourds (arsenic, baryum, cadmium, et sélénium) sous forme de trace ;
- L'absence de quantification des autres métaux (antimoine, chrome, cuivre, mercure, plomb, zinc nickel et molybdène) et autre composés recherchés (BTEX, COHV, HAP et HCT).

Réf : CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 13/24

5. Investigations sur les sols (A200)

5.1 Nature des investigations

Date d'intervention	15/10/19 et 16/10/19	
Prestataire de forage Technique de forage	GEOTEC Tarière mécanique de diamètre 70/80 mm	
Investigations menées	Cf. Tableau 2 et Figure 5.	
Le programme analytique a été adapté en raison de : la présence de nombreux réseaux traversant le site ; l'interdiction d'effectuer des sondages au droit des cours de tennis ; la présence de dalle béton plus ou moins importante entrainant de de la machine de sondage. La présence du bâtiment à l'ouest		
Repli en fin de chantier	Sondages rebouchés avec les déblais de forage. Réfection des surfaces : oui – enrobé à froid Déchets de chantier : repris par BURGEAP (petits matériels de prélèvements)	

Les sondages ont été suivis par un collaborateur de BURGEAP.

Le reportage photographique des investigations réalisées est présenté en Annexe 1.

Les investigations menées sur site sont celles décrites dans le Tableau 2. Elles sont localisées en Figure 5.

Tableau 2 : Investigations réalisées sur les sols

Milieux				Profondeur	Analyses en laboratoire			
reconnus	Prestations	Localisation	Qté	(m)	Analyses réalisées	Nombre d'échantillons		
Sols	Sondage à la tarière mécanique	Répartis sur le site en fonction des contraintes précités	10	3,00	ISDI et 12 métaux	10 (composite) 1 (unitaire)		

On présente en Annexe 5 les propriétés chimiques des polluants recherchés et en Annexe 6 un glossaire.

Figure 5: Localisation des investigations

5.2 Observations et mesures de terrain

Les terrains recoupés en sondage ont été décrits avant échantillonnage. Une partie des échantillons a fait l'objet d'analyses chimiques en laboratoire. Les descriptions ont porté sur leur lithologie et la présence ou non de niveaux jugés suspects.

Les niveaux de sol sont jugés suspects s'ils présentent des traces de souillures, des caractéristiques organoleptiques anormales (odeur, couleur, texture), ou qu'ils renferment des matériaux de type déchets, mâchefers, verre, bois....

La présence de composés organiques volatils dans les gaz du sol et au niveau de chaque échantillon prélevé a été évaluée au moyen d'un détecteur à photo-ionisation (PID) équipé d'une lampe 10,6 eV régulièrement calibré.

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante :

- ponctuellement, des remblais sablo-graveleux beiges à marron au droit des sondages BGP5, BGP8 et BGP9 sur une épaisseur maximum de 0,10 m;
- localement, des remblais sablo-graveleux beiges à ocre sur une épaisseur maximum de 0,50 m au droit des sondages BGP1, BGP2, BGP3, BGP5 et BGP10;
- des remblais sablo-graveleux marron à noirâtres d'une épaisseur maximum de 1,10 m au droit de l'ensemble des sondages. A l'ouest du site, au droit de BGP8 et BGP9 ces remblais sont mélangés de sables graveleux beige et verdâtres. Des morceaux de briques sont présents dans ces remblais;

- des argiles beiges à verdâtres au droit des sondages BGP1, BGP2, BGP5, BGP8 et BGP9 sur une épaisseur maximum de 2,00 m;
- des argiles beiges à grises au droit des sondages BGP3, BGP4, BGP6, BGP7 BGP9 et BGP10 jusqu'à la fin des sondages (3,00 m de profondeur).

Il est à noter l'inversion des couches de remblais sablo-graveleux noirâtres et beiges/ocre au droit des sondages BGP5 et BGP10.

De plus, au droit du site ferroviaire (ouest) : une couche d'enrobé, une dalle béton et des briques surmontent les terrains rencontrés sur environ 0,40 m d'épaisseur (BGP8, BGP9 et BGP10).

Entre les cours de tennis : une dalle béton d'une vingtaine de centimètres surmonte les terrains (BGP4, BGP5, BGP6 et BGP7). Elle peut être recouverte de graviers mélangés à de la terre végétale.

Aucune venue d'eau n'a été constatée lors de la réalisation des investigations.

Les mesures réalisées au PID sur chaque échantillon se sont révélées négatives (0 ppmV).

L'intégralité des observations figure dans les fiches d'échantillonnage de sols rassemblées en Annexe 2.

5.3 Stratégie et mode opératoire d'échantillonnage

Après la levée de la coupe du sondage, le collaborateur de BURGEAP a procédé au prélèvement des échantillons de sols selon le protocole détaillé ci-après :

- un échantillon pour chaque horizon lithologique homogène ;
- un échantillon par mètre, si l'épaisseur de l'horizon dépasse 1,00 m;
- un échantillon de chaque niveau lithologique suspect.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 370 ml.

5.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire (24 h après prélèvements).

5.5 Programme analytique sur les sols

Les analyses chimiques ont été réalisées par le laboratoire EUROFINS.

Les échantillons soumis à analyse en laboratoire ont été choisis en fonction des observations de terrain et du projet d'aménagement (analyse préférentielle des échantillons de surface en l'absence de niveau de soussol). Les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en Annexe 3.

Tableau 3 : Analyses réalisées sur les sols

Polluants recherchés	Nombre d'échantillons analysés
12 métaux et métalloïdes (antimoine, arsenic, baryum, cadmium, chrome, cuivre, molybdène, sélénium, zinc, mercure, plomb, nickel)	11
Pack ISDI conformément à l'arrêté du 12/12/2014	11

Réf: CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 16/24

Bap290/14

5.6 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus sur le site sera pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Métaux et métalloïdes sur sol brut	La gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le cadre du programme INRA-ASPITET. A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry).
Gestion des déblais	 Les concentrations sur le sol brut et sur l'éluat ont été comparées : aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes ; à la Décision du Conseil du 19 décembre 2002 « établissant des critères et des procédures d'admission des déchets dans les décharges, conformément à l'article 16 et à l'annexe II de la directive 1999/31/CE » ; aux valeurs couramment utilisées par les exploitants d'installations de stockage de déchets. Il s'agit ici de données issues de notre expérience et de notre connaissance du marché local¹.

5.7 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans les Tableaux 4 et 5.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 4.

Réf : CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 17/24

¹ Rappelons que ces critères n'ont pas de valeur réglementaire mais l'acceptation des terres dans un centre de stockage de déchets dépend de l'accord de l'exploitant, dernier décisionnaire quant à l'acceptation des terres au regard de ses arrêtés préfectoraux et de sa stratégie pour l'exploitation de son installation.

Tableau 4 : Résultats d'analyses sur les sols - remblais (1/2)

	Localisation	Lot 6.1							
				Nom de l'échantillon	BGP1 0,2-1,3 m	EC2	EC5	EC7	EC4
				Sondage	-	BGP1 0,2-1,3 m BGP2 0,5-1 m	BGP3 0,5-1,5 m BGP7 0,2-0,9 m	BGP4 0,3-1 m BGP5 0,3-0,8 m BGP6 0.25-0.8 m	BGP2 0-0,5 m BGP10 1-1,5 m
		Bruit de fond (b)	Valeurs limite des ISDI*	Lithologie	Remblais sablo- graveleux noirâtres avec des morceaux de briques	Remblais sablo- argilo-graveleux beiges / ocre avec des morceaux de briques			
ANALYSES SUR SOL BRUT									
Matière sèche COT	%	-	-		86.7	78.9	81.9	84.3	91.4
COT Carbone Organique Total (a)	mg/kg Ms	-	30 000		291 000	331 000	295 000	270 000	10 000
Métaux et métalloïdes Antimoine (Sb)	mg/kg Ms	1.5			53.7	69.4	47.8	41.1	4.49
Arsenic (As)	mg/kg Ms	25			49.5	53.3	54.7	89.7	16.1
Baryum (Ba)	mg/kg Ms	3000 0.45			473 2.1	532 1.52	472 1.52	364 1.38	54.3 0.86
Cadmium (Cd) Chrome (Cr)	mg/kg Ms mg/kg Ms	90	Résultats de lixiviation		29.8	28.2	21.5	22.3	21
Cuivre (Cu)	mg/kg Ms	20	conformes aux seuils définis pour les		3450	4920	3520	1380	87.8
Molybdène (Mo)	mg/kg Ms	-	déchets inertes dans		4.86	5.84	5.27	10.3	<1.00
Nickel (Ni) Plomb (Pb)	mg/kg Ms mg/kg Ms	60 50	l'arrêté du 12/12/2014		39.3 2550	36.1 3360	42.7 1880	65.6 1390	16 93.1
Sélénium (Se)	mg/kg Ms	0.7			<1.00	<1.00	<1.00	<1.00	<1.00
Zinc (Zn) Mercure (Hg)	mg/kg Ms mg/kg Ms	100 0.1			770 2.22	871 3.23	693 1.37	552 0.8	65.6 <0.10
Indice hydrocarbure C10-C40	ing/ng ivis	V. 1			2.22	3.23	1.37	0.0	NO. 10
Fraction C10-C16	mg/kg Ms	-	-		9.64	18.3	14.7	17	<4.00
Fraction C16-C22 Fraction C22-C30	mg/kg Ms mg/kg Ms	-	-		29.9 52.5	80.3 113	71.4 78.5	67.5 102	<4.00 <4.00
Fraction C30-C40	mg/kg Ms	-	-		40.7	75.2	48.2	57.6	<4.00
Somme des hydrocarbures C10-C40	mg/kg Ms	-	500		133	287	213	244	<15.0
HAP Naphtalène	mg/kg Ms	-	-		0.21	0.61	0.31	0.57	<0.05
Fluorène	mg/kg Ms	-	=		0.061	0.18	0.071	0.062	<0.05
Phénanthrène	mg/kg Ms	-	-		1.4 2.2	3.8 4.1	2.2 3.3	2.3 5.7	<0.05 <0.05
Pyrène Benzo(a)anthracène	mg/kg Ms mg/kg Ms	-	-		2.2	2.2	2.1	4.1	<0.05
Chrysène	mg/kg Ms	-	-		1.6	3.7	3.1	6.2	<0.05
Indéno(1,2,3-cd)pyrène Dibenzo(a,h)anthracène	mg/kg Ms mg/kg Ms	-	-		1.5 0.54	1.8 1.7	1.6 0.95	3.3 1.9	<0.05 <0.05
Acénaphtylène	mg/kg Ms	-	-		0.16	0.25	0.095	0.36	<0.05
Acénaphtène	mg/kg Ms	-	-		< 0.05	0.34	0.12	0.11	<0.05
Anthracène Fluoranthène	mg/kg Ms mg/kg Ms	-	-		0.38 2.4	1.1 5	0.33 3.7	0.82 7	<0.05 <0.05
Benzo(b)fluoranthène	mg/kg Ms	-	-		2.2	3.8	3.8	6.8	<0.05
Benzo(k)fluoranthène	mg/kg Ms	-	-		0.67	3.2	1.5	2.7	<0.05
Benzo(a)pyrène Benzo(g,h,i)pérylène	mg/kg Ms mg/kg Ms	-	-		1.7 1.2	2.7 1.7	2.4 1.3	2.9	<0.05 <0.05
Somme des HAP	mg/kg Ms	-	50		17	36	27	49	<0.05
Benzène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Toluène	mg/kg Ms	-	-		0.06	<0.05	0.06	<0.05	<0.05
Ethylbenzène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.05	<0.05
o-Xylène m,p-Xylène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Somme des BTEX	mg/kg Ms	-	6		0.06	<0.0500	0.06	<0.0500	<0.0500
PCB (20)	ma/ka Ma				-0.01	-0.01	-0.01	-0.04	-0.01
PCB (28) PCB (52)	mg/kg Ms mg/kg Ms	-	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
PCB (101)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	< 0.01
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	-	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
PCB (153)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	< 0.01
PCB (180) Somme des PCB	mg/kg Ms mg/kg Ms	-	- 1		<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010
ANALYSES SUR ELUAT	mg/kg ivis	-	-		<0.010	<0.010	<0.010	<0.010	<0.010
Paramètres généraux									
рН	-	-	-		8.2	8	8.1	8.3	8
Conductivité corrigée à 25 °C Fraction soluble (c)	µS/cm	-	4000		125 <2000	128 <2000	155 <2000	332 3020	83 <4000
Carbone organique total	mg/kg M.S. mg/kg M.S.	-	500		<2000 <51	<50	<50	<50	<4000 <50
Indice phénol	mg/kg M.S.		1		<0.51	<0.50	<0.50	<0.50	<0.50
Anions Fluorures	mg/kg M.S.	-	10		<5.00	5.36	6.11	<5.00	<5.00
Chlorures (***)	mg/kg M.S.	-	800		31	22.8	21.7	97.7	19.8
Sulfates (***)	mg/kg M.S.		1000		152	136	110	1060	115
Métaux et métalloïdes Antimoine	mg/kg M.S.	-	0.06		0.11	0.19	0.1	0.19	0.018
Arsenic	mg/kg M.S.	-	0.5		<0.20	<0.20	<0.20	<0.20	<0.20
Baryum	mg/kg M.S.	-	20		1.89	0.76	0.47	0.58	0.3
Cadmium Chrome	mg/kg M.S. mg/kg M.S.	-	0.04 0.5		<0.002 <0.10	<0.002 0.14	<0.002 <0.10	<0.002 <0.10	<0.002 <0.10
Cuivre	mg/kg M.S.	-	2		1.54	2.78	0.62	0.2	<0.20
Mercure Molybdène	mg/kg M.S. mg/kg M.S.	-	0.01 0.5		<0.001 0.069	<0.001	<0.001	<0.001 0.145	<0.001 0.044
Nickel	mg/kg M.S.	-	0.5		<0.10	<0.10	<0.10	<0.10	<0.10
Plomb	mg/kg M.S.	-	0.5		0.75	1.56	0.18	<0.10	0.2
Zinc Selenium	mg/kg M.S. mg/kg M.S.	-	4 0.1		1.02 <0.01	1.26 <0.01	<0.20 <0.01	<0.20 0.019	<0.20 <0.01
<u> </u>			Ų. i		-0.01	10.01	10.01	. 0.010	-0.01

LQ : Limite de quantification du laboratoire Concentrations supérieures aux limites ISDI.

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériels et des critères communément appliqués par les centres de stockage

(a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut-être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluât, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Tableau 5 : Résultats d'analyses sur les sols – argiles (2/2)

				Localisation	Lot 6.1						
				Nom de l'échantillon	EC1	EC3	EC6	EC8	EC10		
				Sondage	BGP8 1-2 m BGP9 1,3-2 m	BGP1 1,5-2,5 m BGP2 2-3 m	BGP3 1,5-2,5 m BGP7 1,5-2,5 m	BGP4 2-3 m BGP6 1,5-2,5 m	BGP9 2-3 m BGP10 2-3 m		
		Bruit de fond (b)	Valeurs limite des ISDI*	Lithologie	Argiles beiges / verdâtres	Argiles beiges / verdâtres	Argiles grises / beiges	Argiles beiges / grises	Argiles beiges / grises		
ANALYSES SUR SOL BRUT											
Matière sèche	%	-	-		77.7	78.1	80.2	77.5	78.9		
COT Carbone Organique Total (a)	mg/kg Ms	-	30 000		6 160	7 930	4 050	3 890	3 280		
Métaux et métalloïdes	Tig/kg ivis		30 000		0 100	7 330	4 030	3 030	3 200		
Antimoine (Sb)	mg/kg Ms	1.5			3.19	3.85	2.71	2.79	2.62		
Arsenic (As) Baryum (Ba)	mg/kg Ms mg/kg Ms	25 3000			20.8 104	23 102	22.4 103	22.7 77.7	21.8 74.9		
Cadmium (Cd)	mg/kg Ms	0.45			0.54	0.54	<0.40	0.47	<0.40		
Chrome (Cr)	mg/kg Ms	90	Résultats de lixiviation conformes aux seuils		37.3	37.3	33.6	39.2	34.4		
Cuivre (Cu)	mg/kg Ms	20	définis pour les		19.3	36	19	20.5	17.3		
Molybdène (Mo) Nickel (Ni)	mg/kg Ms mg/kg Ms	60	déchets inertes dans		<1.00 33.2	<1.02 34.3	<1.00 29.5	<1.02 35	<1.00 29.9		
Plomb (Pb)	mg/kg Ms	50	l'arrêté du 12/12/2014		39	73.6	29.4	32.2	25.9		
Sélénium (Se)	mg/kg Ms	0.7			<1.00	<1.02	<1.00	<1.02	<1.00		
Zinc (Zn)	mg/kg Ms	100			98.4	112	85.3	104	92.6		
Mercure (Hg) Indice hydrocarbure C10-C40	mg/kg Ms	0.1			<0.10	<0.10	<0.10	<0.10	<0.10		
Fraction C10-C16	mg/kg Ms	-	-		<4.00	2.72	4.57	3.15	<4.00		
Fraction C16-C22	mg/kg Ms	-	-		<4.00	3.19	5.78	3.08	<4.00		
Fraction C22-C30	mg/kg Ms	-	-		<4.00	5.19	3.6	3.88	<4.00		
Fraction C30-C40 Somme des hydrocarbures C10-C40	mg/kg Ms mg/kg Ms	-	500		<4.00 <15.0	9 20.1	4.45 18.4	5.86 16	<4.00 <15.0		
HAP			555		47070	2011	10.1		170.0		
Naphtalène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Fluorène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Phénanthrène Pyrène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.051 <0.05	<0.05 <0.05		
Benzo(a)anthracène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Chrysène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.053	<0.053		
Indéno(1,2,3-cd)pyrène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Dibenzo(a,h)anthracène Acénaphtylène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05		
Acénaphtène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.051	<0.05		
Anthracène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	< 0.05		
Fluoranthène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05		
Benzo(a)pyrène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Benzo(g,h,i)pérylène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	< 0.05		
Somme des HAP	mg/kg Ms	-	50		<0.05	<0.05	<0.05	<0.053	<0.053		
BETEX Benzène	mg/kg Ms	_	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Toluène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
Ethylbenzène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	< 0.05		
o-Xylène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05		
m,p-Xylène Somme des BTEX	mg/kg Ms mg/kg Ms	-	6		<0.05 <0.0500	<0.05 <0.0500	<0.05 <0.0500	<0.05 <0.0500	<0.05 <0.0500		
PCB	Tighty Wo		Ů		40.0000	40.0000	40.0000	40.0000	40.0000		
PCB (28)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	< 0.01	<0.01		
PCB (52)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	<0.01		
PCB (101) PCB (118)	mg/kg Ms mg/kg Ms	-	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01		
PCB (138)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	<0.01		
PCB (153)	mg/kg Ms	-	-		<0.01	<0.01	<0.01	<0.01	<0.01		
PCB (180) Somme des PCB	mg/kg Ms mg/kg Ms	-	- 1		<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010	<0.01 <0.010		
ANALYSES SUR ELUAT	mg/ng IVIS		'		NO.010	\.U.U1U	\0.010	\.U.U1U	NO.010		
Paramètres généraux											
pH	-	-	-		8.1	8.2	8.2	8.5	8.1		
Conductivité corrigée à 25 °C	μS/cm	-	-		129	153	107	130	124		
Fraction soluble (c)	mg/kg M.S.	-	4000		<2000	<2000	<2000	2250	<4000		
Carbone organique total Indice phénol	mg/kg M.S. mg/kg M.S.	-	500		<51 <0.51	69 <0.50	80 <0.50	<50 <0.50	61 <0.50		
Anions	gring ivi.o.				30.07	30.00	30.00	30.00	10.00		
Fluorures	mg/kg M.S.	-	10		5.2	6	10	12.8	11		
Chlorures (***)	mg/kg M.S.	-	800		49.4	61.5	24.9	24.1	80.9		
Sulfates (***) Métaux et métalloïdes	mg/kg M.S.	-	1000		<50.7	57.4	50.4	102	214		
Antimoine	mg/kg M.S.	-	0.06		0.02	0.017	0.006	0.007	0.007		
Arsenic	mg/kg M.S.	-	0.5		<0.20	<0.20	<0.20	<0.20	<0.20		
Baryum	mg/kg M.S.	-	20		0.45	0.2	0.26	0.14	0.34		
Cadmium Chrome	mg/kg M.S. mg/kg M.S.	-	0.04 0.5		<0.002 0.12	<0.002 <0.10	<0.002 <0.10	<0.002 <0.10	<0.002 <0.10		
Cuivre	mg/kg M.S.	-	2		<0.20	<0.20	<0.20	<0.20	<0.20		
Mercure	mg/kg M.S.	-	0.01		< 0.001	< 0.001	< 0.001	< 0.001	<0.001		
Molybdène Niekol	mg/kg M.S. mg/kg M.S.	-	0.5		0.05	0.049	0.091	0.067	0.093		
Nickel Plomb	mg/kg M.S. mg/kg M.S.	-	0.4 0.5		<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10		
Zinc	mg/kg M.S.	-	4		<0.20	<0.20	<0.20	<0.20	<0.20		
Selenium	mg/kg M.S.	-	0.1		<0.01	0.01	<0.01	<0.01	< 0.01		

Selenium mg/kg M.S. 0.1 0.01 0.01

* Valeurs limites indicatives issues des textes européens, des arrêtés ministériels et des critères communément appliqués par les centres de stockage

^{*} Valeurs limites indicatives issues des textes européens, des arrêtés ministériels et des critéres communément appliqués par les centres de stockage

(a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut-être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluât, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

LQ : Limite de quantification du laboratoire

Concentrations supérieures aux limites ISDI.

Les résultats d'analyses ont mis en évidence :

- concernant les remblais sableux noirâtres (EC 2, 5, 7 et BGP1/0,20-1,30 m) :
 - un impact généralisé en métaux lourds sur brut (antimoine, arsenic, cadmium, cuivre, plomb, zinc et mercure);
 - des dépassements en COT sur brut ;
 - des dépassements pour les métaux sur éluât (antimoine, cuivre et plomb)
 - un bruit de fond en HCT et en HAP dans des teneurs inferieures au seuils d'acceptation en ISDI au droit des autres échantillons (EC 2, 5, 7 et BGP1/0,20-1,30 m);
 - l'absence de quantification ou des teneurs sous forme de traces (de l'ordre de grandeur de la limite de quantification du laboratoire) pour les BTEX;
 - l'absence de quantification des PCB.
- concernant les remblais sableux ocre/beige (EC4)
 - des anomalies en métaux lourds sur brut (antimoine, cadmium, cuivre, plomb et zinc);
 - l'absence de quantification pour les BTEX, PCB, HAP et HCT;
 - des teneurs inférieures aux valeurs seuils réglementaire pour l'ensemble des autres paramètres.
- concernant les argiles beiges/verdâtres (EC1 et 3) :
 - des anomalies en métaux lourds sur brut (antimoine, cadmium, cuivre, plomb et zinc);
 - la quantification d'HCT sous forme de trace au droit de EC3;
 - l'absence de quantification des BTEX, PCB et HAP;
 - des teneurs inférieures aux valeurs seuils réglementaire pour l'ensemble des autres paramètres
- concernant les argiles beiges/grises (EC6, 8 et 10) :
 - des anomalies en métaux sur brut (antimoine, cadmium, cuivre, et zinc);
 - un dépassement de la valeur seuil défini par l'arrêté ministériel du 12/12/14 pour le fluorure au droit de EC8 et EC10;
 - la quantification d'HCT sous forme de trace pour les échantillons (EC6 et 8)
 - l'absence de quantification des BTEX, PCB et HAP;
 - l'absence de dépassement des valeurs seuils réglementaires au droit des autres échantillons testés.

Au regard de l'ensemble des résultats obtenus, dans le cadre de la réalisation d'un potentiel sous-sol enterré et de l'élimination hors site des déblais excédentaires, il apparait que :

- les remblais sableux noirâtres présents au droit du lot ne sont pas inertes d'un point de vue réglementaire;
- les remblais argilo-graveleux ocres et les argiles beiges/verdâtres sont inertes d'un point de vue réglementaire;

Les argiles beiges/grises apparaissent globalement comme non inertes d'un point de vue réglementaire du fait de légers dépassements pour le paramètre fluorure. Pour rappel ce paramètre n'est pas indicatif d'une pollution anthropique du gisement, mais plus probablement imputable à la composition géochimique de cette lithologie. De ce fait, cette lithologie peut être considérée comme banalisable et éliminé en ISDI sous réserve de l'accord préalable de l'installation.

Réf : CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 20/24

6. Schéma conceptuel

6.1 Projet d'aménagement

Le projet d'aménagement correspond à la construction d'un bâtiment de bureaux avec un niveau de sous-sol potentiel sur l'ensemble du lot 6.1.

Le plan du projet est présenté ci-après :

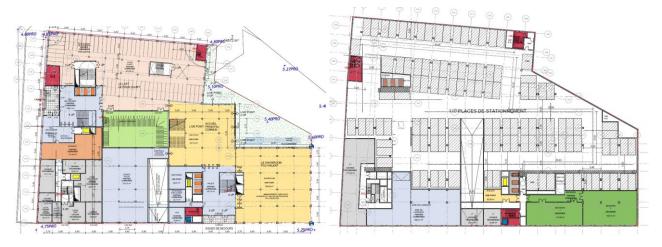


Figure 6 : Plan du RDC et du sous-sol du projet (source : VALODE&PISTRE)

6.2 Synthèse des impacts dans les différents milieux

Au droit des zones investiguées, un impact généralisé en métaux lourds a été mis en évidence au droit des remblais sableux noirâtres.

6.3 Schéma conceptuel

Le schéma conceptuel est présenté de façon à visualiser :

- la ou les sources de pollution ou les milieux (potentiellement impactés) : sols ;
- les enjeux à protéger : futurs travailleurs ;
- les voies de transfert possibles : aucune ;
- les milieux d'exposition : aucun.

Dans l'état futur du site, compte-tenu du projet d'aménagement qui induira le décaissement de l'intégralité du lot pour la réalisation du niveau de sous-sol enterré, l'ensemble des remblais du site seront terrassés et éliminés en filière adéquate. Dans le cas ou des remblais subsisterait sur le lot, les pollutions métalliques seraient in fine confinés sous les aménagements du projet. De ce fait, aucune voie d'exposition n'est à considérer. Par conséquent, le schéma conceptuel n'a pas lieu d'être.

7. Synthèse et recommandations

7.1 Synthèse

Dans le cadre de la réalisation d'un bâtiment de bureau sur un niveau de sous-sol intégral, l'EPA a missionné BURGEAP pour la réalisation d'une évaluation de l'état des milieux au droit du lot 6.1 localisé sur l'ancien site ferroviaire Gattebourse à Bordeaux (33).

Avant 1969, le site abritait des hangars. Entre 1969 et 1993, les hangars ont été démolis pour laisser place aux installations sportives. Depuis 1993, le site a une configuration similaire à celle retrouvée actuellement, à savoir, des cours de tennis, des chemins gravillonnés et un bâtiment. Le bâtiment étant condamné, il n'a pu être visité.

En 2012, GOLDER a réalisé 3 sondages au droit de la zone d'étude. Aucun sondage n'a été effectué par ARCAGEE.

Un piézomètre (GOLDER-2012) est également présent au nord (latéral), à proximité du site. La nappe a été recoupée autour de 2,15 m.

Au total, 10 sondages de sols (3,00 m de profondeur), ont été mis en œuvre par BURGEAP en 2019, à la tarière mécanique.

Les investigations réalisées ont mis en avant :

Pour les sols :

- des impacts généralisés en métaux lourds sur brut au droit des remblais sableux noirâtres ;
- l'absence d'impact en HCT, HAP, BTEX et PCB;
- le caractère non inerte des remblais sableux noirâtres :
- le caractère inerte des remblais argilo-graveleux ocres et les argiles beiges/verdâtres;
- le caractère banalisable des argiles beiges/grises.

Il est à noter l'absence d'information quant à la qualité des déblais présents au droit des cours de tennis, du bâtiment de la SNCF ou des zones de réseaux.

Pour les eaux souterraines :

• l'absence d'impact en HCT, HAP,BTEX, COHV et Métaux lourds (antimoine arsenic, baryum, cadmium, chrome, cuivre, mercure, plomb, molybdène, nickel, sélénium et zinc)

7.2 Recommandations

Compte-tenu du projet d'aménagement envisagé, aucune recommandation n'est émise d'un point de vue sanitaire. Cependant, dans le cas où le projet d'aménagement serait modifié, les remblais présents sur site devront être confinés sous une barrière physique (dalle béton, enrobé ou à minima 0,30 m de terre végétale).

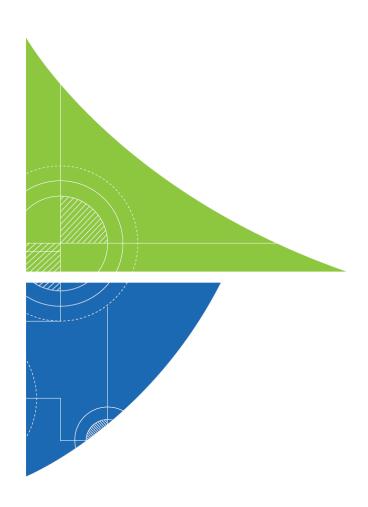
L'ensemble des déblais excédentaires générés devront être éliminés en filières adéquates.

Une attention particulière devra être réalisée :

- Sur l'hygiène et la sécurité des travailleurs lors des travaux d'aménagement notamment au droit des remblais sablo-graveleux noirs qui présentent des impacts notables en métaux lourds (qualité environnementale et sanitaire médiocre). Il conviendra de prévoir les EPI et EPC adéquats aux travaux à réaliser;
- A la présence au droit du lot, d'infrastructures bétonnées résiduelles potentielles pouvant présenter une épaisseur notable. Il conviendra de considérer cet élément dans le cadre de la gestion des futurs déblais qui seront générés par le projet.

Réf: CSSPSO191369 / RSSPSO09919-01 MAMA / MICE / VBE 12/11/2019 Page 22/24

8. Limites d'utilisation d'une étude de pollution


- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.

La responsabilité de BURGEAP ne pourra être engagée si les préconisations ne sont pas mises en œuvre.

 Réf : CSSPSO191369 / RSSPSO09919-01
 MAMA / MICE / VBE
 12/11/2019
 Page 23/24

ANNEXES

Annexe 1. Reportage photographique

Visite de site

Investigations réalisées

Remblais sablo-graveleux noirâtre

Visite de site et investigations Page 1/2

Investigations réalisées

Argile beiges/verdatres

Remblais sablo-argilo-graveleux beiges/ocre

Visite de site et investigations Page 2/2

Annexe 2. Fiches d'échantillonnage des sols

GINIC	23D	EPA		/ A5	8800	1	ВС	PRDEAUX(33)		Anne	xe 1
GIN (BURGE	AP -	F	ICHE D'E	CHANTILL	ONNAC	GE DES S	OLS	3			SO09919 SO131969
Sondage n° Intervenant I Date: 14/1 Condition me	BURGEA 10/19	Heure: 16h20	Technique of Profondeur	t: GEOTEC de forage : T atteinte (m/so e forage (mm)	arière me l): 3			Confection d'échant		ictuel -	BGP 105/10
Localisation X: 41984 Projection:	15 Y	· 6419824	Réf. Matériel : PID Location PLM			Préparation de l'échantillon : homogénéisation					
Z (sol) - m N	IGF: 5	un piézomètre proche		O de l'air ambi échantillonnaç		pmV		Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n° :	N	IS (m/sol):	Doublons :	non				Conditionnement de	es échant ot sol brut		erre)
Sondage po	ur échant	illons témoins : non	Laboratoire	: EUROFIN	S			Conservation des éc		•	
Remarques	:			i au laboratoir	re: 17/1					cière	
Prof.		COUPE GEOL	OGIQUE	T				VATIONS ET M			
(m) _{0,00} –	Lithologio 维维维			Venues d'eau / humidité des sols	5	Corps	ervat s étra		Analy de ter		N°
· =	* * * *										
0,20	\triangleright	 Remblais sablo-graveleu des morceaux de brique 	x avec beige/ocre						0 ppm\	/	
		•									
0,40	 V										
0,60	₽.	•									
0,80	♪:	Remblais sablo-graveleu des morceaux de brique	x avec noirâtre						0 ppm\	/	BGP1(0. 2-1.3m)
	· ~ _	7									
1,00 — — — — —	7.6										
1,20 — =	. Ŭ. ∆										
1,40											
1,60											
		- - - - - -									
1,80 — — — —											
2,00											BGP1(1. 5-2.5m)
2,20		Argiles beige/verdâtre							0 ppm\	/	
2,40		-] 									
1,10											
2,60 —											
2,80		- - - -									
		-									

CINO	23D	EPA		/ A5 0	0088 /	В	ORDEAUX(33)		Anne		
GIN (BURGE/	AP	F	FICHE D'E	CHANTILL	ONNAGE DE	S SOL	S			SO09919 SO131969	
Sondage n° Intervenant l	BURGEA	P: MAMA	Technique of	t: GEOTEC le forage: T	arière mécanique	e	Confection d'échant		ctuel	BGP 105/10	
Date: 15/1 Condition m		Heure: 15h20 jique: couvert	Profondeur de Diamètre de	atteinte (m/sol forage (mm)) : 3 et gaine : 80		Sous échantillons : -				
Localisation du sondage X: 419802 Y: 6419785 Projection: Lambert 93		Analyses de terrain : PID Réf. Matériel : PID Location PLM *mesure PID de l'air ambiant				Préparation de l'échantillon : homogénéisation					
Z (sol) - m N Niveau de la	nappe d	'un piézomètre proche	au poste d'e	échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre	
Pz n°: 0		NS (m/sol): 0 tillons témoins: non	Doublons :	. EUDOEIN			Conditionnement de	s échanti ot sol brut		erre)	
Remarques		tillons témoins : non	Laboratoire		e: 17/10/2016		Conservation des éc	chantillon	s :		
Remarques	· I	001105 0501		r ad laboraton			2)/4 TIQNIQ ET 14		cière		
Prof.		COUPE GEOL	OGIQUE	Venues d'eau /		Observa	RVATIONS ET M	ESURE Analys			
(m) _{0,00} –	Litholog			humidité des sols		Corps étr		de terr		N°	
0,00 =		Enrobé Dalle béton									
0,60		Remblais sablo-graveleu	x noirâtre					0 ppm\	/		
0,80	. V .	•									
1,20		Remblais sablo-argileux graveleux beige/ocre	et					0 ppm\	/	BGP10(1 -1.5m)	
1,60										DOD40/4	
1,80										BGP10(1 .5-2m)	
2,00 —											
2,20 — — — — —		Argiles beige/grise						0 ppm\	/		
2,40										BGP10(2 -3m)	
2,60											
2,80											

GIN	GID	EPA		/ A5 0	0088 /	В	ORDEAUX(33)		Anne	
BURGE	AP AP	F	FICHE D'E	CHANTILL	ONNAGE DES	SOL	S		RSSP CSSP	SO09919 SO131969
Sondage n° Intervenant Date : 14/ Condition m	BURGEAF 10/19	P: MAMA Heure: 16h50 que: Soleil	Technique d Profondeur	t: GEOTEC le forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échanti Sous échantillons :		ctuel -	BGP 105/10
Localisation du sondage X : 419834 Y : 6419820 Projection : Lambert 93		Analyses de terrain : PID Réf. Matériel : PID Location PLM				Préparation de l'échantillon : homogénéisation				
Z (sol) - m N	NGF: 5	un piézomètre proche	*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppmV				Méthode d'échantillonnage : truelle / pelle à main /autre			
Pz n°: 0	N	S (m/sol): 0	Doublons :				Conditionnement des échantillons : pot sol brut (PE / verre)			
Sondage po	our échanti	llons témoins : non	Laboratoire	: EUROFINS	6		Conservation des éc			
Remarques	:		Date d'envo	i au laboratoir	e: 17/10/2016				cière	
Prof.		COUPE GEOL	OGIQUE	T			RVATIONS ET M			
(m)	Lithologie	Description		Venues d'eau / humidité des sols		Observa orps étr	ations angers	Analy: de teri		N°
0,00		Remblais sablo-argilo-gra avec des morceaux de bi beige/ocre	aveleux rique					0 ppm\	/	BGP2(0- 0.5m)
0,60		Remblais sablo-argilo-gravec des morceaux de b	aveleux rique					0 ppm\	/	BGP2(0. 5-1m)
1,20		noirâtre								
1,60 —										
2,40 —		Argiles beige/verdâtre						0 ppm\	/	BGP2(2- 3m)

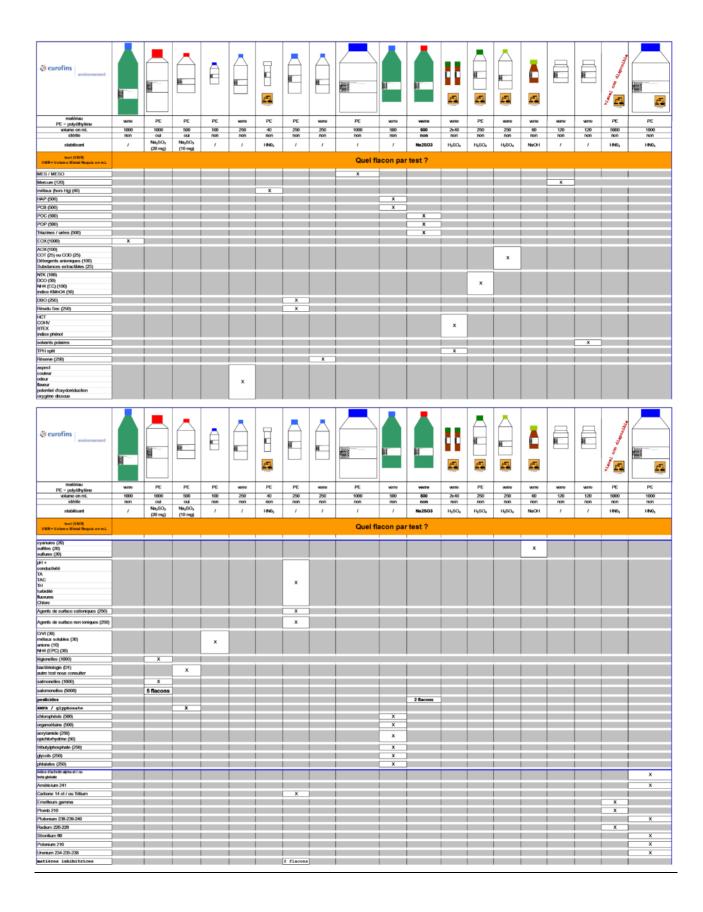
GING	23D	EPA		/ A50	/ 8800	В	ORDEAUX(33)		Anne	
BURGE	AP	F	FICHE D'E	CHANTILLO	ONNAGE DES S	SOL	S			SO09919 SO131969
Sondage n° Intervenant I Date: 14/1 Condition me	BURGEA 10/19	P: MAMA Heure: 17h05 ique: Soleil	Technique of Profondeur	t: GEOTEC le forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation du sondage X: 419804 Y: 6419833 Projection: Lambert 93		Analyses de terrain : PID Réf. Matériel : PID Location PLM				Préparation de l'échantillon : homogénéisation				
Z (sol) - m N	IGF: 5	'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillonnage : truelle / pelle à main /autre			
Pz n°: 0	1	NS (m/sol): 0	Doublons :				Conditionnement des échantillons : pot sol brut (PE / verre)			
		tillons témoins : non	Laboratoire				Conservation des éc			
Remarques	:			ı au laboratoir	e: 17/10/2016				ière	
Prof.		COUPE GEOL	OGIQUE	Ι			RVATIONS ET M			
(m)	Litholog			Venues d'eau / humidité des sols			ations angers	Analy: de teri		N°
0,00	. \\ \triangle \cdot \cd	Terre végétale Remblais limoneux beige	e/ocre					0 ppm\	,	BGP3(0. 05-0.5m)
0,60 —		Remblais sablo-graveleu des morceaux de brique	x avec noirâtre					0 ppm\	,	BGP3(0. 5-1.5m)
1,60 —		Argiles beige/grise						0 ppm\	′	BGP3(1. 5-2.5m)
2,60 —										

Z GIN(2 1D	EPA		/ A5 0	0088 /	ВС	RDEAUX(33)		Anne	
BURGE/	AP	F	FICHE D'E	CHANTILL	ONNAGE DES SO	OLS	}			SO09919 SO131969
Sondage n° Intervenant I Date: 15/1 Condition m	BURGEA 10/19		Technique of Profondeur	<u>at</u> : GEOTEC de forage: T atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel -	BGP 105/10
Localisation X: 41980 Projection:)O Y	6419817	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N	IGF: 5	'un piézomètre proche	au poste d'e	O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	I	NS (m/sol): 0	Doublons :				Conditionnement de	s échant ot sol brut		erre)
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3	-	Conservation des éc		•	
Remarques	:			i au laboratoir	e: 17/10/2016				cière	
Prof.		COUPE GEOL	OGIQUE	T			VATIONS ET M			
(m) _{0,00} –	Litholog			Venues d'eau / humidité des sols	Obse Corps			Analy de ter		N°
	000	Graviers et terre végétale	•							
0,20 		Dalle béton								
0,40 — - - - - - - - -	.♡ ∧·	•								
0,60	D.	Remblais sablo-graveleu des morceaux de brique	x avec noirâtre					0 ppm\	/	BGP4(0. 3-1m)
0,80	∴									
1,00 —		N								
1,20 —										
1,40—										
1,60										BGP4(1- 2m)
1,80										
2,00		Argiles beige/grise						0 ppm\	/	
2,20 — =										
2,40										DOD4/0
2,60										BGP4(2- 3m)
2,80										

E GINA	GID	EPA		/ A5 0	/ 8800	В	ORDEAUX(33)		Anne	
GIN BURGE	AP AP	F	FICHE D'E	CHANTILLO	ONNAGE DES	SOL	S			SO09919 SO131969
Sondage n°	° : BGP5		Sous-traitan	t: GEOTEC			Confection d'échanti	illon :	COOI	BGP 105/10
Intervenant Date: 15/	BURGEA 10/19	P:MAMA Heure:9h10 ique:couvert	Technique of Profondeur	le forage : Tatteinte (m/sole forage (mm)	arière mécanique) : 3		Sous échantillons :		ctuel -	
Localisation X : 41978 Projection :	81 Y	: 6419814	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatic	n
Z (sol) - m N	NGF: 5	'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	١	IS (m/sol): 0	Doublons :				Conditionnement de	s échanti ot sol brut		erre)
Sondage po	our échant	illons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:			i au laboratoir	e: 17/10/2016			glad	cière	
Prof.		COUPE GEOL	OGIQUE				RVATIONS ET M	ESURE	S	
(m)	Lithologi	e Description		Venues d'eau / humidité des sols		observa orps étr		Analy: de teri		N°
0,00 -							ego.re			
		Dalle béton								
0,20 — - - - - -	$\dot{\triangleright}$	 Remblais sablo-graveleu marron/beige foncé 	х					0 ppm\	/	
0,40	.▽	•								
0,60	· · ·	Remblais sablo-graveleu	x noirâtre					0 ppm\	/	BGP5(0. 3-0.8m)
-	₽.	•								
0,80										
1,00		Remblais sablo-limoneux	(0 ppm\	/	
1,20		beige/ocre								
		•								
1,40										
1,60										
1,80										
2,00										BGP5(1. 5-2.5m)
2,20		Argiles beige/verdâtre						0 ppm\	/	
=										
2,40										
2,60										
_,00 _ _ _ _ _										
2,80										
=										
_					1			i		

Z GIN(CID	EPA		/ A5	8800	1	В	ORDEAUX(33)		Anne	
BURGE	AP	F	ICHE D'E	CHANTILL	ONNA	GE DES S	OLS	S			SO09919 SO131969
Sondage n°			Sous-traitar	t: GEOTEC	;			Confection d'échant	illon :	000.	BGP 105/10
Intervenant I Date : 15/1 Condition m	10/19	.P: MAMA Heure: 9h44 jique: couvert	Profondeur	de forage : T atteinte (m/so e forage (mm)	I): 3			Sous échantillons :	pon	ctuel -	
Localisation X: 41978 Projection:	33 Y	6419824	Réf. Matérie	e terrain : PII	tion PLN	Л		Préparation de l'éch	antillon : homogé	néisatio	on
Z (sol) - m N	IGF: 5	'un piézomètre proche	au poste d'	D de l'air ambi échantillonnaç	ge: 0 p	pmV		Méthode d'échantille true	onnage : elle / pelle	à main	/autre
Pz n°: 0	1	NS (m/sol): 0	Doublons :					Conditionnement de			
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFIN	S		\neg	Conservation des éc	ot sol brut		erre)
Remarques	:		Date d'envo	i au laboratoir	e: 17/1	10/2016			gla	cière	
Prof.		COUPE GEOL	OGIQUE					VATIONS ET M	ESURE	S	
(m)	Litholog	Description		Venues d'eau / humidité des sols	5			tions angers	Analy de ter		N°
0,00 _	0000	Graviers et terre végétale	Э					<u> </u>			
0,20		Dalle béton									
0,40	.>	•									
5, .5 = = = = = = = = = = = = = = = = = =	V.	Remblais sablo-graveleu des morceaux de brique marron mélangé	x avec noirâtre et						0 ppm\	/	BGP6(0. 25-0.8m)
0,60	₽.	• maron melange									
0,80	<u>-~ · </u>										
1,00		=									
1,20 —		<u></u>									
=											
= =											
1,40 —		=======================================									
1,60		=									
=	====	-									
1,80		=									
		Argiles beige/grise							0 ppm\	/	
2,00		∷									BGP6(1. 5-2.5m)
=		=									3-2.3111)
=											
2,20											
=		<u>-</u>									
2,40		=									
		₫									
		<u>:</u>									
2,60		=									
		3									
2,80		3									
		크									
=	- <u></u>				L						

CIN	CID	EPA		/ A5 0	0088 /	В	ORDEAUX(33)		Annex	
GIN BURGE	AP AP	F	FICHE D'E	CHANTILL	ONNAGE DES	SOL	S			SO09919 SO131969
Sondage n°			Sous-traitan	t: GEOTEC			Confection d'échanti	illon :	0001	BGP 105/10
Intervenant Date: 15/2 Condition m	10/19	P: MAMA Heure: 10h30 ique: couvert	Technique of Profondeur	de forage : Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Sous échantillons :	pon	ctuel -	
Localisation X: 41979 Projection:	92 Y	6419833	Réf. Matérie	e terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N	NGF: 5	'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre
Pz n°: 0	1	NS (m/sol): 0	Doublons :				Conditionnement de	s échanti ot sol brut		erre)
Sondage po	our échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:			i au laboratoir	e: 17/10/2016			glad	cière	
Prof.		COUPE GEOL	OGIQUE	1			RVATIONS ET M			
(m)	Lithologi	Description		Venues d'eau / humidité des sols		Observa orps étr		Analy: de teri		N°
0,00 -	0000	Graviers et terre végétale	Э				5			
0.20	-	Dalle béton								
0,20 — - - - -		•								
0,40	Δ·.									
0,60	∵∇.	Remblais sablo-graveleu des morceaux de brique marron mélangé	x avec noirâtre et					0 ppm\	/	BGP7(0. 2-0.9m)
0,80										
1,00								0 ppm\	,	
1,20		Algites beige verdatie						о ррин		
1,40										
1,60										
1,80										
2,00										BGP7(1. 5-2.5m)
2,20		Argiles beige/grise						0 ppm\	/	
2,40										
2,60										
2,80										
=		3								


GING	23D	EPA		/ A50	088 /	В	ORDEAUX(33)		Anne		
BURGE	AP	F	ICHE D'E	CHANTILLO	ONNAGE DES SO	OLS	3			SO09919 SO131969	
Sondage n° Intervenant I Date: 15/1 Condition me	BURGEA 10/19	P: MAMA Heure: 16h ique: couvert	Technique d Profondeur	t: GEOTEC le forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :		ctuel -	BGP 105/10	
Localisation X: 41976 Projection:	66 Y	: 6419812	Réf. Matérie	terrain : PID	tion PLM		Préparation de l'éch	antillon : homogé	néisatic	n	
Z (sol) - m N	IGF: 5	'un piézomètre proche) de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/autre	
Pz n°: 0	١	NS (m/sol): 0	Doublons :				Conditionnement des échantillons : pot sol brut (PE / verre)				
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc				
Remarques	:			i au laboratoir	e: 17/10/2016				cière		
Prof.		COUPE GEOL	OGIQUE	-			VATIONS ET M				
(m)	Lithologi	e Description		Venues d'eau / humidité des sols	Obse Corps			Analy: de ter		N°	
0,00 =		Enrobé Dalle béton et brique rou	ge								
0,40 —											
0,60	\bigcirc	Remblais sablo-graveleu	x beige					0 ppm\	/	BGP8(0. 5-0.6m)	
0,80		Remblais argilo-limoneux graveleux verdâtre, beige noirâtre mélangé	c et e et					0 ppm\	/	BGP8(0. 6-1m)	
1,00 —		Argiles beige/verdâtre						0 ppm\	/	BGP8(1- 2m)	
2,40 —										BGP8(2- 3m)	

GIN	CID	EPA		/ A5 0	0088 /	BC	ORDEAUX(33)		Anne	
BURGE	AP AP	ı	FICHE D'E	CHANTILLO	ONNAGE DES SO	OLS	3			SO09919 SO131969
Sondage no Intervenant Date: 15/2 Condition m	BURGEA 10/19	P: MAMA Heure: 16h39 ique: couvert	Technique of Profondeur	nt: GEOTEC de forage: Ta atteinte (m/sol e forage (mm)	arière mécanique) : 3		Confection d'échant Sous échantillons :			BGP 105/10
Localisation X: 41978 Projection: Z (sol) - m N	35 Y Lambert	: 6419800	Analyses de Réf. Matérie *mesure PII	e terrain : PID el : PID Loca D de l'air ambia) tion PLM ant		Préparation de l'éch	homogén	néisatio	on
	a nappe d	'un piézomètre proche NS (m/sol): 0	au poste d' Doublons :	échantillonnag	e: 0 ppmV			elle / pelle		/autre
		illons témoins : non	Laboratoire	: EUROFINS	<u> </u>	_		ot sol brut		erre)
Remarques					e: 17/10/2016		Conservation des échantillons : glacièr			
Prof.		COUPE GEOL	OGIQUE		OBS	ER	VATIONS ET M	ESURE	S	
(m)	Lithologi	e Description		Venues d'eau / humidité des sols	Obse Corps			Analys de terra		N°
0,00 -				Trainiaite des sois	Согра	Спа	iligeis	ue terra	alli	
0,20		Dalle béton								
0,40	• -	Remblais sablo-graveleu	ıx avec					0 ppmV		
	• ` ,	des morceaux de brique	beige					Оррин		
0,60	o .									BGP9(0.
0,80	· · ·	 Remblais argilo-limoneux graveleux verdâtre, beige noirâtre mélangé 	x et e et					0 ppmV		5-1m)
1,00	•-									
1,20	o`•,									
1,40 — - - - - - -										
1,60		Argiles beige/verdâtre						0 ppmV		BGP9(1. 3-2m)
1,80 — 		4								
2,00				-						
2,20										
2,40		Argiles beige/grise						0 ppmV		BGP9(2-
2,60								,,		3m)
2,80										
]	 	-]						1		

Annexe 3. Méthodes analytiques, LQ et flaconnage

Méthode	n° CAS	Molécules	Eaux peu	chargées	Matrice	s solides		Air	
Wethode	II CAS	Wolecules	LQI	Unité	LQI	Unité	µg/tube	μg/filtre	μg/l
COHVs/B	TEXs (Cor	nposés Organo Halogénés Vola	atils / BTEX	s)					13
Méthode par	HS/GC/MS								
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	563-58-6	1,1 Dichloropropène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	630-20-6	1,1,1,2 Tétrachloroéthane	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS HS/GC/MS	71-55-6 79-00-5	1,1,1-Trichloroethane 1,1,2 Trichloroéthane	2 5	μg/l μg/l	0,1 0,2	mg/kgMS mg/kgMS	10 25		
HS/GC/MS	79-00-5	1,1,2 Tichloroethane	5	μg/l μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-34-3	1,1-dichloroéthane	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS HS/GC/MS	106-93-4 590-12-5	1,2 Dibromoéthane 1,2 Dibromoéthène	1 10	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	10	μg/l μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	µg/l	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	120-82-1	1,2,4 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	107-06-2	1,2-Dichloroéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	541-73-1	1,3 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	100.07.0	1,3,5 Trichlorobenzène	5	μg/l	0,2	mg/kgMS	-		
HS/GC/MS	108-67-8	1,3,5 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	106-46-7	1,4-dichlorobenzène	1	µg/l	0,1	mg/kgMS	5		
HS/GC/MS HS/GC/MS	95-49-8	2-Chlorotoluène 2-Ethyltoluène	1 5	μg/l μg/l	0,1 0,2	mg/kgMS mg/kgMS	5		
HS/GC/MS	106-43-4	4-Chlorotoluène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	71-43-2	Benzène	0,5	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	74-97-5	Bromochlorométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS HS/GC/MS	75-27-4 108-90-7	Bromodichlorométhane Chlorobenzène	5 1	μg/l ug/l	0,2 0.1	mg/kgMS mg/kgMS	25 5		
HS/GC/MS	100-90-7	Chloroéthane	50	μg/l μg/l	2	mg/kgMS	5		
HS/GC/MS		Chlorométhane	50	μg/l	2	mg/kgMS			
HS/GC/MS	75-01-4	Chlorure de vinyle	0,5	μg/l	0,02	mg/kgMS	2		
HS/GC/MS HS/GC/MS	156-59-2 10061-01-5	Cis 1,2-dichloroéthylène Cis 1,3-dichloropropène	2 5	μg/l μg/l	0,1 0,2	mg/kgMS mg/kgMS	10 25		
HS/GC/MS	124-48-1	Dibromochlorométhane	2	μg/I μg/I	0,2	mg/kgMS	10		
HS/GC/MS	74-95-3	Dibromométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-09-2	Dichlorométhane	5	μg/I	0,05	mg/kgMS	25		
HS/GC/MS	100-41-4	Ethylbenzène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS		Ethyl-Tert-ButylEther	5 5	μg/l	0,2	mg/kgMS			
HS/GC/MS		Hexachloroéthane Iso-butylbenzène	5	μg/l	0,2	mg/kgMS mg/kgMS			
HS/GC/MS	98-82-8	Isopropylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	108-33-3	m+p-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	106-42-3	Méthyl-Tert-Butyl Ether	5	μg/l	0,05	mg/kgMS			
HS/GC/MS	108-33-3	m-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	104-51-8	n-butylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	103-65-1	n-Propyl benzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	95-47-6	o-xylène	1	μg/l	0,5	mg/kgMS	5		
HS/GC/MS HS/GC/MS	106-42-3	Pentachloroéthane p-xylène	5 1	μg/l μg/l	0,2 0,05	mg/kgMS mg/kgMS	5		
HS/GC/MS	135-98-8	sec-butylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	100-42-5	Styrène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS	98-06-6 127-18-4	tert-butylbenzène Tétrachloroéthylène	1	μg/l μg/l	0,1 0,05	mg/kgMS mg/kgMS	5 5		
HS/GC/MS	56-23-5	Tétrachlorométhane	1	μg/I μg/I	0,05	mg/kgMS	5		
HS/GC/MS	108-88-3	Toluène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	156-60-5	Trans-1,2-Dichloroéthylène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS HS/GC/MS	10061-02-6 75-25-2	Trans-1,3-Dichloropropène Tribromométhane	5 5	μg/l μg/l	0,2 0,2	mg/kgMS mg/kgMS	25 25		
HS/GC/MS	75-25-2	Tribromométhane	0,25	μg/l μg/l	0,2	mg/kgivio	20		
HS/GC/MS	79-01-6	Trichloroéthylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	67-66-3	Trichlorométhane	2	μg/l	0,1	mg/kgMS	10		
	carbures Vol	latils par HS/GC/MS							
HS/GC/MS	-	>MeC5-nC8	30	μg/l	1	mg/kgMS	100		
HS/GC/MS	-	>nC8-nC10	30	μg/l	1	mg/kgMS	100		
HS/GC/MS	-	>nC10-nC12					100		

Méthode	n° CAS	Molécules	•	chargées		s solides		Air	
00111/ /5	TEV (0		LQI	Unité	LQI	Unité	µg/tube	μg/filtre	μg/l
	•	nposés Organo Halogénés Vol	atils / B I EX	.S)					
Méthode pa	r HS/GC/MS								1
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
110/00/140	500 50 0	4.4 Diablasses 3	0	//	0.4		40		
HS/GC/MS HS/GC/MS	563-58-6	1,1 Dichloropropène	2 1	μg/l	0,1 0,1	mg/kgMS mg/kgMS	10		
HS/GC/MS	630-20-6 71-55-6	1,1,1,2 Tétrachloroéthane 1,1,1-Trichloroethane	2	μg/l	0,1		5 10		
HS/GC/MS	79-00-5	1,1,2 Trichloroéthane	5	μg/l μg/l	0,1	mg/kgMS mg/kgMS	25		
HS/GC/MS	79-00-5	1,1,2 Tichloroethane	5	μg/l μg/l	0,2	mg/kgMS	23		
HS/GC/MS	75-34-3	1,1-dichloroéthane	2	μg/l	0,2	mg/kgMS	10		
HS/GC/MS	106-93-4	1,2 Dibromoéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	590-12-5	1,2 Dibromoéthène	10	μg/l	0,00	ing/kgine	- Č		
		,					_		
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,2	mg/kgMS			
HS/GC/MS	120-82-1	1,2,4 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
TPH Split Ar	omatiques /								
-	-	C5 – C6	10	μg/l	10	mg/kgMS	10		
-	-	>C6 – C8	10	μg/l	10	mg/kgMS	10		
-	-	>C8 – C10	10	μg/l	10	mg/kgMS	10		
-	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 - C16	10	μg/l	10	mg/kgMS	10		
-	-	>C16 - C21	10	μg/l	10	mg/kgMS			
-	-	>C21 – C35	10	μg/l	10	mg/kgMS			
-	-	>C35	10	μg/l	10 80	mg/kgMS	50		
<u> </u>	-	Somme Fractions aliphatiques >C6 – C7	80 10	μg/l	10	mg/kgMS mg/kgMS	50 10		
<u> </u>	-	>C6 - C7 >C7 - C8	10	μg/l μg/l	10	mg/kgMS mg/kgMS	10		
	-	>C7 - C6 >C8 - C10	10	μg/l μg/l	10	mg/kgMS	10		
	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 – C16	10	μg/l	10	mg/kgMS	10		
-	-	>C16 – C21	10	μg/l	10	mg/kgMS			
-	-	>C21 – C35	10	μg/l	10	mg/kgMS			
-	-	>C35	10	μg/l	10	mg/kgMS			
-	-	Somme Fractions aromatiquess	80	μg/l	80	mg/kgMS	50		
-	-	TPH (somme)	160	μg/l	160	mg/kgMS	100		
HAPs (Hy	drocarbure	s Aromatiques Polycycliques)							
	91-20-3	Naphtalène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	91-57-6	2-Méthyl Naphtalène	0,01	μg/l	0,05	mg/kgMS			
		Acénaphtylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,1	
		Acénaphtène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluorène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Phénanthrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		2-Methylfluoranthène Benzo(a)anthracène	0,01	μg/l	0,05 0,05	mg/kgMS mg/kgMS	0.05	0.05	
			0,01 0,01	μg/l	0,05	mg/kglviS mg/kgMS	0,05 0,05	0,05	
	 	Chrysène Benzo(b)fluoranthène	0,01	μg/l μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(k)fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	1	Benz(a)pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	1	Dibenzo(a,h)anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Indéno-(1,2,3,c,d)-pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(g,h,i)pérylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(b+k)fluoranthène	0,02	μg/l	0,1	mg/kgMS	0,1	0,1	
HCTs (Hv	drocarbure	s, Fractions aliphatiques, Fract	•		Split Ali/A				
CPG	-	Hydrocarbures totaux	0,03	mg/l	15	mg/kgMS			
CPG		Hydrocarbures dissous	0,05	mg/l					
UPG									
	oar méthod								
	oar méthod		0,02	mg/l	1	mg/kgMS		0,25	0,005
METAUX	oar méthod	e ICP AES	0,02 0,005	mg/l mg/l	1	mg/kgMS mg/kgMS		0,25 2,5	0,005 0,05
METAUX ICP-AES	-	e ICP AES Antimoine			1 1 1				
METAUX ICP-AES ICP-AES ICP-AES ICP-AES	-	e ICP AES Antimoine Arsenic	0,005	mg/l	1	mg/kgMS mg/kgMS mg/kgMS		2,5	0,05 0,005 0,005
METAUX ICP-AES ICP-AES ICP-AES		e ICP AES Antimoine Arsenic Baryum	0,005 0,005	mg/l mg/l	1	mg/kgMS mg/kgMS		2,5 0,25	0,05 0,005
ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	- - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre	0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l	1 1 5 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25	0,05 0,005 0,005 0,005 0,005
ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène	0,005 0,005 0,005 0,005 0,01 0,005	mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5	0,05 0,005 0,005 0,005 0,005 0,005
METAUX I ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	- - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuiwe Molybdène Nickel	0,005 0,005 0,005 0,005 0,005 0,01 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25	0,05 0,005 0,005 0,005 0,005
METAUX I ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb	0,005 0,005 0,005 0,005 0,001 0,001 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
METAUX I ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	- - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
METAUX ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
METAUX ICP-AES		e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor	0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,005 0,005	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5 10 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuive Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105	0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,001 0,002 escence At	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5 10 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149	0,005 0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,001 0,002 escence At	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 5 10 5	mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149 PCB 170	0,005 0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,001 0,002 escence A	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 1 5 10 5 0,01	mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149 PCB 170 PCB 18	0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,001 0,01 0,	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 1 5 10 5 10 5 10 5	mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005
ICP-AES	- - - - - - - - - - - - - - - - - - -	e ICP AES Antimoine Arsenic Baryum Cadmium Chrome Cuivre Molybdène Nickel Plomb Selenium Zinc e SFA (Spectrométrie par Fluor Mercure ENYLS (PCBs) PCB 105 PCB 149 PCB 170	0,005 0,005 0,005 0,005 0,005 0,001 0,005 0,005 0,005 0,001 0,002 escence A	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 5 5 1 1 1 5 10 5 0,01	mg/kgMS		2,5 0,25 0,25 0,25 0,25 0,25 2,5 0,25	0,05 0,005 0,005 0,005 0,005 0,005 0,005

Annexe 4. Bordereaux d'analyse des sols

BURGEAP
Monsieur Mickaël CAPDOUZE
4 Boulevard Jean-Jacques Bosc
Les portes de Bègles
33130 BEGLES

RAPPORT D'ANALYSE

Dossier N°: 19E152062 Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01 Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Coordinateur de Projets Clients : Mathieu Hubner / MathieuHubner@eurofins.com / +33 3 88 02 33 81

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

	Commande : BD19261		
N° Ech	Matrice		Référence échantillon
001	Sol	(SOL)	BGP1 0,2-1,3
002	Sol	(SOL)	BGP1 1,5-2,5
003	Sol	(SOL)	BGP2 0-0,5
004	Sol	(SOL)	BGP2 0,5-1
005	Sol	(SOL)	BGP2 2-3
006	Sol	(SOL)	BGP3 0,05- 0,5
007	Sol	(SOL)	BGP3 0,5-1
800	Sol	(SOL)	BGP3 1,5-3
009	Sol	(SOL)	BGP4 0,3- 1
010	Sol	(SOL)	BGP4 1-2
011	Sol	(SOL)	BGP4 2-3
012	Sol	(SOL)	BGP5 0,3-0,8
013	Sol	(SOL)	BGP5 1,5-2,5
014	Sol	(SOL)	BGP6 0,25-0,8
015	Sol	(SOL)	BGP6 1,5-2,5
016	Sol	(SOL)	BGP7 0,2-0,9
017	Sol	(SOL)	BGP7 0,9-1,3
018	Sol	(SOL)	BGP7 1,5-2,5
019	Sol	(SOL)	BGP8 0,6-1
020	Sol	(SOL)	BGP8 1-2
021	Sol	(SOL)	BGP8 2-3
022	Sol	(SOL)	BGP9 0,5-1
023	Sol	(SOL)	BGP9 1,3-2
024	Sol	(SOL)	BGP9 2-3
025	Sol	(SOL)	BGP10 1-1,5
026	Sol	(SOL)	BGP10 1,5-2
027	Sol	(SOL)	BGP10 2-3
028	Sol	(SOL)	EC1 (BGP8 1-2/BGP9 1,3-2)
029	Sol	(SOL)	EC2 (BGP1 0,2-1,3/BGP2 0,5-1)
030	Sol	(SOL)	EC3 (BGP1 1,5-2,5)/BGP2 2-3)
031	Sol	(SOL)	EC4 (BGP2 0-0,5/BGP10 1-1,5)
032	Sol	(SOL)	EC5 (BGP3 0,5-1,5/BGP7 0,2-0,9)
033	Sol	(SOL)	EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)
034	Sol	(SOL)	EC7 (BGP4 0,3-1/BGP5 0,3-0,8/BGP6 0,25-0,8)
035	Sol	(SOL)	EC8 (BGP4 2-3/BGP6 (1,5-2,5)

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

037 Sol (SOL) EC10 (BGP9 2-3/BGP10 2-3)

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon		001	002	003	004	005	006
Référence client :		BGP1 0,2-1,3	BGP1 1,5-2,5	BGP2 0-0,5	BGP2 0,5-1	BGP2 2-3	BGP3 0,05- 0,5
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C
		Ad	ministratif				
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour réaliser un mélange	g/kg	Fait	Fait	Fait		Fait	
	P	réparation	Physico-C	himique			
XXS06 : Séchage à 40°C		* -					
LS896 : Matière sèche	% P.B.	* 86.7					
XXS07 : Refus Pondéral à 2 mm	% P.B.	* 14.0					
		Indice	s de polluti	ion			
LS08X : Carbone Organique Total (COT)	mg/kg M.S.	* 291000					
			Métaux				
XXS01 : Minéralisation eau		* -					
régale - Bloc chauffant LS863 : Antimoine (Sb)	mg/kg M.S.	* 53.7					
LS865 : Arsenic (As)	mg/kg M.S.	* 49.5					
LS866 : Baryum (Ba)	mg/kg M.S.	* 473					
LS870 : Cadmium (Cd)	mg/kg M.S.	* 2.10					
LS872 : Chrome (Cr)	mg/kg M.S.	* 29.8					
LS874 : Cuivre (Cu)	mg/kg M.S.	* 3450					
LS880 : Molybdène (Mo)	mg/kg M.S.	* 4.86					
LS881 : Nickel (Ni)	mg/kg M.S.	* 39.3					

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		001 BGP1 0,2-1,3	002 BGP1 1,5-2,5	003 BGP2 0-0,5	004 BGP2 0,5-1	005 BGP2 2-3	006 BGP3 0,05- 0,5
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C
			Métaux				
LS883 : Plomb (Pb)	mg/kg M.S.	* 2550					
LS885 : Sélénium (Se)	mg/kg M.S.	<1.00					
LS894 : Zinc (Zn)	mg/kg M.S.	* 770					
LSA09 : Mercure (Hg)	mg/kg M.S.	* 2.22					
		Hydroc	arbures tot	aux			
LS919 : Hydrocarbures totaux (4 tran	nches)						
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg M.S.	* 133					
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.	9.64					
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.	29.9					
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.	52.5					
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.	40.7					
Н	ydrocarbı	ires Aroma	atiques Pol	ycycliques	(HAPs)		
LSRHU : Naphtalène	mg/kg M.S.	* 0.21					
LSRHI : Fluorène	mg/kg M.S.	* 0.061					
LSRHJ : Phénanthrène	mg/kg M.S.	* 1.4					
LSRHM : Pyrène	mg/kg M.S.	* 2.2					
LSRHN : Benzo-(a)-anthracène	mg/kg M.S.	* 1.0					
LSRHP : Chrysène	mg/kg M.S.	* 1.6					
LSRHS : Indeno (1,2,3-cd) Pyrène	mg/kg M.S.	* 1.5					
LSRHT : Dibenzo(a,h)anthracène	mg/kg M.S.	* 0.54					

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon			001	002	003	004	005 BCB2 2 2	006
Référence client :			BGP1 0,2-1,3	BGP1 1,5-2,5	BGP2 0-0,5	BGP2 0,5-1	BGP2 2-3	BGP3 0,05- 0,5
Matrice :			SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :			/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019
Date de début d'analyse : Température de l'air de l'enceinte :		19	/10/2019 12°C	19/10/2019 12°C	19/10/2019 12°C	18/10/2019 12°C	19/10/2019 12°C	18/10/2019 12°C
							12 0	12 0
				atiques Pol	ycyciiques	(HAPS)		
LSRHV : Acénaphthylène	mg/kg M.S.	*	0.16					
LSRHW : Acénaphtène	mg/kg M.S.	*	<0.05					
LSRHK : Anthracène	mg/kg M.S.	*	0.38					
LSRHL : Fluoranthène	mg/kg M.S.	*	2.4					
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.	*	2.2					
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.	*	0.67					
LSRHH : Benzo(a)pyrène	mg/kg M.S.	*	1.7					
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	*	1.2					
LSFF9: Somme des HAP	mg/kg M.S.		17					
	F	Poly	chloro	biphényles	(PCBs)			
LS3U7 : PCB 28	mg/kg M.S.	*	<0.01					
LS3UB : PCB 52	mg/kg M.S.	*	<0.01					
LS3U8 : PCB 101	mg/kg M.S.	*	<0.01					
LS3U6 : PCB 118	mg/kg M.S.	*	<0.01					
LS3U9 : PCB 138	mg/kg M.S.	*	<0.01					
LS3UA: PCB 153	mg/kg M.S.	*	<0.01					
LS3UC : PCB 180	mg/kg M.S.	*	<0.01					
LSFEH: Somme PCB (7)	mg/kg M.S.		<0.010					
			Comp	osés Volat	ils			
LS0XU : Benzène	mg/kg M.S.	*	<0.05					

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :			001 BGP1 0,2-1,3	002 BGP1 1,5-2,5	003 BGP2 0-0,5	004 BGP2 0,5-1	005 BGP2 2-3	006 BGP3 0,05- 0,5	
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			SOL /10/2019 0/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	
			Comp	osés Volat	ils				
LS0Y4 : Toluène	mg/kg M.S.	*	0.06						
LS0XW : Ethylbenzène	mg/kg M.S.	*	<0.05						
LS0Y6 : o-Xylène	mg/kg M.S.	*	<0.05						
LS0Y5 : m+p-Xylène	mg/kg M.S.	*	<0.05						
LS0IK : Somme des BTEX	mg/kg M.S.		0.0600						
Lixiviation									
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures		*	Fait						
Refus pondéral à 4 mm	% P.B.	*	4.3						
XXS4D : Pesée échantillon lixiviation Volume	ml	*	240						
Masse	g	*	23.5						
	A	na	lyses in	nmédiates s	sur éluat				
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		*	8.2						
Température de mesure du pH	°C		20						
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm	*	125						
Température de mesure de la conductivité	°C		20.7						
LSM46 : Résidu sec à 105°C (Fraction s sur éluat Résidus secs à 105 °C	mg/kg M.S.	*	<2000						

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :			001 BGP1 0,2-1,3	002 BGP1 1,5-2,5	003 BGP2 0-0,5	004 BGP2 0,5-1	005 BGP2 2-3	006 BGP3 0,05- 0,5
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			SOL 10/2019 /10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C
	A	nal	yses in	nmédiates s	sur éluat			
LSM46 : Résidu sec à 105°C (Fraction s sur éluat Résidus secs à 105°C (calcul)	% MS	*	<0.2					
	l	Indi	ces de	pollution s	ur éluat			
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg M.S.	*	<51					
LS04Y : Chlorures sur éluat	mg/kg M.S.		31.0					
LSN71 : Fluorures sur éluat	mg/kg M.S.		<5.00					
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.		152					
LSM90 : Indice phénol sur éluat	mg/kg M.S.	*	<0.51					
			Méta	ux sur élua	ıt			
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.	*	<0.20					
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.	*	1.89					
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.	*	<0.10					
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.	*	1.54					
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.		0.069					
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.	*	<0.10					
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.	*	0.75					
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.	*	1.02					
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.	*	<0.001					
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.	*	0.11					

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon	001	002	003	004	005	006
Référence client :	BGP1	BGP1 1,5-2,5	BGP2 0-0,5	BGP2 0,5-1	BGP2 2-3	BGP3 0,05-
	0,2-1,3					0,5
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019
Date de début d'analyse :	19/10/2019	19/10/2019	19/10/2019	18/10/2019	19/10/2019	18/10/2019
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C

Métaux sur éluat

mg/kg M.S. <0.002 LSN05: Cadmium (Cd) sur éluat LSN41 : Sélénium (Se) sur éluat mg/kg M.S. <0.01

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon	007	800	009	010	011	012				
Référence client :	BGP3 0,5-1	BGP3 1,5-3	BGP4 0,3- 1	BGP4 1-2	BGP4 2-3	BGP5 0,3-0,8				
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL				
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019				
Date de début d'analyse :	19/10/2019	19/10/2019	19/10/2019	18/10/2019	19/10/2019	19/10/2019				
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C				
Administratif										
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour g/kg réaliser un mélange	Fait	Fait	Fait		Fait	Fait				

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon	013	014	015	016	017	018
Référence client :	BGP5	BGP6	BGP6 1,5-2,5	BGP7 0,2-0,9	BGP7 0,9-1,3	BGP7 1,5-2,5
	1,5-2,5	0,25-0,8				
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019
Date de début d'analyse :	18/10/2019	19/10/2019	19/10/2019	19/10/2019	18/10/2019	19/10/2019
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C
	Ad	ministratif				
LS0IR : Mise en réserve de						
l'échantillon (en option)						
LSRGJ : Echantillon utilisé pour 9 ^{/kg} réaliser un mélange		Fait	Fait	Fait		Fait

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon	019	020	021	022	023	024
Référence client :	BGP8 0,6-1	BGP8 1-2	BGP8 2-3	BGP9 0,5-1	BGP9 1,3-2	BGP9 2-3
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019
Date de début d'analyse :	18/10/2019	19/10/2019	18/10/2019	18/10/2019	19/10/2019	19/10/2019
Température de l'air de l'enceinte :	12°C	12°C	12°C	12°C	12°C	12°C
	Αd	ministratif				

Administratif									
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour réaliser un mélange		Fait			Fait	Fait			

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3	028 EC1 (BGP8 1-2/BGP9 1,3-2)	029 EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 21/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C
		Ad	ministratif				
LS0IR : Mise en réserve de l'échantillon (en option) LSRGJ : Echantillon utilisé pour réaliser un mélange	g/kg	Fait		Fait			
	P	réparation	Physico-C	himique			
XXS06 : Séchage à 40°C					* -	* -	* -
LS896 : Matière sèche	% P.B.				* 77.7	* 78.9	* 78.1
XXS07 : Refus Pondéral à 2 mm	% P.B.				* 21.1	* 16.5	* 35.1
LSL31 : Confection d'un échantillon moyen					Fait	Fait	Fait
		Indice	s de polluti	on			
LS08X : Carbone Organique Total (COT)	mg/kg M.S.				* 6160	* 331000	* 7930
			Métaux				
XXS01 : Minéralisation eau régale - Bloc chauffant					* -	* -	* -
LS863 : Antimoine (Sb)	mg/kg M.S.				3.19	* 69.4	3.63
LS865 : Arsenic (As)	mg/kg M.S.				* 20.8	* 53.3	23.0
LS866 : Baryum (Ba)	mg/kg M.S. mg/kg M.S.				* 104 * 0.54	* 532 * 1.52	* 102 * 0.54
LS870 : Cadmium (Cd)					* 37.3	* 28.2	* 37.3
LS872 : Chrome (Cr)	mg/kg M.S. mg/kg M.S.				* 19.3	* 4920	* 36.0
LS874 : Cuivre (Cu)	mg/kg w.s.				19.3	4920	30.0

ACCREDITATION

Nº 1- 1488

Site de saverne

www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3		028 C1 (BGP8 -2/BGP9 1,3-2)),2-	029 2 (BGP1 1,3/BGP2 0,5-1)		030 C3 (BGP1 ,5-2,5)/BGP 2 2-3)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C		SOL 6/10/2019 9/10/2019 12°C		SOL /10/2019 /10/2019 12°C		SOL 6/10/2019 19/10/2019 12°C
			Métaux							
LS880 : Molybdène (Mo)	mg/kg M.S.				*	<1.00	*	5.84	*	<1.02
LS881 : Nickel (Ni)	mg/kg M.S.				*	33.2	*	36.1	*	34.3
LS883 : Plomb (Pb)	mg/kg M.S.				*	39.0	*	3360	*	73.6
LS885 : Sélénium (Se)	mg/kg M.S.					<1.00		<1.00		<1.02
LS894 : Zinc (Zn)	mg/kg M.S.				*	98.4	*	871	*	112
LSA09 : Mercure (Hg)	mg/kg M.S.				*	<0.10	*	3.23	*	<0.10
	Hydrocarbures totaux									
LS919: Hydrocarbures totaux (4 trans (C10-C40)	ches)								Г	
Indice Hydrocarbures (C10-C40)	mg/kg M.S.				*	<15.0	*	287	*	20.1
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.					<4.00		18.3		2.72
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.					<4.00		80.3		3.19
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.					<4.00		113		5.19
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.					<4.00		75.2		9.00
Ну	ydrocarbu	ures Aroma	tiques Pol	ycycliques	(H	IAPs)				
LSRHU : Naphtalène	mg/kg M.S.				*	<0.05	*	0.61	*	<0.05
LSRHI : Fluorène	mg/kg M.S.				*	<0.05	*	0.18	*	<0.05
LSRHJ : Phénanthrène	mg/kg M.S.				*	<0.05	*	3.8	*	<0.05
LSRHM : Pyrène	mg/kg M.S.				*	<0.05	*	4.1	*	<0.05
LSRHN : Benzo-(a)-anthracène	mg/kg M.S.				*	<0.05	*	2.2	*	<0.05

ACCREDITATION

Nº 1- 1488

Site de saverne

www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		025 BGP10 1-1,5 SOL 16/10/2019 19/10/2019 12°C	026 BGP10 1,5-2 SOL 16/10/2019 18/10/2019 12°C	027 BGP10 2-3 SOL 16/10/2019 19/10/2019 12°C	028 EC1 (BGP8 1-2/BGP9 1,3-2) SOL 16/10/2019 19/10/2019 12°C	029 EC2 (BGP1 J,2-1,3/BGP2 0,5-1) SOL 16/10/2019 21/10/2019 12°C	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3) SOL 16/10/2019 19/10/2019 12°C
	lydrocarbu	ures Aroma	ntiques Pol	ycycliques	(HAPs)		
LSRHP : Chrysène	mg/kg M.S.				* <0.05	* 3.7	* <0.05
LSRHS : Indeno (1,2,3-cd) Pyrène	mg/kg M.S.				* <0.05	* 1.8	* <0.05
LSRHT : Dibenzo(a,h)anthracène	mg/kg M.S.				* <0.05	* 1.7	* <0.05
LSRHV : Acénaphthylène	mg/kg M.S.				* <0.05	* 0.25	* <0.05
LSRHW : Acénaphtène	mg/kg M.S.				* <0.05	* 0.34	* <0.05
LSRHK : Anthracène	mg/kg M.S.				* <0.05	* 1.1	* <0.05
LSRHL : Fluoranthène	mg/kg M.S.				* <0.05	* 5.0	* <0.05
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.				* <0.05	* 3.8	* <0.05
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.				* <0.05	* 3.2	* <0.05
LSRHH : Benzo(a)pyrène	mg/kg M.S.				* <0.05	* 2.7	* <0.05
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.				* <0.05	* 1.7	* <0.05
LSFF9 : Somme des HAP	mg/kg M.S.				<0.05	36	<0.05
	F	Polychlorol	biphényles	(PCBs)			
LS3U7 : PCB 28	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3UB : PCB 52	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3U8 : PCB 101	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3U6 : PCB 118	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3U9 : PCB 138	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3UA : PCB 153	mg/kg M.S.				* <0.01	* <0.01	* <0.01
LS3UC : PCB 180	mg/kg M.S.				* <0.01	* <0.01	* <0.01

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3	028 EC1 (BGP8 1-2/BGP9 1,3-2)	029 EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3)
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 21/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C
	i	Polychlorol	biphényles	(PCBs)			
LSFEH: Somme PCB (7)	mg/kg M.S.				<0.010	<0.010	<0.010
		Comp	osés Volat	ils			
LS0XU : Benzène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0Y4 : Toluène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0XW : Ethylbenzène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0Y6 : o-Xylène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0Y5 : m+p-Xylène	mg/kg M.S.				* <0.05	* <0.05	* <0.05
LS0IK : Somme des BTEX	mg/kg M.S.				<0.0500	<0.0500	<0.0500
		Li	xiviation				
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures					* Fait	* Fait	* Fait
Refus pondéral à 4 mm	% P.B.				* 1.1	* 21.1	* 1.4
XXS4D : Pesée échantillon lixiviation Volume	ml				* 240	* 240	* 240
Masse	g				* 24.2	* 24.2	* 24.2
	A	nalyses im	ımédiates s	sur éluat			
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)					* 8.1	* 8.00	* 8.2
Température de mesure du pH	°C				21	21	21
LSQ02 : Conductivité à 25°C sur éluat							

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon		025	026	027	028	029	030			
Référence client :		BGP10 1-1,5	BGP10 1,5-2	BGP10 2-3	EC1 (BGP8 1-2/BGP9 1,3-2)	EC2 (BGP1),2-1,3/BGP2 0,5-1)	EC3 (BGP1 1,5-2,5)/BGP 2 2-3)			
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL			
Date de prélèvement :		16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019			
Date de début d'analyse :		19/10/2019	18/10/2019	19/10/2019	19/10/2019	21/10/2019	19/10/2019			
Température de l'air de l'enceinte :		12°C	12°C	12°C	12°C	12°C	12°C			
	A	nalyses im	médiates s	sur éluat						
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm				* 129	* 128	* 153			
Température de mesure de la conductivité	°C				20.7	21.0	20.9			
LSM46 : Résidu sec à 105°C (Fraction s	soluble)									
sur éluat Résidus secs à 105 °C	mg/kg M.S.				* <2000	* <2000	* <2000			
Résidus secs à 105°C (calcul)	% MS				* <0.2	* <0.2	* <0.2			
Indices de pollution sur éluat										
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg M.S.				* <51	* <50	* 69			
LS04Y : Chlorures sur éluat	mg/kg M.S.				* 49.4	* 22.8	* 61.5			
LSN71 : Fluorures sur éluat	mg/kg M.S.				* 5.20	* 5.36	* 6.00			
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.				* <50.7	* 136	* 57.4			
LSM90 : Indice phénol sur éluat	mg/kg M.S.				* <0.51	* <0.50	* <0.50			
		Méta	ux sur élua	ıt						
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.				* <0.20	* <0.20	* <0.20			
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.				* 0.45	* 0.76	* 0.20			
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.				* 0.12	* 0.14	* <0.10			
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.				* <0.20	* 2.78	* <0.20			
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.				* 0.050	* 0.097	* 0.049			
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.				* <0.10	* <0.10	* <0.10			

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon Référence client :		025 BGP10 1-1,5	026 BGP10 1,5-2	027 BGP10 2-3	028 EC1 (BGP8 1-2/BGP9 1,3-2)	029 EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	030 EC3 (BGP1 1,5-2,5)/BGP 2 2-3)					
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 18/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C	SOL 16/10/2019 21/10/2019 12°C	SOL 16/10/2019 19/10/2019 12°C					
Métaux sur éluat												
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.				* <0.10	* 1.56	* <0.10					
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.				* <0.20	* 1.26	* <0.20					
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.				* <0.001	* <0.001	* <0.001					
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.				* 0.02	* 0.19	* 0.017					
LSN05 : Cadmium (Cd) sur éluat	mg/kg M.S.				* <0.002	* <0.002	* <0.002					
LSN41 : Sélénium (Se) sur éluat	mg/kg M.S.				* <0.01	* <0.01	* 0.01					

RAPPORT D'ANALYSE

Dossier N°: 19E152062

N° de rapport d'analyse : AR-19-LK-177684-01

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Version du : 28/10/2019

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :)-0,5	031 4 (BGP2 5/BGP10 1-1,5) SOL 10/2019 /10/2019 12°C),ŧ	032 C5 (BGP3 5-1,5/BGP7 0,2-0,9) SOL 6/10/2019 9/10/2019 12°C	1,5 -	033 6 (BGP3 2,5/BGP7 1,5-2,5) SOL /10/2019 /10/2019 12°C	0, 0,3	034 C7 (BGP4 3-1/BGP5 3-0,8/BGP6 0,25-0,8) SOL 6/10/2019 9/10/2019 12°C	2-3 (1	035 8 (BGP4 3/BGP6 1,5-2,5) SOL 10/2019 /10/2019 12°C	
Préparation Physico-Chimique												
xxs06 : Séchage à 40°C		*	-	*	-	*	-	*	-	*	-	
LS896 : Matière sèche	% P.B.	*	91.4	*	81.9	*	80.2	*	84.3	*	77.5	
XXS07 : Refus Pondéral à 2 mm	% P.B.	*	21.3	*	11.8	*	44.8	*	44.2	*	20.2	
LSL31 : Confection d'un échantillon moyen			Fait		Fait		Fait		Fait		Fait	
Indices de pollution												
LS08X : Carbone Organique Total (COT)	mg/kg M.S.	*	10000	*	295000	*	4050	*	270000	*	3890	
Métaux												
XXS01 : Minéralisation eau régale - Bloc chauffant LS863 : Antimoine (Sb)	mg/kg M.S.	*	4.49	*	- 47.8	*	2.71	*	- 41.1	*	2.79	
LS865 : Arsenic (As)	mg/kg M.S.	*	16.1	*	54.7	*	22.4	*	89.7	*	22.7	
LS866 : Baryum (Ba)	mg/kg M.S.	*	54.3	*	472	*	103	*	364	*	77.7	
LS870 : Cadmium (Cd)	mg/kg M.S.	*	0.86	*	1.52	*	<0.40	*	1.38	*	0.47	
LS872 : Chrome (Cr)	mg/kg M.S.	*	21.0	*	21.5	*	33.6	*	22.3	*	39.2	
LS874 : Cuivre (Cu)	mg/kg M.S.	*	87.8	*	3520	*	19.0	*	1380	*	20.5	
LS880 : Molybdène (Mo)	mg/kg M.S.	*	<1.00	*	5.27	*	<1.00	*	10.3	*	<1.02	
LS881 : Nickel (Ni)	mg/kg M.S.	*	16.0	*	42.7	*	29.5	*	65.6	*	35.0	
LS883 : Plomb (Pb)	mg/kg M.S.	*	93.1	*	1880	*	29.4	*	1390	*	32.2	
LS885 : Sélénium (Se)	mg/kg M.S.		<1.00		<1.00		<1.00		<1.00		<1.02	

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon			031		032		033		034		035
Référence client :)-0,	4 (BGP2 5/BGP10 1-1,5)		EC5 (BGP3 5-1,5/BGP7 0,2-0,9)	1,5	1,5-2,5)	0	EC7 (BGP4 ,3-1/BGP5 3-0,8/BGP6 0,25-0,8)	2	C8 (BGP4 :-3/BGP6 (1,5-2,5)
Matrice :		4.0	SOL		SOL	4.0	SOL		SOL		SOL
Date de prélèvement : Date de début d'analyse :			/10/2019 9/10/2019		16/10/2019 19/10/2019		6/10/2019 9/10/2019		16/10/2019 19/10/2019		6/10/2019 9/10/2019
Température de l'air de l'enceinte :		13	12°C		12°C	13	12°C		12°C		12°C
Métaux											
LS894 : Zinc (Zn)	mg/kg M.S.	*	65.6	*	693	*	85.3	*	552	*	104
LSA09 : Mercure (Hg)	mg/kg M.S.	*	<0.10	*	1.37	*	<0.10	*	0.80	*	<0.10
Hydrocarbures totaux											
LS919 : Hydrocarbures totaux (4 trans	ches)			Г				Г			
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg M.S.	*	<15.0	*	213	*	18.4	*	244	*	16.0
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.		<4.00		14.7		4.57		17.0		3.15
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.		<4.00		71.4		5.78		67.5		3.08
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.		<4.00		78.5		3.60		102		3.88
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.		<4.00		48.2		4.45		57.6		5.86
Ну	drocarb	ure	s Aroma	ati	ques Pol	yc	ycliques	; (HAPs)		
LSRHU : Naphtalène	mg/kg M.S.	*	<0.05	*	0.31	*	<0.05	*	0.57	*	<0.05
LSRHI : Fluorène	mg/kg M.S.	*	<0.05	*	0.071	*	<0.05	*	0.062	*	<0.05
LSRHJ : Phénanthrène	mg/kg M.S.	*	<0.05	*	2.2	*	<0.05	*	2.3	*	<0.051
LSRHM : Pyrène	mg/kg M.S.	*	<0.05	*	3.3	*	<0.05	*	5.7	*	<0.05
LSRHN : Benzo-(a)-anthracène	mg/kg M.S.	*	<0.05	*	2.1	*	<0.05	*	4.1	*	<0.05
LSRHP : Chrysène	mg/kg M.S.	*	<0.05	*	3.1	*	<0.05	*	6.2	*	<0.053
LSRHS : Indeno (1,2,3-cd) Pyrène	mg/kg M.S.	*	<0.05	*	1.6	*	<0.05	*	3.3	*	<0.05
LSRHT : Dibenzo(a,h)anthracène	mg/kg M.S.	*	<0.05	*	0.95	*	<0.05	*	1.9	*	<0.05

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon			031		032		033		034		035	
Référence client :			54 (BGP2 5/BGP10 1-1,5)		0,2-0,9)		EC6 (BGP3 ,5-2,5/BGP7 1,5-2,5)	0	C7 (BGP4 ,3-1/BGP5 3-0,8/BGP6 0,25-0,8)	2	C8 (BGP4 -3/BGP6 (1,5-2,5)	
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			SOL 5/10/2019 5/10/2019 12°C		SOL 6/10/2019 9/10/2019 12°C		SOL 16/10/2019 19/10/2019 12°C		SOL 6/10/2019 19/10/2019 12°C		SOL 6/10/2019 6/10/2019 12°C	
	lvdrocarhi	ırΔ		ati <i>i</i>		V		: /I			.2 0	
Hydrocarbures Aromatiques Polycycliques (HAPs) I SRHW · Acénanhtène												
LSRHW : Acénaphtène								*		*		
LSRHK : Anthracène	mg/kg M.S.		<0.05		0.33	*	<0.05		0.82		<0.05	
LSRHL : Fluoranthène	mg/kg M.S.		<0.05	Ī	3.7		<0.05	ľ	7.0		<0.05	
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.		<0.05	Ĺ	3.8	_	<0.05	Ĺ	6.8	_	<0.05	
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.		<0.05		1.5	*	<0.05		2.7		<0.05	
LSRHH : Benzo(a)pyrène	mg/kg M.S.		<0.05	*	2.4	*	<0.05	*	4.0	*	<0.05	
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	*	<0.05	*	1.3	*	<0.05	*	2.9	*	<0.05	
LSFF9 : Somme des HAP	mg/kg M.S.		<0.05		27		<0.05		49		<0.053	
	I	Pol	ychloro	bip	ohényles	(PCBs)					
LS3U7 : PCB 28	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3UB : PCB 52	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3U8 : PCB 101	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3U6 : PCB 118	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3U9 : PCB 138	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3UA : PCB 153	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LS3UC : PCB 180	mg/kg M.S.	*	<0.01	*	<0.01	*	<0.01	*	<0.01	*	<0.01	
LSFEH: Somme PCB (7)	mg/kg M.S.		<0.010		<0.010		<0.010		<0.010		<0.010	
Composés Volatils												
LS0XU : Benzène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	

SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon			031		032		033		034		035	
Référence client :			EC4 (BGP2)-0,5/BGP10 1-1,5)		EC5 (BGP3),5-1,5/BGP7 0,2-0,9)		1,5-2,5)		EC7 (BGP4 0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)		C8 (BGP4 2-3/BGP6 (1,5-2,5)	
Matrice :			SOL		SOL		SOL		SOL		SOL	
Date de prélèvement :			/10/2019		6/10/2019		6/10/2019		16/10/2019		6/10/2019	
Date de début d'analyse : Température de l'air de l'enceinte :		19	/10/2019 12°C	1	9/10/2019 12°C		19/10/2019 12°C		19/10/2019 12°C	1	9/10/2019 12°C	
remperature de l'aii de l'enceinte .					-				12 0	12 0		
Composés Volatils												
LS0Y4 : Toluène	mg/kg M.S.	*	<0.05	*	0.06	*	<0.05	*	<0.05	*	<0.05	
LS0XW : Ethylbenzène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	
LS0Y6 : o-Xylène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	
LS0Y5 : m+p-Xylène	mg/kg M.S.	*	<0.05	*	<0.05	*	<0.05	*	<0.05	*	<0.05	
LS0IK : Somme des BTEX	mg/kg M.S.		<0.0500		0.0600		<0.0500		<0.0500		<0.0500	
Lixiviation												
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures		*	Fait	*	Fait	*	Fait	*	Fait	*	Fait	
Refus pondéral à 4 mm	% P.B.	*	28.8	*	17.7	*	21.6	*	35.6	*	9.6	
XXS4D : Pesée échantillon lixiviation Volume	ml	*	240	*	240	*	240	*	240	*	240	
Masse	g	*	24.2	*	23.8	*	24.6	*	24.00	*	24.4	
Analyses immédiates sur éluat												
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		*	8.00	*	8.1	*	8.2	*	8.3	*	8.5	
Température de mesure du pH	°C		20		20		21		20		20	
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm	*	83	*	155	*	107	*	332	*	130	
Température de mesure de la conductivité	°C		20.0		20.4		21.0		19.7		19.9	
LSM46 : Résidu sec à 105°C (Fraction s e sur éluat	oluble)											

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon Référence client : Matrice :)-0,	031 4 (BGP2 5/BGP10 1-1,5)	0,5	032 C5 (BGP3 i-1,5/BGP7 0,2-0,9)	1,5	1,5-2,5) SOL	0,),3	034 C7 (BGP4 3-1/BGP5 3-0,8/BGP6 0,25-0,8) SOL	2- (*	035 8 (BGP4 3/BGP6 1,5-2,5)	
Date de prélèvement : Date de début d'analyse :			7/10/2019 7/10/2019		16/10/2019 19/10/2019		6/10/2019 6/10/2019		16/10/2019 19/10/2019		/10/2019 /10/2019	
Température de l'air de l'enceinte :			12°C		12°C		12°C		12°C		12°C	
Analyses immédiates sur éluat												
LSM46 : Résidu sec à 105°C (Fraction sur éluat	n soluble)											
Résidus secs à 105 °C	mg/kg M.S.	*	<4000	*	<2000	*	<2000	*	3020	*	2250	
Résidus secs à 105°C (calcul)	% MS	*	<0.4	*	<0.2	*	<0.2	*	0.3	*	0.2	
Indices de pollution sur éluat												
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg M.S.	*	<50	*	<50	*	80	*	<50	*	<50	
LS04Y: Chlorures sur éluat	mg/kg M.S.	*	19.8	*	21.7	*	24.9	*	97.7	*	24.1	
LSN71 : Fluorures sur éluat	mg/kg M.S.	*	<5.00	*	6.11	*	10.0	*	<5.00	*	12.8	
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.	*	115	*	110	*	50.4	*	1060	*	102	
LSM90 : Indice phénol sur éluat	mg/kg M.S.	*	<0.50	*	<0.50	*	<0.50	*	<0.50	*	<0.50	
			Méta	ux	sur élua	at						
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.	*	<0.20	*	<0.20	*	<0.20	*	<0.20	*	<0.20	
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.	*	0.30	*	0.47	*	0.26	*	0.58	*	0.14	
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.	*	<0.10	*	<0.10	*	<0.10	*	<0.10	*	<0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.	*	<0.20	*	0.62	*	<0.20	*	0.20	*	<0.20	
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.	*	0.044	*	0.077	*	0.091	*	0.145	*	0.067	
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.	*	<0.10	*	<0.10	*	<0.10	*	<0.10	*	<0.10	
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.	*	0.20	*	0.18	*	<0.10	*	<0.10	*	<0.10	
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.	*	<0.20	*	<0.20	*	<0.20	*	<0.20	*	<0.20	

ACCREDITATION

Nº 1- 1488

Site de saverne

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet : EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Echantillon Référence client :				033 EC6 (BGP3	034 EC7 (BGP4	035 EC8 (BGP4					
reference client.		EC4 (BGP2)-0,5/BGP10 1-1,5)	EC5 (BGP3),5-1,5/BGP7 0,2-0,9)	1,5-2,5/BGP7 1,5-2,5)	0,3-1/BGP5),3-0,8/BGP6 0,25-0,8)	2-3/BGP6 (1,5-2,5)					
Matrice :		SOL	SOL	SOL	SOL	SOL					
Date de prélèvement :		16/10/2019	16/10/2019	16/10/2019	16/10/2019	16/10/2019					
Date de début d'analyse :		19/10/2019	19/10/2019	19/10/2019	19/10/2019	19/10/2019					
Température de l'air de l'enceinte :		12°C	12°C	12°C	12°C	12°C					
Métaux sur éluat											
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.	* <0.001	* <0.001	* <0.001	* <0.001	* <0.001					
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.	* 0.018	* 0.1	* 0.006	* 0.19	* 0.007					
LSN05 : Cadmium (Cd) sur éluat	mg/kg M.S.	* <0.002	* <0.002	* <0.002	* <0.002	* <0.002					
LSN41 : Sélénium (Se) sur éluat	mg/kg M.S.	* <0.01	* <0.01	* <0.01	* 0.019	* <0.01					

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

 N° Echantillon
 037

 Référence client :
 EC10 (BGP9 2-3/BGP10 2-3)

 Matrice :
 SOL

 Date de prélèvement :
 16/10/2019

 Date de début d'analyse :
 19/10/2019

 Température de l'air de l'enceinte :
 12°C

Préparation Physico-Chimique

 XXS06 : Séchage à 40°C
 *

 LS896 : Matière sèche
 % P.B.
 * 78.9

 XXS07 : Refus Pondéral à 2 mm
 % P.B.
 * 43.1

 LSL31 : Confection d'un échantillon moyen
 Fait

Indices de pollution

LS08X : Carbone Organique Total mg/kg M.S. * 3280 (COT)

XXS01 : Minéralisation eau régale - Bloc chauffant

LS863 : Antimoine (Sb)	mg/kg M.S.	*	2.62
LS865 : Arsenic (As)	mg/kg M.S.	*	21.8
LS866 : Baryum (Ba)	mg/kg M.S.	*	74.9
LS870 : Cadmium (Cd)	mg/kg M.S.	*	<0.40
LS872 : Chrome (Cr)	mg/kg M.S.	*	34.4
LS874 : Cuivre (Cu)	mg/kg M.S.	*	17.3
LS880 : Molybdène (Mo)	mg/kg M.S.	*	<1.00
LS881 : Nickel (Ni)	mg/kg M.S.	*	29.9
LS883 : Plomb (Pb)	mg/kg M.S.	*	25.9
LS885 : Sélénium (Se)	mg/kg M.S.		<1.00

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

 N° Echantillon
 037

 Référence client :
 EC10 (BGP9 2-3/BGP10 2-3)

 Matrice :
 SOL

 Date de prélèvement :
 16/10/2019

 Date de début d'analyse :
 19/10/2019

 Température de l'air de l'enceinte :
 12°C

Métaux

LS894 : **Zinc (Zn)** mg/kg M.S. * 92.6 LSA09 : **Mercure (Hg)** mg/kg M.S. * <0.10

Hydrocarbures totaux

LS919: Hydrocarbures totaux (4 to	(C10-C40)						
Indice Hydrocarbures (C10-C40)	mg/kg M.S.	* <15.0					
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.	<4.00					
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.	<4.00					
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.	<4.00					
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.	<4.00					

Hydrocarbures Aromatiques Polycycliques (HAPs)

LSRHU: Naphtalène mg/kg M.S. < 0.05 < 0.05 mg/kg M.S. LSRHI: Fluorène LSRHJ: Phénanthrène mg/kg M.S. <0.05 < 0.05 mg/kg M.S. LSRHM: Pyrène mg/kg M.S. <0.05 LSRHN: Benzo-(a)-anthracène mg/kg M.S. < 0.053 LSRHP: Chrysène mg/kg M.S. <0.05 LSRHS: Indeno (1,2,3-cd) Pyrène mg/kg M.S. <0.05 LSRHT: Dibenzo(a,h)anthracène mg/kg M.S. <0.05 LSRHV: Acénaphthylène

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

037 N° Echantillon EC10 (BGP9 Référence client : 2-3/BGP10 2-3) SOL Matrice: 16/10/2019 Date de prélèvement :

19/10/2019 Date de début d'analyse : 12°C Température de l'air de l'enceinte :

Hydrocarbures Aromatiques Polycycliques (HAPs)

LSRHW : Acénaphtène	mg/kg M.S.	*	<0.05
LSRHK : Anthracène	mg/kg M.S.	*	<0.05
LSRHL : Fluoranthène	mg/kg M.S.	*	<0.05
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.	*	<0.05
LSRHR : Benzo(k)fluoranthène	mg/kg M.S.	*	<0.05
LSRHH : Benzo(a)pyrène	mg/kg M.S.	*	<0.05
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	*	<0.05
LSFF9 : Somme des HAP	mg/kg M.S.		<0.053

Polychlorobiphényles (PCBs)

LS3U7 : PCB 28	mg/kg M.S.	*	<0.01	
LS3UB : PCB 52	mg/kg M.S.	*	<0.01	
LS3U8 : PCB 101	mg/kg M.S.	*	<0.01	
LS3U6 : PCB 118	mg/kg M.S.	*	<0.01	
LS3U9 : PCB 138	mg/kg M.S.	*	<0.01	
LS3UA: PCB 153	mg/kg M.S.	*	<0.01	
LS3UC : PCB 180	mg/kg M.S.	*	<0.01	
LSFEH: Somme PCB (7)	mg/kg M.S.		<0.010	

Composés Volatils

LS0XU : Benzène mg/kg M.S. <0.05

> ACCREDITATION Nº 1- 1488

Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 19E152062

N° de rapport d'analyse : AR-19-LK-177684-01

Référence Dossier : N° Projet : EURATLANTIQUE Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Version du : 28/10/2019

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

N° Echantillon			037						
Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :		2- 3	10 (BGP9 3/BGP10 2-3) SOL 5/10/2019 9/10/2019 12°C						
			Comp	osés Volat	ils				
LS0Y4 : Toluène	mg/kg M.S.	*	<0.05						
LS0XW : Ethylbenzène	mg/kg M.S.	*	<0.05						
LS0Y6 : o-Xylène	mg/kg M.S.	*	<0.05						
LS0Y5 : m+p-Xylène	mg/kg M.S.	*	<0.05						
LS0IK : Somme des BTEX	mg/kg M.S.		<0.0500						
Lixiviation									
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures		*	Fait						
Refus pondéral à 4 mm	% P.B.	*	1.1						
XXS4D : Pesée échantillon lixiviation Volume	ml	*	240						
Masse	g	*	25.00						
				/ 11 /	71 4				
	Α	ına	lyses im	nmédiates	sur eluat				
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		*	8.1						
Température de mesure du pH	°C		21						
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	μS/cm °C	*	124 20.9						
LSM46 : Résidu sec à 105°C (Fraction s	soluble)								
sur éluat Résidus secs à 105 °C	mg/kg M.S.	*	<4000						

ACCREDITATION

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

037 N° Echantillon EC10 (BGP9 Référence client : 2-3/BGP10 2-3) SOL Matrice: 16/10/2019 Date de prélèvement : 19/10/2019 Date de début d'analyse : 12°C Température de l'air de l'enceinte :

Analyses immédiates sur éluat

LSM46 : Résidu sec à 105°C (Fraction soluble)

sur éluat

Résidus secs à 105°C (calcul) % MS

LSM04 : Arsenic (As) sur éluat

<0.4

<0.20

Indices de l	pollution	sur è	luat
--------------	-----------	-------	------

mg/kg M.S. 61 LSM68: Carbone Organique par oxydation (COT) sur éluat mg/kg M.S. 80.9 LS04Y: Chlorures sur éluat mg/kg M.S. LSN71: Fluorures sur éluat mg/kg M.S. 214 LS04Z : Sulfate (SO4) sur éluat mg/kg M.S. <0.50 LSM90 : Indice phénol sur éluat

mg/kg M.S.

			ur		

LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.	*	0.34
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.	*	<0.10
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.	*	<0.20
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.	*	0.093
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.	*	<0.10
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.	*	<0.10
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.	*	<0.20
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.	*	<0.001

RAPPORT D'ANALYSE

Dossier N°: 19E152062

Version du : 28/10/2019

N° de rapport d'analyse : AR-19-LK-177684-01

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

N° Echantillon 037
Référence client : EC10 (BGP9 2-3/BGP10

2-3)

Matrice: SOL

Date de prélèvement: 16/10/2019

Date de début d'analyse : 19/10/2019
Température de l'air de l'enceinte : 12°C

Métaux sur éluat

 LSM97 : Antimoine (Sb) sur éluat
 mg/kg M.S.
 * 0.007

 LSN05 : Cadmium (Cd) sur éluat
 mg/kg M.S.
 * <0.002</td>

 LSN41 : Sélénium (Se) sur éluat
 mg/kg M.S.
 * <0.01</td>

D : détecté / ND : non détecté z2 ou (2) : zone de contrôle des supports

Observations	N° Ech	Réf client
Lixiviation: Conformément aux exigences de la norme NF EN 12457-2, votre échantillonnage n'a pas permis de fournir les 2kg requis au laboratoire.	(001) (028) (029) (030) (031) (032) (033) (034) (035) (037)	BGP1 0,2-1,3 / EC1 (BGP8 1-2/BGP9 1,3-2) / EC2 (BGP1 0,2-1,3/BGP2 0,5-1) / EC3 (BGP1 1,5-2,5)/BGP2 2-3) / EC4 (BGP2 0-0,5/BGP10 1-1,5) / EC5 (BGP3 0,5-1,5/BGP7 0,2-0,9) / EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5) / EC7 (BGP4 0,3-1/BGP5 0,3-0,8/BGP6 0,25-0,8) / EC8 (BGP4 2-3/BGP6 (1,5-2,5) / EC10 (BGP9 2-3/BGP10 2-3) /
Lixiviation : La nature de l'échantillon rend la filtration difficile. Certains résultats sont susceptibles d'être sur-estimés	(001) (029) (031) (037)	BGP1 0,2-1,3 / EC2 (BGP1 0,2-1,3/BGP2 0,5-1) / EC4 (BGP2 0-0,5/BGP10 1-1,5) / EC10 (BGP9 2-3/BGP10 2-3) /

RAPPORT D'ANALYSE

Dossier N°: 19E152062

N° de rapport d'analyse : AR-19-LK-177684-01

Référence Dossier : N° Projet : EURATLANTIQUE

Nom Projet: EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

Référence Commande : BD19261

Version du : 28/10/2019

Date de réception technique : 18/10/2019

Première date de réception physique : 18/10/2019

Andréa Golfier Coordinateur Projets Clients

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 36 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Annexe technique

Dossier N°: 19E152062 N° de rapport d'analyse :AR-19-LK-177684-01

Emetteur: Commande EOL: 0067951432829

Nom projet: Référence commande : BD19261

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS04W	Mercure (Hg) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.001	mg/kg M.S.	Eurofins Analyse pour l'Environnement Franc
LS04Y	Chlorures sur éluat	Spectrophotométrie (UV/VIS) [Spectrométrie visible automatisée] - NF EN 16192 - NF ISO 15923-1	10	mg/kg M.S.	
LS04Z	Sulfate (SO4) sur éluat	1	50	mg/kg M.S.	7
LS08X	Carbone Organique Total (COT)	Combustion [sèche] - NF ISO 10694 - Détermination directe	1000	mg/kg M.S.	
LS0IK	Somme des BTEX	Calcul - Calcul		mg/kg M.S.	7
LS0IR	Mise en réserve de l'échantillon (en option)				7
LS0XU	Benzène	HS - GC/MS [Extraction méthanolique] - NF EN ISC 22155 (sol) Méthode interne (boue,séd)	0.05	mg/kg M.S.]
LS0XW	Ethylbenzène	1	0.05	mg/kg M.S.	7
LS0Y4	Toluène	1 1	0.05	mg/kg M.S.	7
LS0Y5	m+p-Xylène	1 1	0.05	mg/kg M.S.	7
LS0Y6	o-Xylène	- -	0.05	mg/kg M.S.	7
LS3U6	PCB 118	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 16167 (Sols) - XP X 33-012 (boue, sédiment)	0.01	mg/kg M.S.	
LS3U7	PCB 28	1	0.01	mg/kg M.S.	7
LS3U8	PCB 101	1 1	0.01	mg/kg M.S.	7
LS3U9	PCB 138	1 1	0.01	mg/kg M.S.	7
LS3UA	PCB 153	1	0.01	mg/kg M.S.	7
LS3UB	PCB 52	1 1	0.01	mg/kg M.S.	7
LS3UC	PCB 180	1 1	0.01	mg/kg M.S.	7
LS863	Antimoine (Sb)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISC 11885 - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog	1	mg/kg M.S.	
LS865	Arsenic (As)	<u> </u>	1	mg/kg M.S.	7
LS866	Baryum (Ba)	1 1	1	mg/kg M.S.	7
LS870	Cadmium (Cd)	1 1	0.4	mg/kg M.S.	7
LS872	Chrome (Cr)	1 1	5	mg/kg M.S.	7
LS874	Cuivre (Cu)	1 1	5	mg/kg M.S.	7
LS880	Molybdène (Mo)	1 1	1	mg/kg M.S.	7
LS881	Nickel (Ni)	1 1	1	mg/kg M.S.	7
LS883	Plomb (Pb)	- -	5	mg/kg M.S.	7
LS885	Sélénium (Se)	- -	1	mg/kg M.S.	7
LS894	Zinc (Zn)	- -	5	mg/kg M.S.	7
LS896	Matière sèche	Gravimétrie - NF ISO 11465	0.1	% P.B.	7
LS919	Hydrocarbures totaux (4 tranches) (C10-C40) Indice Hydrocarbures (C10-C40)	GC/FID [Extraction Hexane / Acétone] - NF EN ISO 16703 (Sols) - NF EN 14039 (Boue, Sédiments)	15	mg/kg M.S.	
	HCT (nC10 - nC16) (Calcul)			mg/kg M.S.	
	HCT (>nC16 - nC22) (Calcul)			mg/kg M.S.	
	HCT (>nC22 - nC30) (Calcul)			mg/kg M.S.	

Annexe technique

Dossier N°: 19E152062 N° de rapport d'analyse :AR-19-LK-177684-01

Emetteur: Commande EOL: 0067951432829

Nom projet : Référence commande : BD19261

LSA09	HCT (>nC30 - nC40) (Calcul) Mercure (Hg) Lixiviation 1x24 heures Lixiviation 1x24 heures	méthode SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog - NF ISO 16772 (Sol) - Méthode interne (Hors Sols) Lixiviation [Ratio L/S = 10 l/kg - Broyage par	0.1	mg/kg M.S. mg/kg M.S.	site de :
	Lixiviation 1x24 heures	l'eau régale] - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog - NF ISO 16772 (Sol) - Méthode interne (Hors Sols)	0.1	mg/kg M.S.	
LSA36		Lixiviation [Ratio L/S = 10 l/kg - Broyage par			
	Lixiviation 1x24 heures	concasseur à mâchoires] - NF EN 12457-2			
	Refus pondéral à 4 mm		0.1	% P.B.	
LSFEH	Somme PCB (7)	Calcul - Calcul		mg/kg M.S.	
LSFF9	Somme des HAP			mg/kg M.S.	
LSL31	Confection d'un échantillon moyen	Préparation - Méthode interne			
LSM04	Arsenic (As) sur éluat	ICP/AES - NF EN ISO 11885 / NF EN 16192	0.2	mg/kg M.S.	
LSM05	Baryum (Ba) sur éluat	1	0.1	mg/kg M.S.	
LSM11	Chrome (Cr) sur éluat	1	0.1	mg/kg M.S.	
LSM13	Cuivre (Cu) sur éluat	1	0.2	mg/kg M.S.	
LSM20	Nickel (Ni) sur éluat	1 1	0.1	mg/kg M.S.	
LSM22	Plomb (Pb) sur éluat	1 1	0.1	mg/kg M.S.	
LSM35	Zinc (Zn) sur éluat	1 1	0.2	mg/kg M.S.	
LSM46	Résidu sec à 105°C (Fraction soluble) sur éluat	Gravimétrie - NF T 90-029 / NF EN 16192			
	Résidus secs à 105 °C		2000	mg/kg M.S.	
	Résidus secs à 105°C (calcul)		0.2	% MS	
LSM68	Carbone Organique par oxydation (COT) sur éluat	Spectrophotométrie (IR) [Oxydation à chaud en milie acide] - NF EN 16192 - NF EN 1484 (Sols) - Méthor interne (Hors Sols)	50	mg/kg M.S.	
LSM90	Indice phénol sur éluat	Flux continu - NF EN ISO 14402 (adaptée sur sédiment,boue) - NF EN 16192	0.5	mg/kg M.S.	
LSM97	Antimoine (Sb) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.002	mg/kg M.S.	
LSN05	Cadmium (Cd) sur éluat	1	0.002	mg/kg M.S.	
LSN26	Molybdène (Mo) sur éluat	1	0.01	mg/kg M.S.	
LSN41	Sélénium (Se) sur éluat	1	0.01	mg/kg M.S.	
LSN71	Fluorures sur éluat	Electrométrie [Potentiometrie] - NF T 90-004 (adapt sur sédiment,boue) - NF EN 16192	5	mg/kg M.S.	
LSQ02	Conductivité à 25°C sur éluat	Potentiométrie [Méthode à la sonde] - NF EN 27888 NF EN 16192			
	Conductivité corrigée automatiquement à 25°C			μS/cm	
	Température de mesure de la conductivité			°C	
LSQ13	Mesure du pH sur éluat pH (Potentiel d'Hydrogène)	Potentiométrie - NF EN ISO 10523 / NF EN 16192			
	Température de mesure du pH			°C	
LSRGJ	Echantillon utilisé pour réaliser un mélange	Réalisation d'un échantillon moyen à partir de plusie échantillons - Méthode interne		g/kg	
LSRHH	Benzo(a)pyrène	GC/MS/MS [Extraction Hexane / Acétone] - NF ISO 18287 (Sols) - XP X 33-012 (boue, sédiment)	0.05	mg/kg M.S.	

Annexe technique

Dossier N°: 19E152062 N° de rapport d'analyse :AR-19-LK-177684-01

Emetteur: Commande EOL: 0067951432829

Nom projet : Référence commande : BD19261

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LSRHI	Fluorène		0.05	mg/kg M.S.	
LSRHJ	Phénanthrène	1	0.05	mg/kg M.S.	
LSRHK	Anthracène	1	0.05	mg/kg M.S.	
LSRHL	Fluoranthène	1	0.05	mg/kg M.S.	
LSRHM	Pyrène	1	0.05	mg/kg M.S.	
LSRHN	Benzo-(a)-anthracène	1	0.05	mg/kg M.S.	
LSRHP	Chrysène	1	0.05	mg/kg M.S.	
LSRHQ	Benzo(b)fluoranthène	1	0.05	mg/kg M.S.	
LSRHR	Benzo(k)fluoranthène	1	0.05	mg/kg M.S.	
LSRHS	Indeno (1,2,3-cd) Pyrène	1	0.05	mg/kg M.S.	
LSRHT	Dibenzo(a,h)anthracène	1	0.05	mg/kg M.S.	
LSRHU	Naphtalène	1	0.05	mg/kg M.S.	
LSRHV	Acénaphthylène	1	0.05	mg/kg M.S.	
LSRHW	Acénaphtène	1	0.05	mg/kg M.S.	
LSRHX	Benzo(ghi)Pérylène	1	0.05	mg/kg M.S.	
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide -			
XXS06	Séchage à 40°C	Séchage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du clier			
XXS07	Refus Pondéral à 2 mm	Tamisage [Le laboratoire travaillera sur la fraction < 2 2mm de l'échantillon sauf demande explicite du clier	1	% P.B.	
XXS4D	Pesée échantillon lixiviation	Gravimétrie -			
	Volume			ml	
	Masse			g	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 19E152062 N° de rapport d'analyse : AR-19-LK-177684-01

Emetteur: Commande EOL: 006-10514-519201

Nom projet: N° Projet: EURATLANTIQUE Référence commande: BD19261

EURATLANTIQUE

Nom Commande: CSSPSO191369 - lot 6.1

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
001	BGP1 0,2-1,3	16/10/2019 08:00:00	18/10/2019	18/10/2019	V05DA9148	374mL verre (sol)
002	BGP1 1,5-2,5	16/10/2019 08:00:00	18/10/2019	18/10/2019	V05DA6968	374mL verre (sol)
003	BGP2 0-0,5	16/10/2019 09:00:00	18/10/2019	18/10/2019	V05DA8382	374mL verre (sol)
004	BGP2 0,5-1	16/10/2019 09:00:00	18/10/2019	18/10/2019	V05DA7075	374mL verre (sol)
005	BGP2 2-3	16/10/2019 09:00:00	18/10/2019	18/10/2019	V05DA6970	374mL verre (sol)
006	BGP3 0,05- 0,5	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA6976	374mL verre (sol)
007	BGP3 0,5-1	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA6974	374mL verre (sol)
800	BGP3 1,5-3	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA6986	374mL verre (sol)
009	BGP4 0,3- 1	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA8372	374mL verre (sol)
010	BGP4 1-2	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA8367	374mL verre (sol)
011	BGP4 2-3	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA9155	374mL verre (sol)
012	BGP5 0,3-0,8	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA8386	374mL verre (sol)
013	BGP5 1,5-2,5	16/10/2019 10:00:00	18/10/2019	18/10/2019	V05DA9154	374mL verre (sol)
014	BGP6 0,25-0,8	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA9153	374mL verre (sol)
015	BGP6 1,5-2,5	16/10/2019 11:00:00	18/10/2019	18/10/2019	V05DA8377	374mL verre (sol)
016	BGP7 0,2-0,9	16/10/2019 12:00:00	18/10/2019	18/10/2019	V05DA9149	374mL verre (sol)
017	BGP7 0,9-1,3	16/10/2019 12:00:00	18/10/2019	18/10/2019	V05DA8402	374mL verre (sol)
018	BGP7 1,5-2,5	16/10/2019 12:00:00	18/10/2019	18/10/2019	V05DA9147	374mL verre (sol)
019	BGP8 0,6-1	16/10/2019 13:00:00	18/10/2019	18/10/2019	V05DA9166	374mL verre (sol)
020	BGP8 1-2	16/10/2019 13:00:00	18/10/2019	18/10/2019	V05DA9162	374mL verre (sol)
021	BGP8 2-3	16/10/2019 13:00:00	18/10/2019	18/10/2019	V05DA8383	374mL verre (sol)
022	BGP9 0,5-1	16/10/2019 14:00:00	18/10/2019	18/10/2019	V05DA9139	374mL verre (sol)
023	BGP9 1,3-2	16/10/2019 14:00:00	18/10/2019	18/10/2019	V05DA9152	374mL verre (sol)
024	BGP9 2-3	16/10/2019 14:00:00	18/10/2019	18/10/2019	V05DA9128	374mL verre (sol)
025	BGP10 1-1,5	16/10/2019 15:00:00	18/10/2019	18/10/2019	V05DA9133	374mL verre (sol)
026	BGP10 1,5-2	16/10/2019 15:00:00	18/10/2019	18/10/2019	V05DA9133	374mL verre (sol)
027	BGP10 2-3	16/10/2019 15:00:00	18/10/2019	18/10/2019	V05DA9161	374mL verre (sol)
028	EC1 (BGP8 1-2/BGP9 1,3-2)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9152/V05DA9162	374mL verre (sol)
029	EC2 (BGP1 0,2-1,3/BGP2 0,5-1)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9148/V05DA7075	374mL verre (sol)
030	EC3 (BGP1 1,5-2,5)/BGP2 2-3)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA6968/V05DA6970	374mL verre (sol)
031	EC4 (BGP2 0-0,5/BGP10 1-1,5)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9129V05DA8382	374mL verre (sol)
032	EC5 (BGP3 0,5-1,5/BGP7 0,2-0,9)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA6974/V05DA9149	374mL verre (sol)
033	EC6 (BGP3 1,5-2,5/BGP7 1,5-2,5)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9147/V05DA6986	374mL verre (sol)
034	EC7 (BGP4 0,3-1/BGP5 0,3-0,8/BG	GI 16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA8367/V05DA8386/V 5DA9153	374mL verre (sol)
035	EC8 (BGP4 2-3/BGP6 (1,5-2,5)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA8377/V05DA9155	374mL verre (sol)
037	EC10 (BGP9 2-3/BGP10 2-3)	16/10/2019 20:00:00	18/10/2019	18/10/2019	V05DA9128/V05DA9161	374mL verre (sol)

- (1) : Date à laquelle l'échantillon a été réceptionné au laboratoire.

 Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).
- (2): Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

Annexe 5. **Propriétés physico-chimiques**

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

++ :Pv > 1000 PA (COV) - : 10 >P> 10-2 Pa (non COV)

++: S>100 mg/l +: 100>S>1

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV) mg/l -- : S<0.01 mg/l

CAS n°R Pv S symboles Mention de danger Classement cancérogénéicité

Wention de danger UE CIRC (IARC) EPA

METAUX ET METALLOIDES

METAUX ET ME	IALLOIDES	,						
Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	Α
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	1	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	Α
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+	-	-	ı	-	D
Acenaphtène	83-29-9	-	+	-	-	-	-	-
Fluorène	86-73-7	-	+	-	-	-	3	D
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D
Pyrène Ponzo(a)anthracòno	129-00-0 56-55-3				- H350, H400, H410	- C1B	3 2B	D
Benzo(a)anthracène				SGH08, SGH09	H350, H400, H410 H350, H341, H400,	C1B C1B		B2
Chrysene	218-01-9		-	SGH08, SGH09	H410	M2	3	B2
benzo(b)fluoranthène	205-99-2			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
benzo(k)fluoranthène Benzo(a)pyrène	207-08-9 50-32-8			SGH08, SGH09 SGH07, SGH08, SGH09	H350, H400, H410 H340, H350, H360FD, H317, H400, H410	C1B C1B M1B	2B 1	B2 B2
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-	-	-	3	D

		LEGENDE	Volatilité :			LEGENDE Solu	ıbilité :	
	++ :Pv > 1000 PA	(COV)		- : 10 >P> 10-2 P	a (non COV)	++: S>100 mg/l	- : 1>S>	·0.01 mg/l
	+ : 1000 > Pv > 10 Pa (COV)			: 10-2 >P> 10-	5 Pa (non COV)	+ : 100>S>1 mg/l	: S<0.01 mg/l	
	CAC = OD	Volatilité	solubilité	Classement	Mention de danger	classement	cancérogéi CIRC	
	CAS n°R	Pv	S	symboles	J	UE	(IARC)	EPA
COMPOSES ARO	MATIQUE	<u>s mon</u>	<u>OCYLC</u>	IQUES	T.,,,,,		1	
benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	Α
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	-	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-
COMPOSES ORG	ANO-HAL	OGENE	S VOL		11333, 11313, 11411		<u> </u>	L
PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	Α
cis 1,2DCE (dichloroéthylène)	156-59-2		++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène) 156-60-5	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2B	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-
chlorobenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	-	D
HYDROCARBUR	ES SUIVAN	NT LES	TPH					
Aliphatic nC>5-nC6	non adéquat	++	+					
Aliphatic nC>6-nC8	"	++	+	white spirit, essences spéciales,				
Aliphatic nC>8-nC10 Aliphatic nC>10-nC12	"	+ +	-				-	
Aliphatic nC>12-nC16	п	-						
Aliphatic nC>16-nC35	"	-		solvants	tout type			
Aliphatic nC>35	"			aromatiques	d'hydrocarbures :		<u> </u>	
Aromatic nC>5-nC7 benzène Aromatic nC>7-nC8 toluène	"	++	++	légers, pétroles lampants	Н350, Н340, Н304		-	
Aromatic nC>8-nC10	II II	+	+	(kérosène) :				
Aromatic nC>10-nC12	"	+	+	SGH08				
Aromatic nC>12-nC16	"	-	+					
Aromatic nC>16-nC21	1 "	-	-		1		l	1

MENTIONS DE DANGER

28 mentions de danger physique

- H200 : Explosif instable
- H201: Explosif; danger d'explosion en masse
- H202 : Explosif ; danger sérieux de projection
- H203 : Explosif : danger d'incendie, d'effet de souffle ou de projection
- H204 : Danger d'incendie ou de projection
- H205: Danger d'explosion en masse en cas d'incendie
- H220 : Gaz extrêmement inflammable
- H221: Gaz inflammable
- H222: Aérosol extrêmement inflammable
- H223: Aérosol inflammable
- H224 : Liquide et vapeurs extrêmement inflammables
- H225 : Liquide et vapeurs très inflammables
- H226: Liquide et vapeurs inflammables
- H228: Matière solide inflammable

- H240 : Peut exploser sous l'effet de la chaleur
- H241 : Peut s'enflammer ou exploser sous l'effet de la chaleur
- H242 : Peut s'enflammer sous l'effet de la chaleur
- H250 : S'enflamme spontanément au contact de l'ai
- H251: Matière auto-échauffante : peut s'enflammer
- H252 : Matière auto-échauffante en grandes quantités : peut s'enflammer
- H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
- H261: Dégage au contact de l'eau des gaz
- H270: Peut provoquer ou aggraver un incendie; comburant
- H271: Peut provoquer un incendie ou une explosion: comburant puissant
- H272: Peut aggraver un incendie; comburant
- H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
- H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
- H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

- H300: Mortel en cas d'ingestion
- H301: Toxique en cas d'ingestion
- H302: Nocif en cas d'ingestion
- H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires
- H310: Mortel par contact cutané
- H311 : Toxique par contact cutané
- H312: Nocif par contact cutané
- H314 : Provoque des brûlures de la peau et des lésions oculaires graves
- H315: Provoque une irritation cutanée

- H317 : Peut provoquer une allergie cutanée
- H318: Provoque des lésions oculaires graves
- H319 : Provoque une sévère irritation des yeux
 - H330: Mortel par inhalation
- H331: Toxique par inhalation
- H332: Nocif par inhalation
- H334: Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation
- . H335 : Peut irriter les voies respiratoires
- H336: Peut provoquer somnolence ou vertiges
- H340 : Peut induire des anomalies génétiques «indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert>
- H350: Peut provoquer le cancer <indiquer la voie d'exposition s'il est H370: Risque avéré d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> < indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne dangera conduit au même danger>
- H351 : Susceptible de provoquer le cancer <indiquer la voie d'exposition s'il H371 : Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition danger>
- est connu> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition prolongée <indiquer la voie d'exposition ne conduit au même danger> formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- autre voie d'exposition ne conduit au même danger>
- H362 : Peut être nocif pour les bébés nourris au lait maternel
- ne conduit au même danger> H360 : Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'îl • H372 : Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est
 H373 : Risque présumé d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée cindiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

Pour certaines mentions de danger pour la santé des lettres sont ajoutées au code à 3 chiffres :

- H350i : Peut provoquer le cancer par inhalation
- H360F : Peut nuire à la fertilité H360D : Peut nuire au foetus
- H361f : Susceptible de nuire à la fertilité
- H361d : Susceptible de nuire au foetus
- H360FD: Peut nuire à la fertilité. Peut nuire au foetus
- H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus
- H360Fd: Peut nuire à la fertilité. Susceptible de nuire au foetus
- H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.
- ▶ 5 mentions de danger pour l'environnement
- H400 : Très toxique pour les organismes aquatiques
- H411 : Toxique pour les organismes aquatiques, entraı̂ne des effets néfastes à long terme

H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme

- H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H413: Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

- SHG01: Explosif (ce produit peut exploser au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures liées au froid (gaz liquéfiés réfrigérés).
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06: Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07: Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige - produit qui détruit la couche d'ozone).
- SGH08: Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires - peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit polluant provoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC	
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :			
C1A: Substance dont le potentiel cancérogène pour l'être humain est avéré	A: Preuves suffisantes chez l'homme	1 : Agent ou mélange cancérigène pour l'homme	
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé			
	B1 : Preuves limitées chez l'homme		
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme	
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme	
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme	
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme	

De Classification en termes de mutagénicité

	UE
M1 (H340): Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer comme induisant des mutations héréditaires dans les cellules germinales des êtres humains. Substance dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée.	M1A : Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.
	M1B: Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules

M2 (H341): Substance préoccupantes du fait qu'elle pourrait induire des mutations héréditaires dans les cellules germinales des êtres humains.

germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.

▶ Classification en termes d'effets reprotoxiques

UE				
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fd ou H360fD) : Reprotoxique avéré ou présumé	R1A: Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.			
	R1B : Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.			
classées dans cette catégorie lorsque les résultats des étu	ce suspectée d'être toxique pour la reproduction humaine. Les substances sont ides ne sont pas suffisamment probants pour justifier une classification dans la sécrable sur la fonction sexuelle et la fertilité ou sur le dévelonnement			

Annexe 6. Glossaire

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle) : Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable) : Eau utilisée pour la production d'eau potable

ARIA (Analyse, Recherche et Information sur les Accidents) : base de données répertorie les incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'environnement.

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé) : Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (Composés organo-halogénés volatils): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

DRIEE (Direction régionale et interdépartementale de l'environnement et de l'énergie) : Service déconcentré du Ministère en charge de l'environnement pour la région parisienne, la DRIEE met en œuvre sous l'autorité du Préfet de la Région les priorités d'actions de l'État en matière d'Environnement et d'Énergie et plus particulièrement celles issues du Grenelle de l'Environnement. Elle intervient dans l'ensemble des départements de la région grâce à ses unités territoriales (UT).

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10⁻ⁿ. Par exemple, un excès de risque individuel de 10⁻⁵ représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants..

HCT (Hydrocarbures Totaux): Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes): Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux) : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins.

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger) : Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT) ; la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.