

Éditorial	page 5

Introduction

Rapport

Maîtrise de l'énergie

page 15

page 8

Inventaire des émissions directes de gaz à effet de serre

Bilan énergétique

Évaluation des potentiels d'économie d'énergie, d'amélioration de l'efficacité énergétique et de maîtrise de la demande énergétique ainsi que des gains d'émissions de gaz à effet de serre correspondant

Adaptation au changement climatique

page 55

Analyse de la vulnérabilité de la région aux effets du changement climatique

Qualité de l'air

page 95

Inventaire des principales émissions des polluants atmosphériques

Évaluation de la qualité de l'air

Énergies renouvelables

page 131

Évaluation du potentiel de développement de chaque filière d'énergie renouvelable terrestre et de récupération

hydroélectricité

biomasse bois

biomasse déchets

biomasse agricole

agrocarburants

géothermie

solaire thermique

solaire photovoltaïque

biogaz

Document d'orientations

page 187

Vision d'ensemble des orientations et des objectifs

Les orientations et objectifs

Orientations visant à réduire les émissions de gaz à effet de serre

Orientations visant à adapter le territoire et les activités socioéconomiques aux effets du changement climatique

Orientations destinées à prévenir ou réduire la pollution atmosphérique

Orientations pour coordonner les synergies du territoires

Objectifs quantitatifs de développement de la production d'énergie renouvelable

Annexes page 260

Cadre réglementaire

Définition

Schéma régional Éolien

page 279

Contexte réglementaire

Méthodologie suivie pour l'élaboration du schéma régional éolien

État des lieux de l'existant

Étude du gisement éolien de l'Alsace

Recensement des contraintes s'opposant strictement à l'implantation d'éoliennes

Recensement et hiérarchisation autres contraintes

Définition des zones favorables au développement de l'éolien et du potentiel régional exploitable à horizon 2020 et 2050

Synthèse

Éditorial

Face au défi du changement climatique, l'Alsace s'est engagée depuis 2000 dans une politique volontariste d'efficacité énergétique dans le bâtiment et de développement des énergies renouvelables, en associant les différents acteurs et les territoires.

Le schéma régional du climat, de l'air et de l'énergie, introduit par la loi Grenelle et élaboré conjointement par le Préfet de Région et le Président du Conseil Régional d'Alsace, apporte un cadre stratégique unique qui renforcera l'articulation entre les problématiques de réduction des émissions de gaz à effet de serre et d'amélioration de la qualité de l'air. De plus, ce schéma intègre les enjeux d'adaptation au changement climatique, complément indispensable aux actions d'atténuation déjà engagées.

Une vingtaine d'orientations et d'objectifs sont proposés en vue de diviser par quatre nos émissions de gaz à effet de serre entre 2003 et 2050. Ils visent divers domaines d'actions: l'efficacité énergétique dans le bâtiment, le développement des énergies renouvelables, les déplacements et la mobilité, l'urbanisme, l'industrie, l'agriculture, la sensibilisation.

Des défis importants restent à relever pour atteindre ces objectifs ambitieux, susceptibles de remettre en cause nos habitudes pour tendre vers des comportements de consommation plus sobres et évoluer vers une société émettant moins de carbone.

Co animés par l'État et la Région, les travaux d'élaboration du schéma ont vu la participation de plus de 300 acteurs de l'ensemble de la société civile.

Ce schéma s'ouvre aujourd'hui à une consultation élargie; nous attendons vos remarques, suggestions ou critiques, de manière à enrichir les orientations proposées pour aboutir à ce qu'elles soient celles de chaque alsacien.

Le Préfet de la Région Alsace

Pierre-Étjenne BISCH

Le Président du Conseil Régional d'Alsace

Philippe RICHERT

Les ambitions du schéma régional climat air énergie

Le SRCAE constitue le document structurant fixant un nouveau cap à la politique régionale énergétique déjà très volontariste en Alsace. Il emporte des engagements politiques forts en matière de maîtrise de consommation énergétique, de réduction des gaz à effet de serre, d'amélioration de la qualité de l'air et de développement des énergies renouvelables. Il concourt ainsi pleinement aux objectifs nationaux et internationaux et permet d'anticiper les mutations profondes liées au changement climatique. Il offre aussi par son ambition et ses choix spécifiques à la région Alsace, un cadre de développement pour la filière d'économie verte, concernée par les questions énergétiques.

À cet égard, les ambitions du SRCAE sont à la fois fortes et réalistes

1- en matière de réduction des émissions de gaz à effet de serre (GES)

Le scénario plus ambitieux proposé pour l'Alsace est rendu possible grâce aux efforts - passés et à venir - de l'industrie chimique, à la dynamique régionale préexistante pour la promotion des bâtiments à faible consommation énergétique et les avancées en matière d'énergie renouvelable.

Engagements de Kyoto	Engagements nationaux	SRCAE Alsace
Division par 4 des émissions de GES entre 1990 et 2050 (dit "facteur 4")	Réduction de 20% des GES entre 1990 et 2020 Réduction de 20% de la consommation énergétique d'ici 2020	Division par 4 des émissions de GES entre 2003 et 2050 (dit « Facteur 4 volontariste », avec un premier palier de réduction de 15% d'ici 2020 Réduction de 20% de la consommation énergétique finale entre 2003 et 2020

Suite à une forte diminution des émissions de gaz à effet de serre entre 1990 et 2000 (due aux efforts de l'industrie chimique), les objectifs du « Facteur 4 dit volontariste » ont été élaborés sur une nouvelle base: 2003.

Les secteurs les plus contributeurs seront l'industrie et le secteur du bâtiment résidentiel-tertiaire participant respectivement à 35 % et 30 % des émissions des gaz à effets de serre, mais l'objectif ne sera pas atteint sans un changement de comportement de la population qu'il conviendra de promouvoir par une forte sensibilisation et des politiques publiques incitatives.

2- en matière d'énergies renouvelables

L'Alsace figure déjà en très bonne position avec, en 2009, une production d'énergies renouvelables de 17 % dans la consommation d'énergie finale grâce à la valorisation optimale de son potentiel hydroélectrique et de la biomasse-bois.

Sans compromettre les spécificités environnementales et paysagères, il est possible en Alsace d'envisager une plus grande diversification du bouquet de production d'énergies renouvelables et une augmentation de leur part, en développant de manière mesurée la géothermie, le solaire, le biogaz et l'éolien. Enfin, le maintien d'un couvert forestier important reste indispensable au stockage du carbone.

À cet égard, le schéma régional éolien - partie intégrante du SRCAE - fixe les zones favorables à l'implantation d'unités de production. Le territoire alsacien n'offre pas de manière naturelle un important potentiel de développement dès lors que seul 5 % environ de son territoire présente des sites propices en terme vent et de conditions environnementales et paysagères.

Au final à l'horizon de 2020, l'objectif proposé est une augmentation de la production d'énergies renouvelables d'environ 20 %. Combinée avec les réductions de la consommation énergétique, cette perspective permet d'envisager de produire à partir des énergies renouvelables, 26 % de la consommation d'énergie finale totale.

Engagements de Kyoto et paquet climat énergie de l'UE	Engagements nationaux (post Kyoto)	SRCAE Alsace
20 % d'énergie	23% d'énergies	Objectif de 26 %
renouvelables d'ici	renouvelables d'ici	d'énergies renouve-
2020	2020	lables d'ici 2020

3- En matière de prévention et de réduction de la pollution atmosphérique

L'ambition du SRCAE vise à respecter les normes de qualité de l'air, pour les particules et les oxydes d'azote, dans les zones de concentration et d'exposition des populations. Pour les particules, en plus de l'objectif national des particules fines PM2,5, la cible alsacienne est une diminution des émissions des particules en suspension dans l'air (les PM10) et d'oxydes d'azote respectivement de 25 % et 15 % en 2020.

Le premier objectif nécessitera des contributions comparables du secteur du bâtiment (réhabilitation thermique et performance des appareils de chauffage) et celui des transports, sous l'impulsion des évolutions technologiques des véhicules à moteur. Ces dernières conditionneront majoritairement l'ambition affichée de réduction des émissions d'oxydes d'azote, même si là aussi les gains d'efficience énergétique de l'industrie et du secteur du bâtiment y contribueront significativement.

Engagements communautaires	Engagements nationaux	SRCAE Alsace
Respect des normes de qualité de directi- ves européennes	éduction de 30% des particules fines PM2,5 en 2015	Respect des normes qualité des directi- ves européennes:
		• PM10 : 40 µg/m³ en moyenne annuelle
		• PM10 : moins de 35 jours par an à plus de 50 µg/m³
		• PM2,5 : réduction de 30% à l'horizon 2015
		• NO2 : 40 µg/m³ en moyenne annuelle

Pourquoi un schéma régional du climat, de l'air et de l'énergie?

Les évolutions climatiques déjà perçues à l'échelle mondiale, les impacts de la qualité de l'air sur la santé humaine ainsi que la raréfaction des ressources énergétiques peu chères nécessitent que notre société se préoccupe dès à présent des conséquences environnementales et socio-économiques encourues.

C'est pour faire face à ces enjeux qu'a été instaurée par la Loi portant engagement national pour l'environnement, dite Loi ENE ou Loi Grenelle II, publiée le 12 juillet 2010, l'obligation de réaliser dans chaque région, un Schéma Régional du Climat, de l'Air et de l'Énergie (SRCAE) dont l'élaboration est confiée conjointement au Préfet de région et au Président du Conseil régional.

Son contenu et ses modalités d'élaboration sont précisés par le décret n° 2011-678 du 16 juin 2011.

Ce schéma vise en se basant sur un diagnostic régional, à définir aux horizons 2020 et 2050 :

- des orientations permettant d'atténuer les effets du changement climatique et de s'y adapter;
- des orientations permettant, de prévenir ou de réduire la pollution atmosphérique ou d'en atténuer les effets pour atteindre les normes de qualité de l'air;
- par zones géographiques, des objectifs qualitatifs et quantitatifs à atteindre en matière de valorisation du potentiel énergétique terrestre, renouvelable et de récupération et en matière de mise en œuvre de techniques performantes d'efficacité énergétique.

Le SRCAE comprend également une annexe intitulée « schéma régional éolien », qui définit les parties du territoire régional favorables au développement de l'énergie éolienne, et où devront être situées les propositions de zone de développement de l'éolien (ZDE)

Après approbation et au bout d'une période de cinq ans, le schéma pourra être révisé, à l'initiative conjointe du Préfet de région et du Président du Conseil régional, en fonction des résultats obtenus dans l'atteinte des objectifs fixés.

Dans quel cadre s'inscrit le schéma?

Aux côtés d'un certain nombre de pays, la France s'est engagée ces dernières années dans les domaines du climat, de l'énergie et de l'air.

Le protocole de Kyoto

Dans le cadre du protocole de Kyoto décliné au niveau de l'Union Européenne, la France a pour objectif de stabiliser en 2012 ses émissions de gaz à effet de serre au niveau de celles de 1990.

L'Union Européenne, signataire elle aussi du protocole, s'est engagée à l'horizon 2020, à réaliser le paquet « climat énergie » appelé aussi 3 fois 20, à savoir:

- réduire de 20 % la consommation énergétique primaire par rapport à un scénario tendanciel de référence;
- réduire de 20 % ses émissions de gaz à effet de serre par rapport à celles de 1990;
- porter à 20 % la part de production d'énergies renouvelables dans la consommation d'énergie finale totale.

Ces engagements ont été déclinés de manière différenciée dans les différents États membres. Pour la France, cette déclinaison est la suivante:

- réduire de 14 % les émissions de gaz à effet de serre non couvertes par le Plan National d'Affectation des Quotas par rapport à leur niveau de 2005.
- porter à 23 % la part de production d'énergies renouvelables dans la consommation d'énergie finale totale.
- réduire de 20 % la consommation énergétique primaire par rapport à un scénario tendanciel de référence.

Les engagements de la France en matière d'énergie

Pour traduire ces différents engagements internationaux, la France les a retranscrit dans plusieurs textes ces dernières années, en particulier dans la « loi de programme fixant les orientations de sa politique énergétique » dite loi POPE en 2005 et dans le Grenelle de l'environnement.

On y trouve également d'autres objectifs, d'ici 2020 :

- baisse de 38 % de la consommation énergétique finale des bâtiments existants,
- baisse de 20 % des émissions de gaz
 à effet de serre du secteur des transports,
- réduction de l'intensité énergétique finale de 2 % par an à partir de 2015 puis de 2,5 % à partir de 2030.

Afin d'aller plus loin dans les réductions d'émission de gaz à effet de serre prévues par le protocole de Kyoto, la France a inscrit dans le Grenelle de l'environnement l'objectif d'une division par 4 des émissions de gaz à effet de serre entre 1990 et 2050 à l'échelle nationale, ce que l'on nomme le « facteur 4 ».

L'amélioration de la qualité de l'air

Le contexte réglementaire applicable est fortement marqué par les directives européennes en matière de qualité de l'air, de réduction globale des émissions de certains polluants ou de limitation de certaines sources particulières.

La réglementation française au travers du code de l'environnement reprend ces éléments en introduisant des dispositions relatives à la surveillance de la qualité de l'air et aux valeurs limites, à l'information du public, aux mesures d'urgence en cas de pics de pollution, à la mise en place de plans de protection de l'atmosphère et de plans de déplacements urbains...

La France s'est en plus fixée un objectif de réduction des émissions de particules PM2,5 de 30 % d'ici 2015.

L'adaptation aux changements climatiques

En cohérence avec le livre blanc pour l'adaptation au changement climatique publié par l'Union Européenne, la France a élaboré un plan national d'adaptation en juillet 2011 listant plus de 200 recommandations.

Ce plan est adopté pour une période de 5 ans.

Quel contexte régional face à ces problématiques?

Dans une Alsace dense mais soucieuse de son environnement, les enjeux aussi divers que la préservation de la biodiversité, la pollution de l'air, ou, à une autre échelle, la modification du climat, doivent être pris en compte, dans la perspective de bâtir un mode de vie écologiquement viable.

La population et l'organisation du territoire

La population alsacienne se concentre principalement dans les agglomérations urbaines de Strasbourg, Mulhouse et Colmar, qui ont connu un accroissement important depuis la dernière guerre. Cette densité de population et l'étalement urbain qui en découle, induisent un besoin en mobilité toujours plus intense aux différentes échelles de la région. Cette tendance est renforcée par une offre importante de modes de déplacement et par une modification des bassins d'emplois.

Une mutation de l'économie

L'Alsace est la troisième région industrielle de France, en termes d'effectif rapporté à la population. Si la région a longtemps été considérée comme prospère et sans difficulté majeure, la conjoncture économique défavorable a largement impacté l'Alsace depuis une dizaine d'années.

L'Alsace est par ailleurs, une importante région logistique sur un carrefour international de premier ordre où convergent des corridors routiers, ferroviaires, fluviaux et aériens de première importance. Il s'en suit d'importants trafics en région, notamment routiers

Le secteur agricole n'est enfin pas à négliger, même s'il emploie moins de 3 % des actifs. Les surfaces agricoles représentent en effet près de 40 % de l'espace régional.

Comme d'autres régions métropolitaines, la région a vu une tertiarisation de son activité qui renforce l'attractivité des grands pôles urbains, au dépend des autres zones du territoire.

Des enjeux sanitaires

La géographie régionale est marquée par un climat défavorable à la dispersion de polluants comme les particules et les oxydes d'azote, et propice à la survenue estivale de pics d'ozone exposant une partie importante de la population alsacienne, en fonction des années, à des dépassements des normes applicables en matière de pollution atmosphérique.

Des zones de précarité énergétique

La région voit se conjuguer un climat continental induisant des hivers rigoureux et un étalement urbain fort avec toutefois des zones peu desservies par les transports en commun. La conjonction de ces deux facteurs dans certaines zones du territoire exposent fortement un certain nombre de ménages à une précarité énergétique du fait de la hausse inéluctable du prix de l'énergie.

Des thématiques au centre des préoccupations régionales

La dimension énergétique a été prise en compte depuis plusieurs années dans les politiques régionales.

Ainsi depuis 2000, le Contrat de Projet État-Région (CPER) traite des sujets entre autre énergétiques. La Région s'est attachée avec l'ADEME et l'État à coordonner les politiques territoriales et à améliorer l'échange d'informations et d'expériences en matière de maîtrise de l'énergie et de production d'énergies renouvelables au travers du groupe de travail Énergie Alsace renommé par la suite Conférence Régionale de l'Énergie en Alsace (CREA). Le contrat suivant 2007-2013 a vu cette thématique renforcée par l'introduction d'une clause énergétique spécifique, précurseur de la mise en place de la réglementation thermique pour les bâtiments et par un chapitre consacré à cette thématique.

En parallèle, la Région Alsace a introduit dès 2009, la thématique des gaz à effet de serre dans le Plan Régional pour la Qualité de l'Air.

Depuis 2010, la labellisation du Pôle de Compétitivité Alsace Energivie dont les axes de travail sont l'efficacité énergétique dans le bâtiment et les énergies renouvelables a conforté ce sujet.

Quelles réponses apportées par le schéma?

Comment l'Alsace peut-elle participer à l'atteinte des objectifs nationaux et européens évoqués précédemment? C'est la question à laquelle le schéma régional doit répondre en analysant les spécificités du territoire alsacien face aux problématiques citées.

Bien que les enjeux du schéma soient nombreux et divers, la lutte contre la précarité énergétique, la réduction des émissions directes de gaz à effet de serre et la lutte contre la pollution atmosphérique, sont bien des préoccupations convergentes à l'échelle du territoire alsacien.

L'articulation avec d'autres planifications existantes

Le SRCAE s'inscrit dans une dynamique qui a vu la mise en place de plusieurs autres outils de planification concourant totalement ou partiellement à la lutte contre le réchauffement climatique ou à la réduction de la pollution atmosphérique. Ces outils structurés aux échelles nationale, régionale et infrarégionale, sont rappelés ci-dessous.

Le SRCAE doit être élaboré en tenant compte de tous les outils préexistants et sera au service des démarches en cours.

Stratégies nationales	Stratégies régionales	Stratégies infra-régionales
Plan national d'adaptation au changement climatique	Plan d'action stratégique de l'État en région (PASER)	Plans Climat Énergie territoriaux (PCET)
Plan climat national	Plan régional santé environnement (PRSE2)	Schéma de cohérence territoriale (SCOT)
Plan particules	Schéma régional de cohérence écologique (SRCE)	Plans de déplacements urbains (PDU)
Plan bâtiment Grenelle	Plan régional pour une agriculture durable (PRAD)	Programmes locaux de l'habitat (PLH)
Programmes pluriannuels d'investissements de production de chaleur et d'électricité (PPI)	Schéma régional de raccordement au réseau électrique des énergies renouvelables	Plans de protection de l'atmosphère (PPA)
		Agendas 21

La coordination avec les démarches territoriales

Le schéma est un document stratégique. Son rôle est de proposer des orientations ou des recommandations applicables à l'échelle du territoire alsacien.

Il n'a donc pas vocation à fixer des mesures ou des actions qui relèvent des collectivités ou de l'État via notamment les Plans Climat Énergie Territoriaux (PCET), les Plans de Protection de l'Atmosphère (PPA) et les Plans de Déplacements Urbains (PDU) ou leurs politiques sectorielle.

Par ailleurs, les orientations du SRCAE seront prises en compte dans d'autres démarches majeures pour les territoires, comme les Schémas de Cohérence Territoriale (SCOT), les Programmes locaux de l'Habitat (PLH) et les Plans Locaux d'Urbanisme (PLU).

Le schéma ci-dessous reprend les points clés de l'articulation du SRCAE avec ces documents:

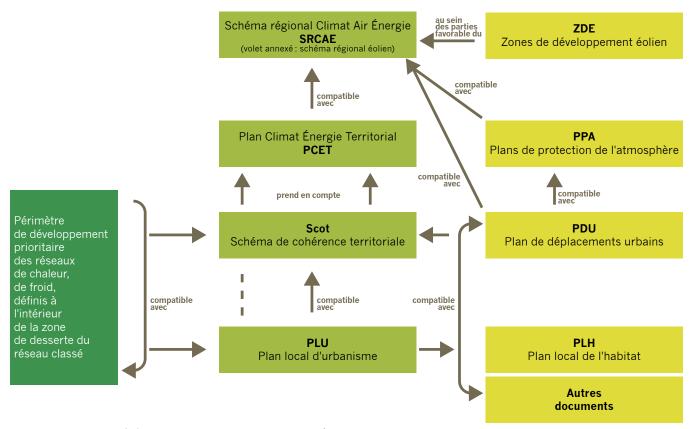


Illustration I: Articulation du SRCAE avec les documents de planification infra-régionales. Source: CERTU septembre 2010

Ouelle démarche suivie en Alsace?

La mise en place de la gouvernance du schéma s'est appuyée sur l'existence de la Conférence Régionale Énergie Alsace (CREA). La démarche s'est voulue ouverte à des acteurs de tous horizons: services de l'État, collectivités, associations, représentants du monde économique et des salariés.

Lancée officiellement le 12 juillet 2010, l'élaboration co-pilotée par le Préfet de Région et le Président du Conseil Régional, a concerné près de 300 acteurs. Trois comités de pilotage et environ 40 réunions techniques ont été organisés au travers de quatre ateliers dont les thèmes portent sur:

- le potentiel en énergies renouvelables dont un sous-groupe spécifique à l'éolien,
- la maîtrise de l'énergie,
- la qualité de l'air,
- l'adaptation au changement climatique.

Pour faciliter la circulation de l'information, un espace « extranet » dédié a été mis en place. Il a permis aux différents acteurs d'être informés régulièrement de l'état d'avancement de la démarche et de pouvoir avoir accès aux documents intermédiaires produits.

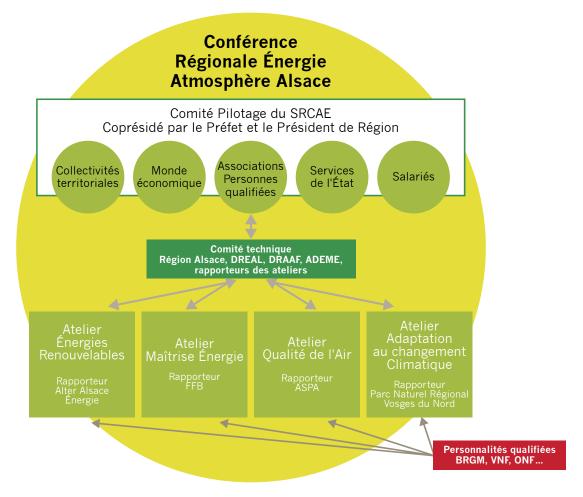


Illustration II: Gouvernance du Schéma régional Climat Air Énergie

Les résultats obtenus

Les travaux réalisés dans les ateliers ont contribué à établir l'état des lieux dans les thématiques concernées, principalement à partir des données et des études disponibles. Des contributions complémentaires ont été cependant nécessaires pour parfaire le diagnostic. Toutes les contributions techniques ont été regroupées dans des « cahiers techniques »

Un important travail de validation des données acquises a été également nécessaire. En effet, il a été noté à plusieurs reprises l'existence de plusieurs bases de données préexistantes sur des sujets communs, fondées sur des statistiques ou des facteurs d'émission différents.

Les données de l'année 2007, seules disponibles au moment du début des travaux, ont été la plupart du temps utilisées pour affiner le diagnostic. Depuis dans le cadre de la CREA, les données plus récentes ont été publiées. Il faut noter, toutefois, que du fait de la crise économique, les années 2008 et 2009 sont moins représentatives de la situation régionale.

Enfin les ateliers ont participé à la définition des orientations du schéma, à partir desquelles la construction des hypothèses d'évolution des consommations d'énergie et des émissions de gaz à effet de serre aux horizons 2020 et 2050 a été réalisée en se basant sur l'actualisation d'une étude existante datant de 2008.

Le schéma définit ainsi une feuille de route pour l'Alsace en évaluant les efforts à réaliser pour participer à l'atteinte des objectifs et impulser les orientations nécessaires pour y arriver.

Le schéma alsacien a été voulu comme un véritable outil de travail au service de tous les acteurs concernés. En tant que cadre stratégique de l'action future en matière d'énergie, d'air et de climat, il doit être connu et reconnu comme la référence en la matière et devra être suivi et actualisé régulièrement.

Schéma régional Climat Air Énergie Alsace

Inventaire des émissions directes de gaz à effet de serre (GES)

Méthodologie

Un inventaire des émissions est la description qualitative et quantitative des rejets de certaines substances dans l'atmosphère, issus de sources naturelles et/ou anthropiques.

Une émission est déterminée comme une quantité de polluant rejeté à l'atmosphère pendant un temps et pour une quantité d'activité donnée. Ces émissions sont calculées pour chaque source d'activité polluante inventoriée sur le territoire régional, qu'elle soit fixe (émetteurs localisés tels les industries, le secteur résidentiel, etc.) ou mobile (émetteurs non localisés tels les transports routiers, ferroviaires, etc.).

Les constats établis dans ce paragraphe sont issus des données disponibles au moment de la réalisation de l'état des lieux du Schéma (inventaire version 2006/V2 réalisé par l'ASPA). Lors des travaux menés par la suite dans le cadre du Schéma, ces bases de données ont été mises à jour et les méthodes d'évaluation des émissions améliorées. Cependant, les constats et les ordres de grandeurs présentés dans ce paragraphe restent cohérents.

Le bilan présenté par la suite se base sur l'inventaire des émissions alsaciennes de l'année 2007, qui est en effet plus représentative d'une année économique d'activité normale par rapport aux années suivantes de 2008 et 2009. L'ensemble des données collectées pour la réalisation de cet inventaire a été réalisé à l'échelle communale. Les résultats présentés dans ce chapitre sont une agglomération de ces données pour l'ensemble de la région. Le rapport de l'ASPA présenté en cahier technique donne un bilan complet de ces données.

L'inventaire est basé sur le format « SECTEN » (SECTeur économiques et Énergie) qui a été développé par le CITEPA afin de disposer de séries mettant en évidence les contributions des acteurs économiques et des énergies fossiles ou de la biomasse. Il comporte une ventilation suivant six secteurs:

- Transformation d'énergie
- Résidentiel/Tertiaire
- Industrie manufacturière (dont secteur du traitement des déchets)
- Transport routier
- Autres transports
- Agriculture/Sylviculture

Il porte, pour sa partie relative aux émissions de gaz à effet de serre, sur six gaz à effet de serre reconnus comme contribuant au changement climatique par la Convention Cadre des Nations Unies sur les Changements Climatiques:

- le dioxyde de carbone: CO₂
- le méthane: CH,
- le protoxyde d'azote: N₂O
- l'hexafluorure de soufre: SF₆
- les hydrofluorocarbures: HFC
- les perfluorocarbures: PFC

Pouvoir de Réchauffement Global: Par la suite, les émissions globales de gaz à effet de serre sont exprimées à l'aide du Pouvoir de Réchauffement Global (PRG). Cet indicateur de réchauffement climatique sur 100 ans vise à regrouper sous une seule valeur, l'effet additionné des substances étudiées qui contribuent à l'accroissement de l'effet de serre. Le PRG permet de comparer le pouvoir de réchauffement climatique d'une émission de gaz à effet de serre « équivalent-CO₂ » (eq-CO₂). Par exemple, le PRG du N₂O est de 310: cela signifie qu'une tonne de N₂O émise à l'atmosphère a le même pouvoir de réchauffement climatique que 310 tonnes de CO₂. On comptabilisera donc pour une tonne de N₂O émise, 310 tonnes équivalent CO₂.

Cette définition du PRG est basée sur celle définie par le GIEC⁽¹⁾, utilisant les coefficients établis lors de la Conférence des Parties de 1995, et appliqués dans le cadre du protocole de Kyoto.

⁽¹⁾ Groupe d'experts Intergouvernemental sur l'Évolution du Climat

1. Émissions de CO2, CH4, N20 et PRG associé

En 2007, le Pouvoir de Réchauffement Global associé aux émissions totales de CO_2 , CH_4 et $\mathrm{N}_2\mathrm{O}$ en Alsace, s'élevait à 16093 kilotonnes-équivalent- CO_2 (kteq- CO_2), représentant 8,8 teq- CO_2 /habitant.

En France métropolitaine, les émissions de ces trois gaz à effet de serre donnent un PRG total de $505\,000\,\mathrm{kteq\cdot CO_2}$, pour $8,2\,\mathrm{teq\cdot CO_2}$ émises par habitant. L'Alsace se situe donc juste au-dessus de la moyenne nationale.

Le Tableau 1 illustre les émissions des trois principaux gaz à effet de serre en Alsace. On peut en déduire que les émissions directes alsaciennes de ${\rm CO_2}$ contribuent à hauteur de 76 % au PRG de la région en 2007, avec environ 12 200 kteq- ${\rm CO_2}$ émises. Vient ensuite le ${\rm N_2O}$ pour 19 % du PRG, devant le ${\rm CH_4}$ (5 %).

Gaz à effet de serre	PRG	Émission du composé en kilotonnes	Émission du composé en kteq-CO ₂	Pourcentage
CO ₂	1	12221	12221	76 %
CH ₄	21	35	742	5 %
N ₂ O	310	10	3130	19 %
		Total	16093 kteq-CO ₂	100 %

Tableau 1 : Émissions des 3 principaux gaz à effet de serre et PRG associés en Alsace en 2007. Source ASPA

À noter que si le ${\rm CO_2}$ est également le premier gaz à effet de serre au niveau national avec près de 77 % du PRG global, la part que représente le ${\rm N_2O}$ dans le PRG national est moindre puisqu'elle s'établit à 13 %. Le méthane contribue quant à lui à 10 % des émissions globales françaises.

1.1. Pouvoir de réchauffement global et répartition sectorielle

Le tableau suivant présente pour l'année 2007, la répartition du pouvoir de réchauffement global (en kilo tonnes équivalent ${\rm CO_2}$), par secteurs d'activité:

Secteur	PRG en kteq-CO ₂	Pourcentage
Agriculture/sylviculture	1 407	8,7 %
Industrie	6806	42,3 %
Dont quotas CO ₂ ⁽²⁾	2630	16,3 %
Transformation énergie	847	5,2 %
Résidentiel/Tertiaire	3058	19 %
Transport routier	3784	23,6 %
Autres transports	191	1,2 %
Total	16093 kteq-CO ₂	100 %

Tableau 2: Émissions de gaz à effet de serre par secteurs d'activité sur la région Alsace en 2007. Source ASPA

La particularité d'une présence forte du $\rm N_2O$ en Alsace, se retrouve également dans le profil sectoriel des émissions de gaz à effet de serre. Alors qu'au niveau national l'industrie se place en seconde position des sources d'émissions, elle représente en Alsace (Tableau 2) le premier émetteur de gaz à effet de serre (42 %) devant les transports routiers (24 %) et le secteur résidentiel (19 %). Ces trois secteurs contribuent à près de 85 % des émissions de gaz à effet de serre en Alsace (illustration I). Cette situation alsacienne est due à la présence dans le Haut-Rhin de sites industriels fortement émetteurs de $\rm N_2O$, spécialisés dans la production de nylon et d'engrais. Cette importance de l'industrie se retrouvera à travers la répartition sectorielle des émissions de $\rm N_2O$.

 $^{^{(2)}}$ Les quotas CO_2 sont évoqués dans la partie maîtrise de l'énergie

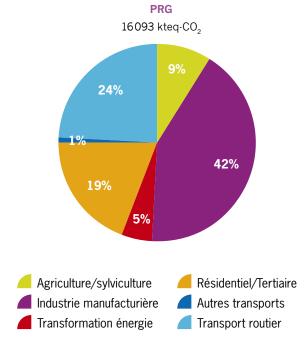
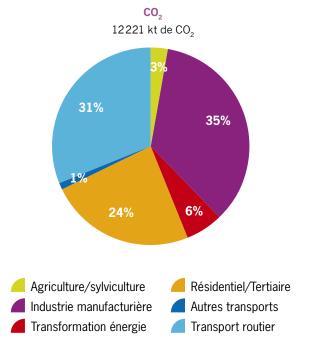



illustration I: Répartition sectorielle des émissions de gaz à effet de serre en Alsace en 2007. Source ASPA

1.2. Émissions de dioxyde de carbone (CO₂)

Les émissions de CO_2 se retrouvent dans les mêmes secteurs que les émissions totales de gaz à effet de serre, reflétant la contribution prédominante du CO_2 dans le PRG (industrie, transport routier et résidentiel pour 85 % des émissions). Toutefois la part de l'industrie (35 %), moins importante que dans le PRG, est équivalente à celle des transports routiers (31 %). Le résidentiel/tertiaire est le troisième secteur émetteur de CO_2 avec 24 % des émissions. Viennent ensuite la transformation d'énergie devant l'agriculture et les autres transports.

lllustration II: Répartition sectorielle des émissions de ${\rm CO_2}$ sur la région Alsace en 2007. Source ASPA

1.3. Émissions de méthane (CH_z)

Les émissions de méthane ont des sources sensiblement différentes. L'agriculture principalement au travers de l'élevage et l'industrie sont à l'origine de 77 % des émissions de $\mathrm{CH_4}$. Viennent ensuite la transformation d'énergie par le résidentiel/tertiaire.

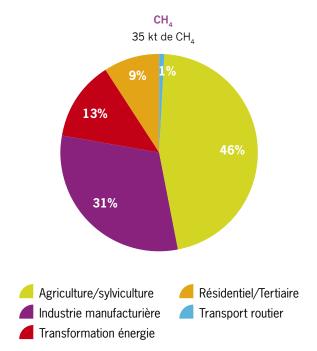


Illustration III: Répartition sectorielle des émissions de ${\rm CH_4}$ sur la région Alsace en 2007. Source ASPA

1.4. Émissions de protoxyde d'azote (N,0)

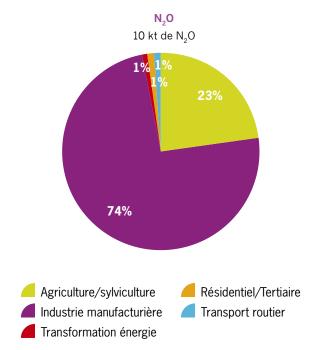


Illustration IV: Répartition sectorielle des émissions de N₂O sur la région Alsace en 2007. Source ASPA

Le protoxyde d'azote ($\rm N_2O$) est principalement émis par deux secteurs en Alsace: le secteur industriel (74 %) et l'agriculture (23 %). Les autres secteurs représentent une part anecdotique (moins de 5 %). Les émissions de protoxyde d'azote par l'industrie sont principalement associées à la production de nylon et d'engrais dans le Haut-Rhin.

Particularité régionale du protoxyde d'azote: Les émissions de $\rm N_2O$ en Alsace s'élevaient à près de 60000 tonnes en 1990. Plus de 95 % de ces émissions étaient dues au secteur industriel de la chimie du Haut-Rhin. Ces émissions représentaient, en 1990, près de 19000 kteq- $\rm CO_2$ soit plus de 55 % du PRG total de la région Alsace du moment.

En 2006, suite à d'importants efforts de réduction des émissions menés par les industriels concernés, les émissions de $\rm N_2O$, ne s'établissaient plus qu'à 3200 kteq- $\rm CO_2$ soit moins de 18 % du PRG total de la région cette même année.

Des projets de réduction des émissions sont actuellement menés par les industriels concernés pouvant conduire à court terme, à un gain supplémentaire d'encore $1\,000\,\mathrm{kteq}$ CO_2 .

2. Composés fluorés

Les émissions de composés fluorés SF_6 , HFC, PFC ont fait l'objet de deux inventaires spécifiques pour les années de référence 2003 et 2008 à l'échelle de la région. Intégrés dans le calcul du Pouvoir de Réchauffement Global (PRG) de la région, ils y participent à hauteur de 2 % pour 2003 et 2008.

Parmi ces trois composés fluorés, les HFC représentent la majorité des émissions devant le $\rm SF_6$. Aucune source de PFC n'a été inventoriée. Les émissions de $\rm SF_6$ en Alsace proviennent exclusivement du secteur de la transformation d'énergie, les sources d'émissions de HFC sont plus hétérogènes: le secteur industriel, la réfrigération commerciale et la climatisation automobile principalement.

3. Évolution des émissions de gaz à effet de serre depuis 1990 en Alsace

Les émissions de gaz à effet de serre sont inventoriées, avec la même cohérence méthodologique, pour l'année de référence 1990, retenue dans le protocole de Kyoto, et annuellement depuis 2000. L'évolution des émissions en tendance peut donc être exploitée afin de déterminer la situation de l'Alsace au regard des engagements nationaux et internationaux.

En Alsace, les émissions de gaz à effet de serre ont enregistré une forte baisse depuis 1990 (illustration V). La décennie 1990-2000 a en effet, vu une diminution de plus de 40 % de ces rejets.

Depuis 2000, les émissions sont globalement à la baisse avec des fluctuations annuelles liées à l'activité économique ou aux phénomènes climatiques. En 2007, une division par 2 des niveaux d'émission de 1990 est presque atteinte.

Ce constat flatteur pour la région est toutefois à nuancer par le fait que cette diminution des émissions est entièrement due au secteur industriel au travers de la réduction des émissions de $\rm N_2O$. Une analyse plus fine montre que cette importante baisse des émissions de $\rm N_2O$ est accompagnée d'une augmentation globale des émissions de $\rm CO_2$ sur la même période et d'une très légère baisse des émissions de $\rm CH_4$.

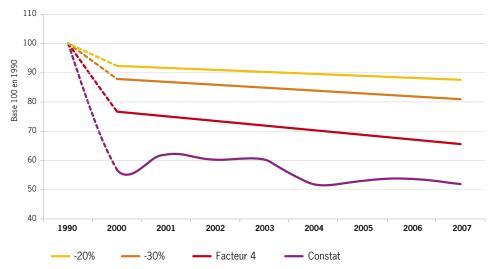


Illustration V: Évolution constatée des émissions de gaz à effet de serre sur la région Alsace, comparée aux objectifs national et européen. Source ASPA

Le graphique suivant, illustre mieux les évolutions comparées de chaque secteur d'activités en terme de PRG sur la période 1990-2007.

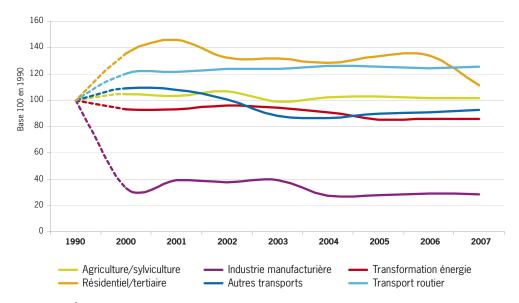


Illustration VI: Évolution des émissions de gaz à effet de serre par secteurs d'activité entre 1990 et 2007. Source ASPA

Si le secteur industriel enregistre une nette diminution de ses émissions, a contrario d'autres secteurs voient leurs émissions en augmentation par rapport à 1990: en particulier les transports routiers et le résidentiel/tertiaire. Les émissions dues à l'agriculture sont relativement stables alors que celles associées aux transports non routiers et à la production/distribution d'énergie sont en légère baisse par rapport à 1990.

4. Particularité: le secteur Utilisation des Terres, Changements d'affectation et Foresterie: UTCF

Ce vocable d'UTCF couvre la récolte et l'accroissement forestier, la conversion des forêts (défrichement) et des prairies ainsi que des sols dont la composition en carbone est sensible à la nature des activités auxquelles ils sont dédiés (forêt, prairie, terre cultivée, etc.).

Il est apparu intéressant de dresser le bilan de ce secteur d'activité pour l'Alsace. En effet, le couvert végétal important dans la région et sa préservation participe au cycle du carbone et peut être un élément limitant les émissions de gaz à effet de serre.

Ce bilan, établi en tenant compte de l'absorption de carbone dû à l'accroissement de la forêt et des sources d'émission dues au défrichement, montre que plus de carbone est stocké qu'il n'en est émis. Les travaux menés par l'ASPA conduisent à un solde positif d'environ 3000 kteq- CO_2 stockées naturellement annuellement, ce qui représente environ 20 % des émissions anthropiques régionales.

Cependant, l'UTCF fait l'objet de règles comptables internationales particulières comme dans le cadre du protocole de Kyoto. De ce fait, les quantités de CO_2 déductibles des émissions sont plafonnées pour éviter les effets d'aubaine. En effet, le stockage de CO_2 permet de différer les émissions dans le temps mais seule une gestion durable des forêts permet réellement de pérenniser ce stockage. Ainsi, selon la comptabilité internationale, seules 810 kteq- CO_2 sont au final déductibles (soit environ 0,6 % des émissions anthropiques de la région).

Nonobstant cette manière de calculer, la poursuite du stockage naturel du CO_2 et sa pérennisation dans le temps fait partie de la stratégie de l'Alsace dans la diminution des émissions de gaz à effet de serre.

Les émissions de gaz à effet de serre de l'Alsace témoignent de la présence d'industries fortement émettrices comme celles de la chimie ou de l'agroalimentaire.

Les évolutions régionales sont marquées par une forte baisse des émissions de l'industrie entre 1990 et 2000, avec depuis lors une tendance à la stagnation et même des secteurs en hausse régulière comme les transports.

Ramenées à la population, les émissions alsaciennes restent supérieures à la moyenne nationale.

Bilan énergétique régional

Énergie primaire et énergie finale

L'énergie primaire est une forme d'énergie disponible directement dans la nature: bois, charbon, gaz naturel, pétrole, vent, rayonnement solaire, énergie hydraulique, géothermique... L'énergie primaire n'est cependant pas toujours directement utilisable et fait donc parfois l'objet de transformation pour être mise en œuvre.

Cette série de transformations constitue une chaîne énergétique, par exemple la chaîne pétrolière qui comprend: extraction, transport, raffinage, distribution, utilisation. Chaque phase est caractérisée par un rendement, toujours inférieur à 1 par suite des pertes.

Elle peut aussi être utilisée pour des usages non énergétiques tels que le bitume.

L'énergie finale est l'énergie qui est disponible pour l'utilisateur final. La consommation finale énergétique est donc celle qui rend le mieux compte de l'activité d'un territoire. Il est à noter qu'elle ne prend pas en compte la manière dont elle est utilisée ni le rendement des équipements l'utilisant.

Pour passer de l'énergie primaire à l'énergie finale, il faut tenir compte des usages non énergétiques, du **rendement de conversion** lors de la transformation, de la consommation d'énergie au cours de cette transformation ainsi que des pertes de distribution: fuites, évaporation, dissipations, etc. Dans tous les cas, la conversion entraîne une diminution plus (électricité) ou moins (raffinage) importante de l'énergie disponible.

La transformation d'énergie primaire en électricité, sans tenir compte des pertes de distribution, se fait avec des coefficients de conversion définis par convention internationale qui sont différents entre le nucléaire, les centrales thermiques ou l'électricité hydraulique ou éolienne. Il en est, de même, pour la transformation d'énergie primaire en carburants ou combustibles finaux.

L'énergie finale représente globalement deux tiers de l'énergie primaire.

Les objectifs nationaux et internationaux sont, suivant le cas, exprimés en énergie finale ou énergie primaire. Il importe d'avoir en mémoire les deux notions.

1. Consommation énergétique alsacienne

1.1. Consommation finale par filières énergétiques

L'ensemble des données énergétiques dans ce chapitre seront exprimées en ktep pour une lecture simplifiée. L'annexe l'explicite les coefficients utilisés.

Le graphique suivant montre l'évolution depuis 1990, de la consommation finale régionale répartie par filières énergétiques.

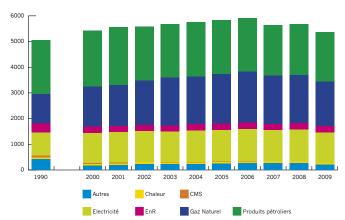


Illustration I: évolution de la consommation énergétique finale alsacienne entre 1990 et 2009 en fonction des sources d'énergie. Source: CREA ALSACE/ ASPA 11110802-TD

Cette évolution suit une courbe ascendante pour atteindre un maximum en 2006 et se stabiliser par la suite. Depuis une quinzaine d'années, la consommation finale énergétique a ainsi augmenté en Alsace d'environ 17 %. Elle est comprise actuellement autour de 5400 ktep par an. Une tendance à la baisse semble amorcée, mais ne modifie pas de façon profonde la répartition des sources d'énergie consommées.

Le tableau suivant reprend ces données sous forme chiffrée. La structuration de l'énergie consommée en Alsace se répartit toujours en trois grandes parts: les produits pétroliers, le gaz et l'électricité. La consommation d'électricité englobe la production nucléaire et hydraulique. Depuis 1990, la part de la consommation de produits pétroliers a diminué au profit du gaz.

En ktep	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Produits pétroliers	2177	2247	2100	2093	2102	2108	2087	1950	2002	1914
Électricité	1 163	1 189	1200	1 197	1230	1234	1254	1222	1230	1 171
Gaz	1564	1604	1746	1861	1868	1930	1992	1901	1871	1732
Énergies renouvelables	254	228	221	230	243	248	240	232	254	272
Chaleur issue du chauffage urbain	0	0	0	0	0	0	67	61	66	67
Combustibles minéraux solides(1)	0	0	11	0	0	0	6	6	3	5
Autres ⁽²⁾	156	186	233	221	226	240	266	260	260	202
Total	5426	5 5 5 7	5582	5679	5746	5839	5913	5633	5687	5 3 9 4

Tableau 1 : consommation d'énergie finale alsacienne entre 1990 et 2009. Source : CREA ALSACE/ASPA 11110802-TD

1.2. Consommation finale par secteurs d'activité

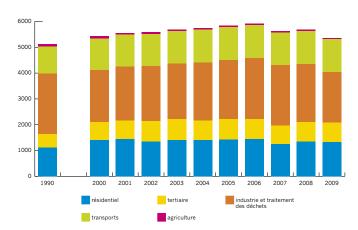


Illustration II: évolution de la consommation d'énergie finale en Alsace suivant les secteurs entre 1990 et 2009. Source: CREA ALSACE/ASPA 11110802-TD

L'illustration II présente l'évolution de la consommation énergétique en la ventilant par secteurs d'activité. L'année 2005 est marquée par une forte consommation du secteur industriel qui explique le maximum atteint. Depuis, la baisse de l'activité économique est visible sur la consommation énergétique du secteur industriel. A contrario, la consommation des autres secteurs ne s'est que stabilisée.

On peut donc dire que la baisse de la consommation énergétique de la région n'est que le fait de la réduction de la consommation industrielle.

⁽¹⁾ Les CMS ou combustibles minéraux solides regroupent les consommations en charbon et en coke.

⁽²⁾ Déchets industriels, hydrogène...

1.3. Consommations par secteurs d'activité et par filière énergétique

Le tableau suivant présente pour l'année 2007 la consommation énergétique finale alsacienne ventilée par filières et par secteurs d'activité.

Énergie finale en ktep	Combus- tibles minéraux solides	Produits pétroliers	Gaz naturel	Électricité	Énergies renou- velables	Chaleur issue du chauffage urbain	Autres	Total
Industrie	4	171	1 278	571	45	0	260	2329
Résidentiel	1	331	369	327	183	35	0	1247
Tertiaire	1	140	250	303	4	26	0	724
Agriculture	0	45	4	7	0	0	0	56
Transports	0	1 263	0	14	0	0	0	1277
Total	6	1950	1901	1222	232	61	260	5633

Tableau 2: Répartition de la consommation finale alsacienne en 2007 en ktep. Source: CREA ALSACE/ASPA 11110802-TD

La consommation des produits pétroliers relève sans surprise pour les 2/3 des transports. La consommation résiduelle en charbon, coke et déchets industriels ressort majoritairement de l'industrie alors que le résidentiel consomme la plupart des énergies renouvelables. La consommation électrique se répartit sur deux domaines majoritaires: l'industrie d'une part et le tertiaire/résidentiel à fraction égale d'autre part.

Le tableau 3 présente la répartition de la consommation en énergie primaire. La répartition des consommations entre les différents secteurs ne se voit pas profondément modifiée. Toutefois, a été introduit le secteur lié à l'énergie⁽³⁾ dans sa sectorisation. De ce fait, la part de la consommation régionale liée à la production et aux pertes énergétiques devient lisible. Toutefois, il faut noter

que 1/3 des énergies renouvelables est utilisé pour la production d'énergie (essentiellement en chauffage urbain).

D'après l'illustration III, la consommation d'énergie se concentre, sans surprise, sur les zones à forte densité de population et à activités industrielles. On observe d'autre part que certains territoires présentent des profils très singuliers, ainsi le territoire couvert par le SCOT de la bande Rhénane du Nord et celui couvert

par le SCOT de la région Mulhousienne se distinguent par une forte prédominance de la consommation industrielle alors que la consommation énergétique du SCOTERS est caractérisée par l'importance des transports et du résidentiel/tertiaire.

Énergie primaire en ktep	Combus- tibles minéraux solides	Produits pétroliers	Gaz naturel	Électricité	Énergies renou- velables	Chaleur issue du chauffage urbain	Autres	Total
Industrie	4	171	1 301	1473	45	0	260	3254
Énergie	0	207	58	25	123	0	0	412
Résidentiel	1	331	369	845	183	35	0	1764
Tertiaire	1	140	250	783	4	26	0	1204
Agriculture	0	45	4	17	0	0	0	67
Transports	0	1 263	0	36	0	0	0	1299
Total	6	2157	1982	3179	355	61	260	8000

Tableau 3: Répartition de la consommation primaire alsacienne en 2007 en ktep, source: CREA ALSACE/ASPA 11110802-TD

⁽³⁾ Le secteur de l'énergie regroupe ici les consommations liées au raffinage du pétrole, à l'extraction de combustibles, à la distribution de combustibles, à la transformation d'énergie et au chauffage urbain.

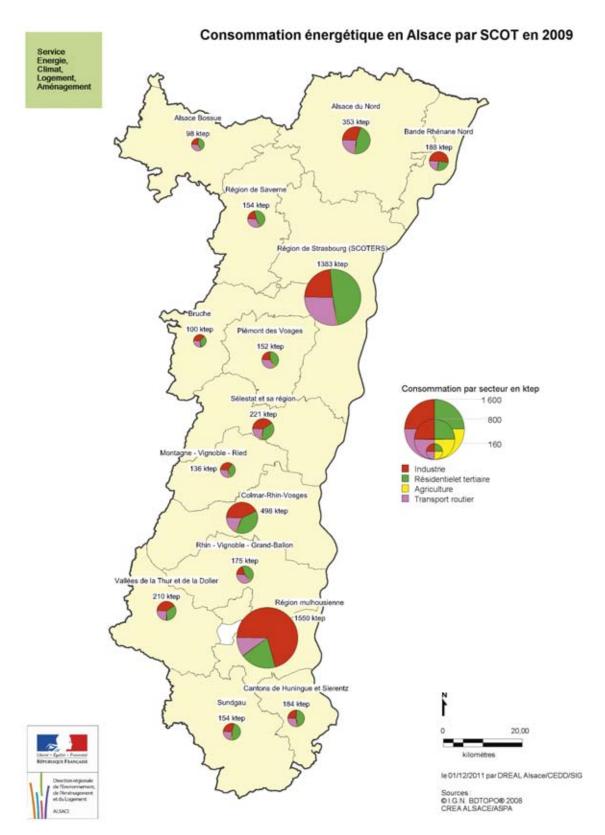


Illustration III: consommation énergétique finale par SCOT en 2009 et répartition de cette consommation suivant les secteurs

1.4 Focus sur la maîtrise de la consommation d'électricité

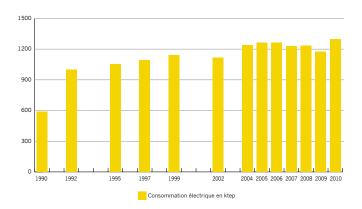


Illustration IV: Consommation finale alsacienne en électricité 1990-2010. Source: Soes et RTF

En 2010, l'Alsace a consommé 1 300 ktep d'électricité, soit une augmentation de plus de 5 % par rapport aux années précédentes (illustration IV). Cette augmentation est due principalement aux longues périodes de froid qui ont touchées l'Alsace en début et en fin d'année 2010 mais on ne peut exclure l'impact d'une légère reprise économique. Cette consommation d'électricité parfois localisée a par ailleurs d'autres conséquences comme le transport et la gestion des besoins et des pointes.

1.4.1. La gestion des besoins

Dans son bilan annuel, la production alsacienne d'électricité est excédentaire par rapport aux besoins locaux (illustration V). Cependant, en période hivernale, lorsque le Rhin est à son débit le plus bas, l'Alsace est contrainte d'importer de l'électricité pour subvenir à ses besoins du moment. Au contraire, en été, l'Alsace exporte de l'électricité.

En hiver, il suffit que la température baisse d'un seul degré pour que la consommation instantanée augmente de 2300 MW. Cela représente l'équivalent de deux fois la consommation d'une grande ville comme Marseille. Lors de périodes de froid, la consommation en France atteint chaque jour un pic maximum aux alentours de 19 h00. En été, et surtout par forte chaleur, le pic se produit aux alentours de 13 h00, car la demande d'énergie électrique est alors la plus élevée de la journée (climatisations, ventilateurs etc.).

Cette gestion des pointes de consommation est donc également une problématique à résoudre, qui nécessite parfois un transit d'électricité venant de l'extérieur de l'Alsace.

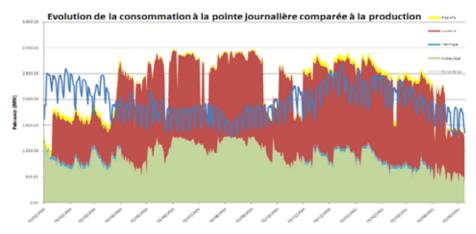


Illustration V: évolution de la consommation à la pointe journalière comparée à la production pour l'Alsace en 2010. Source: RTE

Illustration VI: évolution de la consommation instantanée électrique lors des épisodes de pointes en Alsace entre 2004 et 2011. Source: RTE

On peut constater que sur la période 2004 – 2010, la consommation alsacienne a augmenté de $5\,\%$ et la pointe de $7\,\%$ (illustration VI). En Alsace, le pic de la pointe de la consommation a été atteint le 15 décembre 2010 à 19 heures avec $2856\,$ MW.

1.4.2. Les pertes électriques sur le réseau

L'exploitation du réseau de transport d'électricité génère des pertes électriques sur chaque équipement par lequel transite de l'énergie.

Définition des pertes et éléments chiffrés

Par définition, les pertes d'énergie se calculent par différence entre les quantités injectées et les quantités soutirées d'électricité dans le réseau. Elles comprennent conventionnellement:

■ les pertes techniques de tous les éléments consommateurs d'énergie qui composent les réseaux de transport et de distribution, soit principalement les pertes par effet Joule mais aussi les pertes par effet couronne, ainsi que les pertes des transformateurs et des auxiliaires des postes (illustration VII).

Illustration VII: répartition des pertes électriques. Source: RTE

Le volume des pertes fait des réseaux eux-mêmes les plus importants consommateurs d'électricité en France. Les pertes sur le réseau de RTE, le gestionnaire du réseau de transport d'électricité, représentent environ 11,5 TWh par an (989 ktep). Rapporté au volume total d'énergie injectée sur ce réseau, le taux de pertes du **réseau de transport français** est proche de 2,5 %.

Les pertes techniques et dites « non techniques » sur les **réseaux de distribution** gérés par ERDF sont estimées respectivement à près de 3,5 % et 2,5 % de l'énergie injectée, soit un total d'environ 21 TWh (1806 ktep) par an.

Les autres gestionnaires de réseaux de distribution présents sur le territoire français, dits distributeurs non nationalisés (DNN) alimentent près de 6 % des utilisateurs des réseaux de distribution en France et subissent sur leurs réseaux un peu plus de 1 TWh (86 ktep) de pertes d'énergie par an.

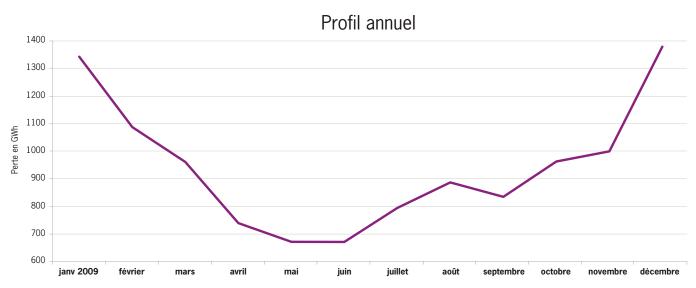


Illustration VIII: profil annuel et national des pertes sur le réseau. Source: RTE

L'illustration VIII met en évidence que les pertes ont lieu logiquement au moment des transports les plus forts.

Pertes sur le réseau alsacien

Le tableau 4 récapitule les pertes estimées sur le réseau alsacien. On arrive à des chiffres moyens (2,3 %) légèrement inférieurs aux chiffres nationaux qui peuvent s'expliquer en partie par l'existence d'un réseau relativement dense limitant les parcours.

		2009					20	10	
		RTE + distribution	RTE	RTE-ESt	Alsace	RTE + distribution	RTE	RTE-ESt	Alsace
Dentes	TWh	34	11	2	0,32 (*)	37	12	2	0,33 (*)
Pertes annuelles	ktep	2890	980	138	28 (*)	3 199	1 032	159	28 (*)
Pertes moyennes	MW	3836	1301	182	36 (*)	4 247	1 370	211	38 (*)
Concommention	TWh	484	484	56	14	512	512	60	15
Consommation	ktep	41 624	41 624	4825	1221	44032	44032	5117	1264
Taux de pertes	%	6,90	2,40	2,80	2,2 (*)	7,30	2,30	3,10	2,3 (*)

Tableau 4: pertes électriques suivant le type de réseau. Source: RTE (*) pertes sur le réseau HTB4

1.5. Comparaison nationale

L'évolution de la consommation énergétique finale alsacienne comparée entre 1999 et 2008 montre une évolution à la baisse plus sensible que la moyenne nationale en absolue et par habitant (tableau 5).

	Alsace		Ensemble des régions hors IDF		Ensemble des régions	
	2008	Évolution (%)	2008	Évolution (%)	2008	Évolution (%)
Consommation finale (Mtep)	5,3	-3	135,2	1	160,5	1
Consommation régionale par habitant (tep/hab)	2,9	-8	2,7	-5	2,6	-5
Consommation rapportée au PIB régional (tep/M€ 2000)	119	-14	118	-14	99	-15

Tableau 5 : consommation d'énergie finale et évolution comparée entre 1999 et 2008 de l'Alsace et de la France

Toutefois, l'évolution de l'intensité énergétique⁽⁵⁾ de la région reste dans la norme nationale et la consommation par habitant supérieure à la moyenne nationale.

Par ailleurs, cette évolution favorable de l'intensité énergétique est à tempérer car sur la période 1990-2008, l'Alsace a vu sa consommation d'énergie finale croître de façon plus marquée que sur l'ensemble des régions françaises.

2. Le secteur résidentiel

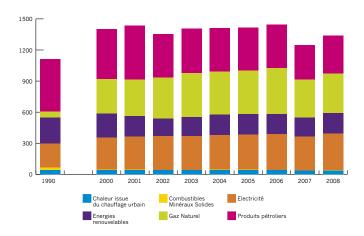


Illustration IX: évolution de la consommation énergétique finale du résidentiel entre 1990 et 2009 en fonction des sources d'énergie. Source: CREA ALSACE/ASPA 11110802-TD

Comme pour l'ensemble de la métropole, on peut observer un maintien de la consommation électrique, une croissance maintenant stabilisée de la consommation en gaz et un recul de la part des produits pétroliers. Les énergies renouvelables dont le bois énergie ont cédé le pas depuis les années 1990 jusqu'à 2002 et semblent depuis redevenir une source d'énergie recherchée.

⁽⁵⁾ consommation énergétique rapportée au PIB régional

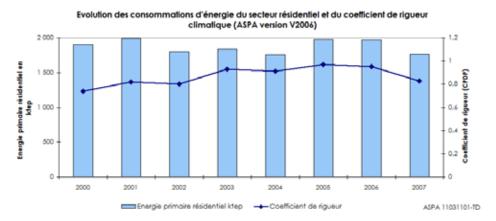


Illustration X: évolution de la consommation d'énergie primaire du secteur résidentiel rapportée au coefficient de rigueur climatique - 2000-2007

La consommation d'énergie primaire du secteur résidentiel marque une certaine stabilisation entre 2000 et 2006. La baisse constatée notamment sur 2007 est à mettre en regard de la rigueur climatique et ne peut être attribuée à un effort de maitrise d'énergie (illustration X). De fait, la consommation du secteur est repartie à la hausse en 2008 et 2009, années plus froides.

2.1. Structuration du parc bâti

Avertissement méthodologique

Le diagnostic du parc bâti ci-dessous provient des données du fichier « Détail logement » de l'Insee de l'année 2007, qui prend en compte les seuls logements principaux.

Il est cependant intéressant de constater que d'autres résultats peuvent coexister sur le parc de logements en Alsace.

La base Filocom, issue des données de l'administration fiscale et exploitée par la DREAL, révèle ainsi un nombre de logements s'élevant à 881899, avec une part de logements collectifs plus importante (491746 logements) que celle des logements individuels (390153 logements).

Cette proportion est au contraire légèrement inversée au profit des logements individuels dans le fichier « Détail logement » de l'Insee. Ayant servi de base aux travaux de l'Inventaire ASPA 2009, ce dernier a été ici privilégié pour conserver la cohérence dans l'approche statistique d'ensemble (au niveau macro pour le gisement régional et micro pour la déclinaison en sous-gisements).

2.1.1. Caractéristiques physiques du parc

Le nombre de logements tous parcs confondus en Alsace s'élève à 752166, partagés entre 368052 logements collectifs et 384114 logements individuels.

Sur ces 752166 logements, 104333 sont des logements locatifs sociaux (19 % du parc total) et 234883 sont des copropriétés (de 2 à plus de 100 logements, soit 30 % du parc total).

Ces deux catégories sont appréhendées en tant que gisements, de par leur importance quantitative et leur entité identifiable. Les problématiques qui leur sont propres (précarité énergétique et/ou modalités collégiales de prise de décision, intervention des pouvoirs publics ou non, âge du bâti, etc.) amènent aussi à focaliser l'analyse sur elles.

Les copropriétés représentent près de 30 % du parc bâti alsacien, avec 235 000 logements. Elles se caractérisent par leur concentration urbaine, particulièrement forte dans la Communauté Urbaine de Strasbourg (CUS) avec 110 392 logements (soit 75 % des copropriétés du Bas-Rhin et 43 % des logements de la CUS), dans la Communauté d'Agglomération de Mulhouse (M2A) avec 42 546 logements (soit 50 % des copropriétés du Haut-Rhin et 35 % des logements de la M2A) et dans la Communauté d'Agglomération de Colmar (CAC) avec 36 000 logements (soit 37 % des logements de la CAC). Si ce parc s'avère pour plus de sa moitié être daté d'après la première Réglementation Thermique (RT 1974), près du quart appartient à la classe de bâti la plus énergivore 1949-1974. Cette dernière représente 60 000 logements en Alsace, dont 30 000 à Strasbourg et 16 000 à Mulhouse.

Les logements sociaux représentent 19 % de l'ensemble du parc bâti, dont 50 352 d'avant la première Réglementation Thermique (RT 1974), (31 555 dans le Bas-Rhin, 18 797 dans le Haut-Rhin).

La catégorie par âge de construction du bâti ante 1974 (prés de 60 % du parc), voire 1947-1974 (29 % du parc), constitue également un gisement en soi, de par ses caractéristiques techniques énergivores datant d'avant la première réglementation thermique et de par sa localisation.

Le parc ante-1974 CUS, M2A et CAC représente environ 223883 logements, soit près de 30 % de l'ensemble du parc alsacien.

2.2. Consommation finale énergétique et émissions de GES du parc bâti

Avertissement méthodologique

L'ASPA utilise les données régionales de l'Observatoire de l'énergie, de l'ADEME, de l'INSEE et de Météo-France. Cela lui permet d'avoir une approche communale par combustible, par facteurs d'émissions de GES pour le combustible pris en compte et le polluant considéré, par données démographiques et climatologiques. Cette méthode permet d'obtenir des moyennes par surface, de consommation énergétique et d'émissions de GES (cf. note ASPA disponible dans les cahiers techniques).

Les facteurs de consommation et d'emissions CO_2 utilisés par l'ASPA correspondent à l'approche nationale (CITEPA) et concernent les 5 usages réglementaires du bâti. Cette approche diffère de celle en cours pour la réalisation des Diagnostics de Performance Énergétique, qui ne se basent que sur 3 usages de consommation du bâti (chauffage+ECS+climatisation). Les résultats sont ainsi jugés plus proches de la consommation réelle, en prenant en compte aussi l'éclairage et l'électricité spécifique.

De même, les émissions indiquées par l'ASPA sont exprimées en kg équivalent $\mathrm{CO_2}$ (kgeq $\mathrm{CO_2}$) car elles comprennent également les émissions de CH4 et N2O alors que le Diagnostic de Performance Énergétique ne considère que les émissions de $\mathrm{CO_2}$. Elles incluent également le contenu $\mathrm{CO_2}$ de l'électricité et des réseaux de chaleur, mais pas les émissions liées à la combustion de biomasse.

Les hypothèses sur les consommations et les émissions de GES moyennes émises sont établies à partir des données statistiques de l'Inventaire ASPA.

Le tableau 6 présente les taux moyens calculés de consommation finale énergétique et les émissions de GES.

Logement individuel						
Surface moyenne en m²	Consommation énergétique moyenne kWh/m²/an	Émissions moyennes kgéqCO ₂ /m²				
114	239	38				

Logement collectif						
Surface moyenne en m²	Consommation énergétique moyenne kWh/m²/an	Émissions moyennes kgéqCO ₂ /m²				
68	212	36				

Tableau 6: Consommation énergétique finale des postes chauffage + ECS + climatisation + cuisson + électricité spécifique des bâtiments résidentiels en Alsace et émissions de GES avec les facteurs d'émissions de la méthode Inventaire Aspa 2009 Source: ASPA 11102402-ID

L'étiquette énergie réglementaire est quant à elle exprimée en énergie primaire, sur une échelle allant de A à G. Les valeurs de consommation énergétique moyenne finale présentées ci-dessus et converties en énergie primaire indiquent une moyenne pour les deux types de logements (individuel et collectif) de 327 kWh/m²/ an correspondant à la classe E de l'étiquette énergie, soit un résultat passable.

Les hypothèses de consommations des gisements seront ci-après affichées en énergie finale et converties en milliers de tonnes équivalent pétrole (ktep).

2.2.1. Caractéristiques énergétiques du parc

Avec ses 752166 logements, le parc bâti atteint une consommation globale de 1,3 Mtep, représentant ainsi 25 % de la consommation finale d'énergie en Alsace (Illustration II).

Son émission moyenne de GES atteint 2,5 millions de tonnes de ${\rm CO_2}$ par an. Ses principaux gisements sont concentrés sur les grandes agglomérations.

Parc locatif social: un enjeu de précarité énergétique

La consommation de ce gisement représente 0,1 Mtep selon la surface moyenne et son émission moyenne de GES atteint 0,3 million de tonnes de CO₂ par an.

Ce gisement s'élève ainsi à environ $10\,\%$ de la consommation totale du parc bâti alsacien et à $10\,\%$ de l'ensemble de ses émissions de GES.

Copropriétés: un enjeu urbain majeur

Les copropriétés représentent un gisement d'environ 0,29 Mtep (0,19 Mtep pour la CUS, 0,06 sur la M2A et 0,04 sur la CAC) et leurs émissions de GES atteignent 0,6 million de tonnes de CO_2 par an (0,4 million de tonnes de CO_2 par an sur la CUS, 0,12 pour la M2A, 0,10 pour la CAC).

Ce gisement s'élève ainsi à environ 22 % de la consommation totale du parc bâti alsacien (dont les 2/3 pour la CUS et 20 % pour la M2A) et à 23 % de l'ensemble de ses émissions de GES.

Logements privés: un parc bâti d'avant 1974 énergivore

La moitié des logements privés d'avant 1974 est située sur les 3 principales agglomérations, soit environ 223000 logements et 30 % de l'ensemble du parc bâti en Alsace, qui représentent 0,41 Mtep et environ 0,8 million de tonnes de GES.

Au total, ce gisement s'élève ainsi à environ 30 % de la consommation et à 33 % des émissions de GES de l'ensemble du parc bâti alsacien.

Parc résidentiel en Alsace	Nombre de logements en milliers	Consommation énergétique en ktep 2009	Émissions en Mtonnes CO ₂ 2009
Ensemble du parc bâti	752	1 334	2,5
CUS M2A CAC avant 1974	223	413	0,8
Copropriétés	235	289	0,6
Parc locatif social	104	128	0,3

Tableau 7: Tableau récapitulatif des hypothèses émises sur le parc bâti et ses gisements

L'usage du chauffage en Alsace:

Pour le parc bâti résidentiel, le poste chauffage reste le principal consommateur (plus des 2/3 de la consommation énergétique).

Il constitue à ce titre un gisement énergétique, tout en restant associé dans le mode d'intervention aux postes « eau chaude, isolation, ventilation et éclairage ».

L'illustration 10 montre le nombre d'unités de chauffage par type.

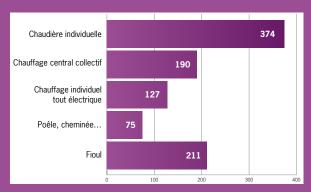


Illustration XI: Chauffage en Alsace par nombre et type, en milliers d'unités de chauffage. Source INSEE 2007

Les chaudières individuelles et particulièrement le chauffage individuel tout électrique représentent des gisements conséquents de consommation.

Il est à noter qu'environ 50000 chauffages individuels tout électrique sont dénombrés sur le territoire de la CUS, soit 51 % des logements.

Les notions de précarité et de vulnérabilité énergétiques :

« Est en situation de précarité énergétique [...] une personne qui éprouve dans son logement des difficultés particulières à disposer de la fourniture d'énergie nécessaire à la satisfaction de ses besoins élémentaires en raison de l'inadaptation de ses ressources ou de ses conditions d'habitat » (Loi n° 2010-788 du 12 juillet 2010, dite Grenelle 2, article 11).

Une personne est en situation de précarité énergétique lorsque plus de 10 % de son budget est consacré à la seule facture énergétique.

À défaut de connaissances statistiques régionales, il est estimé qu'à l'instar des autres régions françaises, la précarité énergétique semble plutôt concerner les propriétaires occupants modestes d'une maison individuelle rurale. Ces derniers sont aussi potentiellement les plus énergétiquement vulnérables à une hausse prévisible des charges énergétiques et du coût de la mobilité.

Une première approche⁶ développée en Alsace spatialise ainsi la vulnérabilité énergétique le long des Vosges, dans les régions de Haguenau et de Wissembourg, en Alsace bossue et dans la vallée de la Thur.

Si l'on ne peut ici utiliser ces notions pour qualifier quantitativement un gisement d'économies d'énergies, la lutte contre la précarité énergétique oblige toutefois à préciser qualitativement les politiques publiques et à lier les objectifs énergétiques et sociaux. Ainsi, l'Agence Nationale de l'Habitat (ANAH) intervient déjà sur ce thème en collaboration avec des collectivités territoriales alsaciennes.

Pour conclure, on peut constater que les gisements identifiables les plus significatifs en Alsace sont constitués par le bâti ante-1974 sur les territoires de la CUS, de la M2A et de la CAC, les copropriétés et le parc locatif social (tableau 7).

3. Le secteur tertiaire

3.1. Structuration du parc tertiaire d'activités

Le parc tertiaire se caractérise par une grande hétérogénéité d'activités, qui complexifie toute mesure des gisements représentés.

Avertissement méthodologique

Les données ci-après proposées sont issues de l'inventaire ASPA 2009, utilisant la méthode et la nomenclature des secteurs d'activité proposées par le CEREN (Centre d'Études et de Recherche sur l'Énergie), avec un calcul par facteurs de consommation et d'émission par unité d'activités tertiaires (des employés, des lits pour les activités de santé, des élèves pour les activités d'enseignement). Par exemple, l'unité « nombre de salariés par branche d'activité par commune », croisé avec les facteurs de consommation et d'émission correspondants, permet de dresser des hypothèses sur le gisement représenté par le secteur tertiaire concerné.

Dans l'inventaire de l'ASPA, les émissions liées à la combustion de biomasse sont ici exclues, tandis que celles liées à la consommation d'électricité et de chaleur provenant du chauffage urbain sont inclues (émissions indirectes - contenus CO_2 de l'électricité et des réseaux de chaleur).

La nomenclature CEREN se décompose en huit sous-secteurs :

- les bureaux;
- les cafés-hôtels-restaurants ou CAHORE;
- les commerces, regroupant les grandes, moyennes et petites surfaces;
- les établissements d'enseignement regroupant les niveaux maternelle, primaire, secondaire et universitaire;
- les établissements relatifs à l'habitat communautaire, regroupant les foyers pour enfants, maisons de retraite, casernes, foyers, cité universitaire;
- les établissements de santé, regroupant hôpitaux et cliniques, dispensaires, établissements médicalisés pour adultes ou enfants handicapés;
- les établissements de sports et de loisirs ainsi que les équipements collectifs divers;
- les établissements de transport regroupant les gares, ports et aéroports, ainsi que les compagnies de taxi.

⁽⁶⁾ Source: « La vulnérabilité énergétique des territoires à travers le budget énergétique des ménages pour les énergies du logement et les trajets domiciles-travail en voiture », Anthony Caussin, Rapport de stage chez Alter Alsace Énergie, 2011

3.2. Consommation énergétique et émissions de GES du parc tertiaire d'activités

En croissance tendancielle, le secteur tertiaire représente 13 % de la consommation d'énergie finale en Alsace.

L'inventaire de l'ASPA effectué en 2009 évalue selon la nomenclature CEREN (tous les postes d'activités) la consommation d'énergie finale du tertiaire d'activité à 749 ktep en Alsace (dont 254 ktep sur la CUS, 116 sur la M2A et 71 sur la CAC). Cette consommation d'énergie finale a été évaluée à 724 ktep en 2007 et à 766 ktep en 2008 en Alsace.

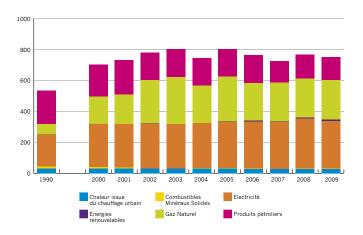


Illustration XII: évolution de la consommation énergétique finale du tertiaire entre 1990 et 2009 en fonction des sources d'énergie. Source: CREA ALSACE/ASPA 11110802-TD

Son émission de GES représente 1,38 million de tonnes de CO, pour 2009 en Alsace (0,82 pour le Bas-Rhin et 0,56 pour le Haut-Rhin, 0,48 pour la CUS, 0,21 pour la M2A et 0,01 pour la CAC).

Celle-ci était de 1,33 million de tonnes de CO2 en 2007 et de 1,40 pour 2008.

Ces légères fluctuations ne permettent pas de constater de baisse conséquente et structurelle de la consommation et des émissions de ce parc depuis l'inventaire ASPA 2006-2007.

On peut par ailleurs remarquer que la part des produits pétroliers se maintient et que la demande en électricité continue de croître (72 % en 30 ans et de 12 % sur les dix dernières années), portée par les usages d'électricité spécifique (cf. illustration XI).

3.3. Consommation du parc tertiaire d'activités en fonction des usages

Sur l'illustration XIII, la baisse de la consommation à destination de chauffage ne peut être examinée comme significative au regard de l'indice de rigueur climatique des années considérées (cf. illustration X). En effet, 2007 peut être considérée localement comme une année « chaude ».

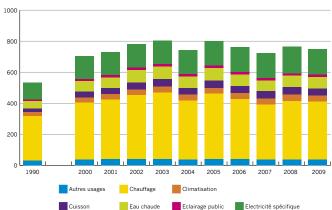


Illustration XIII: évolution de la consommation énergétique finale du tertiaire entre 1990 et 2009 en fonction des usages. Source: CREA ALSACE/

ASPA 11110802-TD

3.4. Les principaux gisements du secteur tertiaire d'activités

Les trois principaux gisements du parc tertiaire d'activités sont les commerces (28 % de consommation énergétique finale), les bureaux (22 % de la consommation énergétique finale) et les caféhôtels-restaurants (12 % de la consommation énergétique finale).

Ces 3 postes d'activités représentent une consommation de 458 ktep en Alsace en 2009 (tableau 8) (282 ktep dans le Bas-Rhin, 175 ktep dans le Haut-Rhin – dont 162 ktep pour la CUS, 67 ktep pour la M2A et 38 ktep pour la CAC).

Leurs émissions de GES conjuguées s'élèvent en 2009 en Alsace à 0,76 million de tonnes de $\rm CO_2$ (0,48 pour le Bas-Rhin, 0,29 pour le Haut-Rhin, 0,28 pour la CUS, 0,1 pour la M2A et 0,05 pour la CAC).

Tertiaire d'activités	Nombre d'unités activités en milliers **	Consommation énergétique finale en ktep	Émissions en Mteq CO ₂
Toutes activités CEREN*	721	749	1,38
Bureaux – Cahore Commerce	276	458	0,76

^{*}Nomenclature CEREN: Bureaux, Cahore (café, hôtels, restaurants), commerces, enseignement, habitat communautaire, santé, sports/loisirs/culture, transport, éclairage public

Tableau 8: Tableau récapitulatif des données et des hypothèses sur le parc bâti du tertiaire d'activités. Source: Inventaire ASPA 2009 en Alsace

4. Le transport

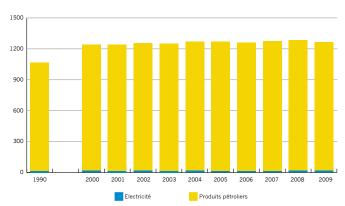


Illustration XIV: évolution de la consommation d'énergie finale des transports par source d'énergie entre 1990 et 2009. Source: CREA ALSACE/ASPA 11110802-TD

L'illustration XIV ne montre pas d'évolution notable de la consommation énergétique du secteur des transports. Toutefois depuis 2005, les enquêtes ménages/déplacements nationale et régionale montrent une stagnation des km parcourus et une diminution globale de la mobilité tout mode confondu. Ce changement amorcé ne se ressent pas encore dans les statistiques de consommation d'énergie.

	Alsace		des ré	mble égions s IDF	Ensemble des régions	
	2008	Évolu- tion	2008	Évolu- tion	2008	Évolu- tion
consommation finale (Mtep)	1,3	4	39,5	4	50,3	3
consommation régionale par habitant (tep/hab)	0,7	-2	0,8	-2	0,8	-3

Tableau 9 : situation en 2008 et évolution comparée de la consommation finale régionale et nationale du transport entre 1999 et 2009 en %. Source: SOeS

En 2008, l'Alsace est une région moins consommatrice que les autres régions pour le transport que ce soit par habitant ou pour l'intensité énergétique. Toutefois, l'écart entre l'Alsace et les autres régions semble se combler.

Depuis 2000, la part des transports dans la consommation énergétique régionale n'a quasiment pas changée et représente 22 % de la consommation⁽⁷⁾ (1277 ktep en 2007) malgré une légère diminution (·2 % sur la même période). À noter qu'entre 2006 et 2007, le secteur des transports est le seul dont les consommations énergétiques augmentent. il reste un consommateur quasi exclusif de produits pétroliers. (pour plus de détail sur ce diagnostic, voir le rapport complet de l'ASPA présent dans les cahiers techniques)

^{**}Issues des chiffres UNEDIC, les unités de consommation/émissions sont ici des salariés, des lits (activité santé) et des élèves (activité enseignement).

⁽⁷⁾ Cette contribution est à comparer à la part du secteur des transports dans les émissions de polluants: 25 % pour le CO₂, 55 % pour les NOx, 38 % pour le CO et 23 et 28 % respectivement pour les émissions de PM10 et PM2,5.

La consommation énergétique est très largement dominée par le transport routier (93 % de la consommation). Les véhicules diesels sont prédominants dans le parc routier alsacien: 57 % des véhicules particuliers, 92 % des véhicules utilitaires légers et 100 % des poids lourds ont une motorisation diesel. En conséquence, 76 % de la consommation énergétique du transport routier est imputable à ce carburant. Il faut noter également que l'utilisation de véhicules GPL est marginale dans la région (<1%).

La consommation énergétique du transport ferroviaire et du tram est de 46 ktep pour l'année 2007 soit environ 0,5 % du total alsacien. Les trains électriques voyageurs et frets représentent environ 68 % de cette consommation énergétique alors que la contribution des trains diesels est de 18 %. Les tramways strasbourgeois et mulhousien contribuent pour 14 % à cette consommation.

5. L'industrie

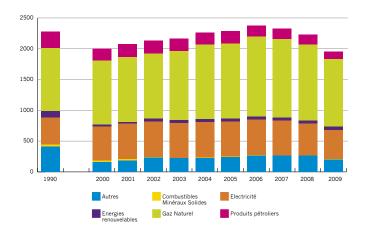


Illustration XV: évolution de la consommation énergétique finale de l'industrie entre 1990 et 2009 en fonction des sources d'énergie. Source: CREA ALSACE/ASPA 11110802-TD

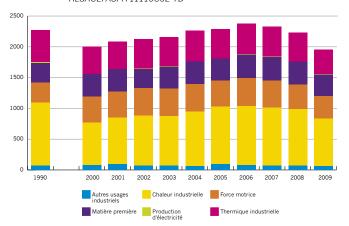


illustration XVI: évolution de la consommation énergétique finale de l'industrie entre 1990 et 2009 en fonction des usages. Source: CREA ALSACE/ ASPA 11110802-TD

Alors que 2007 correspond à une année d'activité économique d'avant la crise, on observe une stabilisation des consommations énergétiques de l'industrie. Ces consommations pour les années suivantes sont moindres du fait d'une baisse d'activité. Les sources d'énergie ont évolué au cours des 10 dernières années. Ainsi, les combustibles minéraux solides ont été largement remplacés par le gaz naturel et pour une petite part, par les énergies renouvelables. La consommation en électricité semble amorcer une baisse, ce qui laisse supposer des actions de maîtrise de l'énergie efficaces.

La baisse de la consommation d'électricité s'explique par des efforts sur la force motrice. Quelques progrès ont été réalisés en thermique industriel et chaleur industrielle notamment du fait des quotas d'émissions de gaz à effet de serre sur les 15 dernières années. Cependant, la répartition des usages n'a pas fondamentalement évoluée.

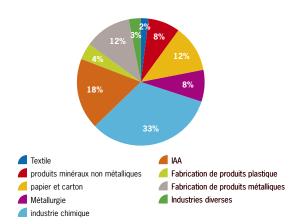


Illustration XVII: répartition des consommations d'énergie primaire suivant les secteurs en 2007. Source: ASPA 11010401-ID

La consommation alsacienne d'énergie primaire est dominée par 3 secteurs (industries chimiques, industries agroalimentaires et industries du papier-carton). On retrouve dans ces trois secteurs de grosses installations mais dont le centre décisionnaire n'est pas forcément alsacien. En parallèle, dans l'agroalimentaire et les fabrications de produits métalliques, les PME sont fortement représentées et constituent un potentiel d'efficacité énergétique très éparpillé.

	Als	ace	Ensemble des régions hors IDF		Ensemble des régions	
	2008	Évolution	2008	Évolution	2008	Évolution
consommation finale (Mtep)	1,9	-12	38,9	-5	40,9	-5
consommation d'énergie rappor- tée au PIB régional (tep/M€ 2000)	42	-22	34	-20	25	-19

Tableau 10: situation en 2008 et évolution comparée de la consommation finale régionale et nationale de l'industrie entre 1999 et 2008 en %. Source: SOeS

Sur les dix dernières années, l'Alsace se singularise par une réduction importante de la consommation du secteur et d'une amélioration de l'intensité énergétique plus marquée que la moyenne nationale. L'intensité énergétique plus élevée en Alsace que dans le reste des régions se justifie par une structure de l'économie alsacienne encore largement industrielle contrairement à la plupart des autres régions. Au niveau national et régional, sur les vingt dernières années, le secteur de l'industrie a produit des efforts notables sur son efficacité énergétique.

6. L'agriculture

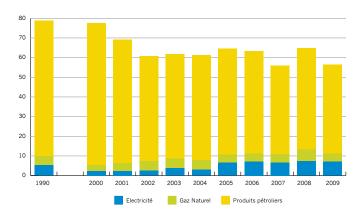


Illustration XVIII: évolution de la consommation énergétique finale de l'agriculture entre 1990 et 2009 en fonction des sources. Source: CREA ALSACE/ASPA 11110802-TD

La consommation du secteur agricole se stabilise depuis l'année 2002 autour des 60 ktep avec des fluctuations peut être dues au climat. Toutefois, la répartition des sources d'énergie a évolué notablement au cours de la dernière décennie. La part des produits pétroliers s'est réduite de prés de 40 % et celle de l'électrique a cru de 70 %.

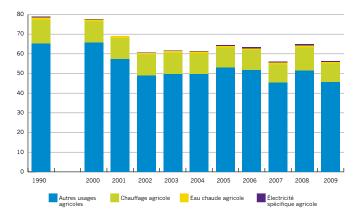


Illustration XIX: évolution de la consommation énergétique finale de l'agriculture entre 1990 et 2009 en fonction des usages. Source: CREA ALSACE/ ASPA 11110802-TD

La répartition en fonction des usages de la consommation du secteur n'a pas connu d'évolution majeure. L'apparition d'électricité spécifique restant marginale par rapport à la consommation globale est toutefois à signaler.

7. Les réseaux de chaleur

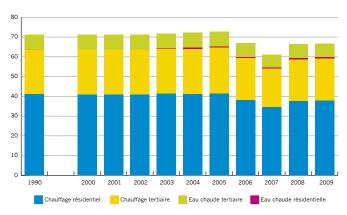


Illustration XX: consommation d'énergie finale dans les réseaux de chaleur urbains entre 1990 et 2009. Source: CREA ALSACE/ASPA 11110802-TD

La région Alsace dispose actuellement de 15 réseaux de chaleur importants ayant délivré 67 ktep en 2009 (enquête SNCU 2009) sur 642 points de livraison. L'annuaire VIASEVA⁽⁹⁾ recense 11 réseaux desservant plus de 500 équivalent logements⁽¹⁰⁾; plus de 57 000 équivalents logements seraient raccordés à un réseau de chaleur en Alsace.

Si ces réseaux de chaleur sont encore majoritairement alimentés par des produits pétroliers ou du gaz naturel, le fonds chaleur de l'ADEME a permis l'accélération d'investissements pour un recours aux énergies renouvelables (géothermie pour des réseaux de petite ou moyenne ampleur, biomasse).

Ces réseaux pour la plupart anciens rencontrent des difficultés pour leur équilibre économique. Les projets de rénovation urbaine diminuent le nombre de logements raccordés eux-mêmes moins demandeurs d'énergie du fait de la rénovation thermique. Cette situation apparaît sur l'illustration XX depuis 2006.

⁽⁹⁾www.viaseva.org

⁽¹⁰⁾ Voir définition en annexe I

Évaluation du potentiel d'économie d'énergie, d'amélioration de l'efficacité énergétique et de maîtrise de la demande énergétique

Les potentiels d'économies d'énergie se concentrent sur deux typologies:

- les économies techniquement mobilisables;
 ce sont des économies réalisables sur la base de travaux,
- les économies fonctionnellement mobilisables; ce sont les économies réalisables sur la base d'équipements ou de bâtiments inchangés, notamment par des modifications des usages.

Pour ces dernières économies, l'accompagnement aux changements de comportement (gestion des veilles, amélioration des réglages...) est donc particulièrement pertinent.

1. Résidentiel

En 2050, le parc bâti résidentiel construit avant 2008 constituera environ les deux tiers des logements⁽¹⁾. Pour le dernier tiers, construit après 2008 et bénéficiant des réglementations thermiques 2005, 2012 (bâtiment basse consommation) et 2020 (bâtiment à énergie positive), l'efficacité énergétique s'avère déjà imposée par les normes de construction. À ce titre, ce parc n'est pas considéré comme un gisement d'intervention volontaire.

Les économies potentielles pour l'atteinte des objectifs énergétiques dans le résidentiel passent donc d'abord par la rénovation de masse de ce parc existant qui, en moyenne, se situe au début de la classe E de l'étiquette énergétique (exprimée en énergie primaire).

Dans l'hypothèse d'un Facteur 4 concernant uniquement le résidentiel, l'objectif des économies techniquement mobilisables est peu ou prou représenté par l'atteinte de la basse consommation (standard BBC-Effinergie en Alsace à 65 kWh/m²/an pour le bâtiment neuf et à 104 kWh/m²/an pour la rénovation).

Pour rappel, les gisements appréhendés sont les suivants:

- le poste chauffage, qui reste le principal consommateur (plus des 2/3 de la consommation énergétique). Il constitue à ce titre un gisement énergétique, tout en restant associé dans le mode d'intervention aux postes « eau chaude, isolation, ventilation et éclairage ».
- la classe de bâti de la période de reconstruction 1948-1974, qui reste très énergivore. Au travers d'une analyse par âge du bâti et par localisation, on peut remarquer que le bâti ante-1974 sur les seuls territoires de la CUS, de la M2A et de la CAC représente environ le tiers de la consommation énergétique et des émissions de GES du parc bâti alsacien.
- les gisements des logements sociaux et copropriétés, avec un potentiel d'économie d'énergies représenté par l'atteinte du niveau BBC représentant quant à lui un peu moins du tiers de la consommation énergétique et des émissions de GES actuellement par le parc bâti alsacien. À l'instar du bâti ante-1974, ces deux gisements sont très largement concentrés sur les territoires communautaires des trois principales agglomérations.

⁽¹) Le bâti résidentiel d'avant 2008 représentera au niveau national 62 % de la surface du parc en 2050, selon l'estimation proposée dans l'étude « Évaluation des mesures du Grenelle de l'environnement sur le parc de logements », Centre International de Recherche sur l'Environnement et le Développement (CIRED) et Commissariat Général au Développement Durable, novembre 2011, p. 12.

L'objectif de l'atteinte du Facteur 4 sur le seul parc bâti supposerait la rénovation d'ici 2050 d'environ 19000 logements/an au standard BBC (de l'étiquette énergétique E à B, sur une échelle allant de A à G).

Cette économie potentielle obtenue par une rénovation de masse coûteuse doit être complétée par celle fonctionnellement mobilisable résultant d'un changement comportemental, afin d'éviter tout effet-rebond. La sobriété énergétique reste donc le pendant nécessaire à toute amélioration de la performance énergétique du bâti

Par une approche différente d'évaluation des potentiels d'économie, le scénario Grenelle pour le résidentiel lie l'objectif de réduction à une baisse de 38 % de la consommation énergétique.

Cela supposerait, à partir des hypothèses en énergie finale de 2011, les baisses suivantes:

Parc résidentiel en Alsace	Consommation énergétique en ktep en 2011	Consommation énergétique en ktep à 2020 (-38 %)	Gisements en ktep (différence 2011-2020)
Ensemble du parc bâti	1 334		507
CUS M2A CAC avant 1974	413	255	157
Copropriétés	289	179	110
Parc locatif social	128	79	49

Tableau 1 : Réduction de 38 % de la consommation énergétique finale du parc bâti en Alsace

Les certificats d'économies d'énergies :

Les certificats d'économie d'énergie procèdent d'une obligation introduite par le code de l'Énergie (L.221-1 à L.221-11). Les fournisseurs d'énergie ont l'obligation de faire réaliser des économies d'énergie, et de promouvoir activement l'efficacité énergétique auprès de leurs clients.

Ce dispositif permet de travailler sur les gisements d'économie d'énergie existants, mais diffus, notamment dans les secteurs résidentiel et tertiaire.

Les certificats ont été créés en 2006 et fonctionnent par périodes de trois ans. La première période a toutefois duré de 2006 à 2010. La seconde période devrait se terminer en 2013.

L'Alsace a regroupé sur la première période 30 acteurs dont 13 fournisseurs d'énergie. Les actions déposées durant cette période représentent une économie d'énergie annuelle d'un peu moins de 13 ktep. La grande majorité (88 %) des opérations réalisées dans ce cadre ont concerné le résidentiel puis le tertiaire; l'industrie, les réseaux ou le transport n'ont bénéficié que de très peu d'initiatives. Concernant les usages, 8 actions sur 10 ont été réalisées dans la thermique du bâtiment (changement de chaudières, de radiateurs, régulation de chauffage...). La mise en place d'isolation performante est encore trop peu représentée (16 % des actions).

Pour la seconde période, le dispositif a pris une dimension plus importante du fait d'une augmentation du périmètre des obligés (incluant les vendeurs de carburants automobiles) et d'une multiplication par environ 6 de l'objectif national d'économie. Cette deuxième période voit également apparaître une prise en compte d'axes spécifiques comme la précarité énergétique.

Actuellement, ce dispositif peut être considéré comme une piste d'ingénierie financière restant très modeste à l'égard des enjeux financiers, mais qui permet progressivement une sensibilisation de l'ensemble des acteurs.

Le dispositif en place sur la précarité énergétique:

Dans le cadre du Programme « Habiter mieux » de l'Agence Nationale de l'Habitat, le territoire alsacien est entièrement couvert par des Contrats Locaux d'Engagement signés avec les collectivités délégataires des aides à la pierre. Ce dispositif permet à l'ANAH, aux collectivités et à d'autres partenaires de financer des travaux de rénovation énergétique dans les logements occupés par des propriétaires ayant des revenus modestes.

2. Tertiaire:

L'essentiel des économies potentielles dans le tertiaire relève du chauffage (41 % des consommations). Toutefois, les consommations dédiées aux postes climatisation/ventilation et aux usages spécifiques recèlent aussi des capacités d'économies.

2.1. Bâtiment:

À l'instar du bâti résidentiel, le parc du tertiaire d'activités doit faire l'objet d'économies techniquement et fonctionnellement mobilisables.

L'enjeu de maîtrise de l'énergie dans le bâti se situe ici dans la rénovation de masse du parc existant, mais aussi dans les usages propres aux activités tertiaires (équipements, comportements).

Sur ce dernier point, certaines pistes du secteur industriel peuvent être suivies, avec des possibilités:

- d'améliorations à court terme (énergie thermique et électrique), comme la maintenance, l'amélioration des réglages, de l'isolation et des réseaux de froid
- d'améliorations à long terme, apportées par les modifications de matériels et le changement de technologie

Pour rappel, les gisements appréhendés sont les suivants:

- les commerces et les bureaux, représentant 50 % de la consommation énergétique finale,
- les cafés-hôtels restaurants

réchauffement global compris entre 140 et 11 700.

Le diagnostic de ce parc à l'échelle d'activités tertiaires-cibles (grandes surfaces, café-hôtel-restaurant) reste à améliorer, afin d'orienter et de préciser les interventions sur ces gisements.

⁽²⁾Les fluides frigorigènes sont les HFC, l'ammoniac... Les HFC ont un pouvoir de

Il s'agit notamment d'en préciser sa structuration et sa localisation, d'en mesurer la surface moyenne des gisements et leurs consommations et émissions moyennes par m², afin d'évaluer leur seuil de réduction nécessaire sur l'étiquette énergétique pour l'atteinte des objectifs Grenelle et Facteur 4. Il s'agit aussi de déterminer le coût moyen d'une rénovation/m² pour l'atteinte de ce seuil.

Des éléments et une méthodologie doivent être apportés pour pallier cette méconnaissance.

2.2. Procédés et utilitaires

Au regard de son importance parmi les consommations non liées directement au bâtiment, l'électricité spécifique constitue un domaine où un potentiel de réduction de consommation peut être significatif. Sous ce vocable, deux axes majeurs ont été identifiés.

Le froid commercial est à la croisée de deux des enjeux du schéma régional: la maîtrise de l'énergie et la réduction des émissions de gaz à effet de serre⁽²⁾. L'amélioration des installations de production de froid commercial dans tout type de commerce pourrait contribuer à un gain de 8,6 ktep par an.

Cette amélioration passe par une maintenance améliorée (dégivrage, réduction des fuites), une adaptation des matériels (réglages, raccourcissement des circuits, ajouts de rideaux...). La maintenance améliorée, le raccourcissement des circuits et le renouvellement des matériels usagés auront en parallèle un impact sur la réduction des fuites de fluide frigorigène. La maîtrise de la demande énergétique n'a par contre que peu d'impact en terme d'émissions de GES directs, l'énergie consommée étant majoritairement électrique.

L'éclairage des locaux, l'optimisation de sa gestion ainsi que la gestion du parc informatique (veille, matériels économes...) sont une seconde voie. Le gain associé est évalué à 2,8 ktep/an. Les réductions d'émissions de gaz à effet de serre associés sont assez réduites. La mobilisation de cette ressource pourrait pour une meilleure efficacité s'accompagner d'initiatives telle qu'une économie de fonctionnalité⁽³⁾.

La grande partie des consommations liées à l'électricité spécifique constitue aussi un large potentiel pour les changements de comportement (usage de la bureautique, des veilles, modification de la conception et de l'usage des éclairages et de la réfrigération dans les commerces...)

Le troisième potentiel identifié se situe dans l'éclairage public et l'optimisation de sa gestion. Le gain associé s'élève à 0,1 ktep/an et ne génère, là aussi, que peu de réduction d'émissions de GES directs.

⁽³⁾ L'économie de fonctionnalité consiste à faire payer un service ou l'usage d'un bien plutôt que le bien lui-même (cf. table ronde du grenelle de l'environnement).

3. Industrie:

Les quotas européens d'émissions de gaz à effet de serre

Le système communautaire d'échanges de quotas d'émissions de gaz à effet de serre s'appuie sur une directive européenne (2003/87CE modifiée). Il a été mis en place en 2005 en France, la deuxième phase prendra fin en 2013.

Le dispositif vise la production d'énergie (chaufferies, raffinerie), la chimie, le secteur du papier, du verre, les cimenteries... par la définition de quotas d'émissions de CO_a pour chaque installation.

En Alsace, 40 installations sont concernées, soit 4,4 % des installations soumises en France. Elles se sont vues attribuer 2,3 % des quotas français.

En 2000, 17 % des émissions de gaz à effet de serre étaient susceptibles d'être impactés par le dispositif.

En Alsace, le gain en émissions a été de l'ordre de $10\,\%$ des émissions entre 2006 et 2010. Mais cette diminution est surtout liée au contexte économique des années 2009 et 2010

Pour la troisième période, les conditions d'octroi des quotas seront plus contraignantes, en particulier sur la base des techniques les plus performantes. Un élargissement du périmètre des activités soumises est envisagé.

3.1. Procédés et utilitaires

Pour le secteur industriel, deux types de potentiels de réduction des consommations d'énergie ont été identifiés :

- les améliorations à temps de retour sur investissement rapide (moins de 3 ans). Ces améliorations se chiffrent surtout en gain d'énergie thermique. Elles relèvent d'amélioration d'isolations, de modifications sur le fonctionnement, de meilleurs réglages ou maintenance, de contrôles à mettre en place...
- les améliorations à temps de retour élevé (plus de 10 ans). Ces améliorations ont un impact sur les consommations électrique et thermique. Elles passent, la plupart du temps, par des changements de technologies: modifications notables des installations ou mises en place de nouveaux matériels.

L'amélioration des utilitaires (production de froid, de chaleur, d'air comprimé...) est un gisement de réduction de consommations d'énergie commun à l'ensemble des industries alsaciennes quelque soit leur taille. Ce potentiel est le seul d'importance où la mise en œuvre et l'effet peuvent être rapides.

Il est chiffré à 160 ktep par an sur les actions à retour sur investissements court. Cette amélioration concerne l'ensemble des sources d'énergies.

Pour les effets à plus long terme, deux pistes ont été identifiées :

- les remplacements de moteurs électriques (ventilation, pompage...) et la mise en place de variateurs de vitesse; cette amélioration concerne uniquement l'énergie électrique. Le gain est chiffré à environ 300 ktep/an
- le remplacement par des matériels plus performants dans la production d'utilités ou le process; ces améliorations se font sur l'ensemble des énergies et peuvent être valorisées dans le système des quotas CO₂. Ce potentiel est estimé à 160 ktep/an.

Concernant plus spécifiquement les réductions d'émissions de gaz à effet de serre hors énergétique, deux potentiels sont à explorer:

- les réductions de fuites sur les installations de froid industriel; sont concernées les émissions de gaz fluorés HFC. La réduction des taux de fuites des installations industrielles pourrait réduire de 30 % les émissions, soit 27 teqCO₂.
- La diminution des émissions de N20 issus des process industriels. Depuis 1990, ces émissions ont considérablement diminuées⁽⁴⁾.

Les 2 dernières années ont vu un ralentissement notable des investissements en faveur de l'environnement: en 2009, l'intensité en carbone (ratio des émissions à la production) des PME a cru de 7 % (pour 2,2 % pour l'ensemble des industries). Il importe donc de relancer l'intérêt des entreprises sur ce domaine.

⁽⁴⁾ Voir chapitre « émissions de GES » page 15

Les investissements des entreprises dans le domaine de la réduction de la consommation énergétique peuvent être incités suivant deux modes:

- une prise de conscience de la consommation énergétique ou du niveau d'émissions de gaz à effet de serre de l'entreprise
- des outils financiers à la réalisation de travaux.

Pour accompagner la prise de conscience et la quantification des gains possibles, différents leviers sont mobilisables. Les entreprises ont à leur disposition diverses méthodes pour appréhender leur consommation énergétique. Des programmes existent (diagnostics énergétiques ADEME, comparateurs de moteurs...), mais aussi, différentes normes ont été créées dans ce but⁽⁵⁾. En parallèle, des exigences réglementaires existent pour certaines entreprises: le bilan d'émissions de gaz à effet de serre pour les entreprises de plus de 500 personnes, les bilans pour les installations soumises à la directive IPPC⁽⁶⁾.

Si les aides directes aux entreprises pour la réalisation de tels travaux sont actuellement réduites, il existe toutefois deux mécanismes financiers pouvant être mobilisés suivant les cas: les certificats d'économies d'énergie, les quotas d'émissions de gaz à effet de serre.

Un point de vigilance est à noter pour les plus petites entreprises. En effet, les actions à entreprendre ne sont pas soumises à des contraintes réglementaires ou financières et ne sont pas ou peu éligibles à des systèmes d'accompagnement.

3.2. Conception de produits

Outre la méthode de production abordée dans le chapitre précédent, la réduction de la consommation d'énergie et d'émissions de gaz à effet de serre de l'industrie peut être traitée lors de la conception même du produit. Chercher à réduire la quantité de matière et d'énergie nécessaire est une autre façon de concevoir permettant en parallèle des gains financiers.

L'écoconception, la recherche d'une réparation ou d'un réemploi plus aisé sont des pistes d'actions à poursuivre même si le gain énergétique ou en GES n'est pas chiffrable à l'heure actuelle.

Un certain nombre de produits sont d'ores et déjà concernés par cette approche⁽⁷⁾. Le développement de ces démarches pourrait être encouragé.

4. Réseaux

4.1. Réseaux électriques

Plusieurs actions pour maîtriser le volume des pertes électriques peuvent être mises en œuvre par les gestionnaires de réseau. On peut citer par exemple:

- l'optimisation du plan de tension à des niveaux élevés;
- l'adaptation de la topologie du réseau afin de limiter le transit sur les liaisons les plus génératrices de pertes;
- l'optimisation du placement des consignations d'ouvrages afin de permettre la réalisation des travaux sur les lignes.

L'ensemble de ces actions a ainsi évité 125 GWh de pertes en 2009 en France.

Une réflexion menée ces dernières années par RTE, a permis d'identifier plusieurs autres pistes de réduction des pertes électriques. On peut citer par exemple:

- le remplacement de tronçons de conducteurs responsables des pertes les plus importantes;
- le remplacement de transformateurs les moins performants;
- les modifications techniques de lignes aériennes double terne (deux lignes électriques supportées par un même pylône) contribuant à une réduction du volume des pertes.

Malgré ces améliorations techniques, une augmentation significative du niveau des pertes pourrait survenir dans les prochaines années sur le réseau public de transport.

En effet, en cas d'augmentation de la consommation d'électricité, le transport se fera s'il n'y a pas construction de lignes nouvelles, sur les lignes existantes, augmentant mécaniquement les pertes.

De plus, la possible montée en puissance de la production décentralisée d'électricité accroîtra automatiquement les parcours ayant un effet amplificateur sur le volume des pertes.

⁽⁵⁾ Norme ISO 50001 sur le système de management de l'énergie, norme ISO 26000 sur la responsabilité sociétale de l'entreprise...

⁽⁶⁾ Directive 2008/1/CE relative à la prévention et à la réduction intégrée de la pollution.

⑦ Directive 2005/32/CE établissant un cadre pour la fixation d'exigences en matière d'écoconception

⁽⁸⁾ Voir définition en annexe 1.

4.2. Réseaux de chaleur

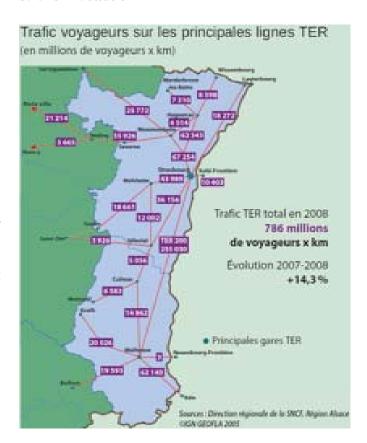
En Alsace, coexistent deux types de réseaux de chaleur:

- les petits réseaux sont, en général, récents et alimentés par de la biomasse. Ces réseaux fonctionnent en eau chaude, ce qui limite les pertes sous réserve que la densité soit suffisante.
- Les réseaux de taille plus importante, plus anciens, consomment majoritairement du fioul ou du gaz mais peuvent être raccordés à des usines d'incinération d'ordures ménagères. Ces réseaux amorcent une mutation dans leur source énergétique vers de la biomasse. Ils délivrent une puissance importante et de ce fait sont en eau surchauffée.

La connaissance des réseaux de petite taille est limitée et ne permet pas de déterminer des axes de travail.

Les réseaux de puissance de plus de 3,5 MW voient leur contexte évoluer de façon notable ces dernières années ce qui peut avoir des répercussions sur leurs pertes thermiques. Leur densité thermique⁽⁸⁾ a fortement évolué du fait des projets de rénovation urbaine. Ceci impact de fait la rentabilité économique de réseaux et donc les investissements possibles.

Les pertes de réseaux sont estimées en France à 8 %. Certains réseaux alsaciens affichent un niveau de pertes plus bas.

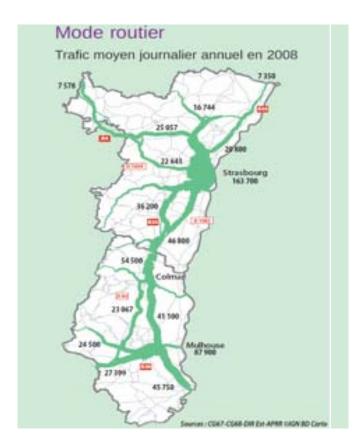

Un certain nombre d'axes de travail pour maîtriser les pertes peuvent être envisagés. On peut citer:

- · l'entretien du calorifugeage
- le renouvellement des échangeurs en place.

Le chauffage urbain est par ailleurs souvent associé à un chauffage plus important des logements. Les actions techniques sur le réseau pourraient donc être confortées par de la sensibilisation à un comportement plus sobre et à la mise en place de compteurs individuels lorsque cela n'est pas encore fait.

5. Transports

5.1. Le TER alsacien



Le réseau TER Alsace est constitué de 13 lignes ferroviaires internes, 6 lignes transfrontalières (vers Bâle, Müllheim/Freiburg, Offenburg, Woerth/Karlsruhe, Neustadt/Mannheim et Saarbrücken), 7 lignes routières et 162 gares et haltes. Le réseau est globalement structuré autour de l'axe Nord-Sud, Strasbourg-Mulhouse-Bâle, sur lequel circulent des TER atteignant la vitesse de 200 km/h (dits "TER 200"), ainsi qu'en étoile autour des principales agglomérations.

La Région commande chaque année plus de 10 millions de kilomètres de train pour un total de 670 trains par jour en semaine. 45 % du matériel TER alsacien est électrique. On comptabilise quotidiennement environ 65000 voyageurs sur les lignes du TER Alsace, soit 82 voyageurs par train (moyenne française à 76). Grâce à l'amélioration des temps de correspondance, et au développement des dessertes, ce dernier a quasiment doublé en l'espace de cinq ans et concerne aujourd'hui près de 10 % des voyageurs régionaux. (source: Site internet Région Alsace, rail et ville avril 2011).

5.2. Le réseau routier structurant et son utilisation

Le réseau routier alsacien est organisé autour de trois grands axes permettant l'irrigation et la traversée du territoire:

- l'Axe Nord-Sud: l'A35 relie les trois grandes agglomérations alsaciennes. Plus de 40000 véhicules empruntent cet axe chaque jour.
- l'A4 assure la liaison avec Metz-Nancy puis Paris et supporte chaque jour un trafic de plus de 20000 véhicules.
- l'A36 assure la traversée Est-Ouest du territoire alsacien. Elle supporte un trafic proche de 30000 véhicules par jour.

Mulhouse et Strasbourg présentent les plus grandes concentrations de trafic routier journalier avec 160000 véhicules/jour sur le réseau strasbourgeois et 90000 à Mulhouse.

Le taux moyen de remplissage des voitures particulières en Alsace est de 1,3 voyageurs par véhicule; ce qui souligne la prédominance de l'autosolisme.

L'essentiel du trafic routier de marchandises circulant en Alsace est interne à la région. En 2009, seul 20 % environ des tonnages transportés était en transit, dont la moitié à destination d'autres régions françaises. Les 80 % restant sont répartis à part égale

entre le trafic interne à l'Alsace et l'échange (importation et exportation).

5.3. Répartition modale des déplacements

5.3.1. Transport de voyageurs

L'enquête ménage déplacement menée dans le Bas-Rhin en 2009 dresse la répartition des déplacements entre les différents modes de transport. Le Bas-Rhin, département de France le plus utilisateur du vélo avec 6 % de part de marché, reste cependant dépendant de la voiture avec 60 % de part modale. Si l'on raisonne en terme de kilomètres parcourus, le constat se dégrade avec 81 % des kilomètres effectués en voiture.

Il n'est à l'heure actuelle pas possible d'atteindre le même niveau de détail sur le Haut-Rhin. Cependant, le même constat est à faire sur la prédominance de la voiture.

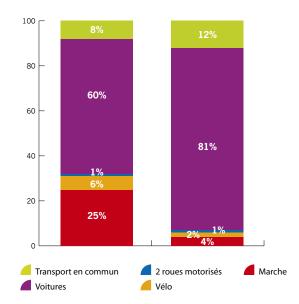


Illustration I: répartition modale des déplacements dans le Bas Rhin. Source: Adeus: EMD Strasbourg 2009

5.3.2. Transport de marchandises

Est présentée ici la répartition modale du transport de marchandises interne à la région ou ayant l'Alsace comme point de départ ou de destination (à l'exclusion du transport international). Depuis 2007, les données relatives au transport ferroviaire de marchandises ne sont plus disponibles. Pour cette raison, sont présentées ci-dessous la répartition modale du transport de marchandises entre routier, fluvial et ferroviaire en 2006 et la répartition entre routier et fluvial en 2009 (hors fret ferroviaire) en nombre de tonnes transportées.

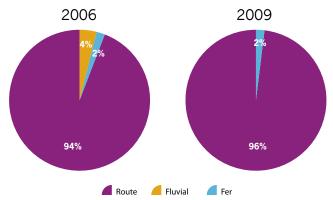
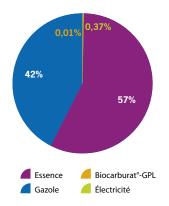
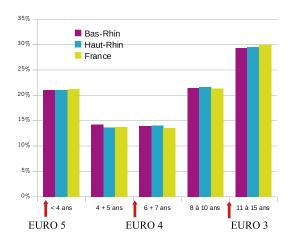


Illustration II: répartition modale: fret 2006 – 2009. Source: MEDDTL, CGDD, SOeS-


La domination du mode routier est encore plus marquante pour le transport national de marchandises que pour le transport de voyageurs. Hors fret ferroviaire, la part de marché de la route en pourcentage des tonnes de marchandises nationales transportées atteint 98 % en 2009.

5.4. Parc roulant voitures et poids lourds en Alsace


5.4.1. Parc « Voitures Particulières » Alsacien

(source: MEDDTL-SOeS/1er janvier 2010)

La composition du parc de voitures particulières en Alsace ne présente pas de particularité par rapport à la moyenne française.

Les véhicules récents et les très anciens (plus de 11 ans) sont les plus représentés avec $30\,\%$ du parc antérieur à la mise en place de la norme EURO 3 d'un côté et plus de $20\,\%$ datant de moins de 4 ans au $1^{\rm er}$ janvier 2010.

Le parc alsacien est majoritairement composé de motorisation diesel (57 %). La part des véhicules à motorisation alternative au pétrole est encore extrêmement faible (0,37 % bicarburation GPL, 0,01 % électrique).


5.4.2. Parc « Poids Lourds » au 1er janvier 2010

(source: MEDDTL/SOeS)

Le Parc de véhicules routier alsacien dédié au transport de marchandises est majoritairement constitué de camionnettes destinées au transport interne, à l'irrigation des centres et à l'activité des entreprises et artisans locaux.

	Camions, Camionnettes		Tracteurs	Veh automoteurs	Total	
	Camionnettes	Camions	Total	routiers	spécialisés	TOLAT
Bas-Rhin	74887	5321	80208	3306	4245	87 759
Haut-Rhin	49905	3168	53073	2694	3187	58954
Alsace	124792	8489	133281	6000	7432	146713

Concernant le type de carburant, la quasi-totalité des camions, tracteurs routiers et véhicules automoteurs sont à motorisation diesel. Les camionnettes le sont majoritairement mais on notera toutefois 5 % de camionnettes essence.

5.5. Les Transports collectifs urbains en Alsace

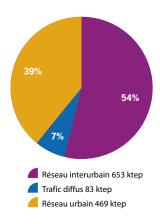
Les réseaux de transports en commun des deux plus grandes villes alsaciennes (Strasbourg, Mulhouse), sont structurés autour de leurs lignes de tramway qui assurent respectivement 63 % et 55 % des déplacements des usagers.

		Nombre de lignes	Longueur des lignes en km	Parc de véhicules	Km parcourus en milliers	Voyages/habi- tant	voyages tram/total voyages
Haguenau**	Bus	11	114	18	732	32	///
Church	Bus	34	321	256	17 270	205	63 %
Strasbourg	Tramway	5	54	94			
Obernai**	Bus	1	10	4	149	6,3	///
Sélestat	Bus	5	15	8	485	6,7	///
Colmar	Bus	16	194	41	1880	65,4	///
Mulhouse	Bus	22	202	125	5 510	103	55 %
Willinouse	Tramway	2	12	22			
Saint-Louis	Bus	12	105	27	955	30	///

5.5.1 Parc autobus & autocar au 1er janvier 2010 (source: MEDDTL/SOeS)

La taille des véhicules utilisés pour le transport collectif routier est majoritairement représentée par les 30-59 places en milieu urbain. Pour le transport interurbain, le nombre de véhicules de

30-59 places et de plus de 60 places est sensiblement identique.


Le type de motorisation des Autobus utilisés par les réseaux de TC urbains des trois grandes agglomérations alsaciennes diffèrent sensiblement. La CTS exploite environ autant de véhicules diesel que de véhicules au gaz naturel de ville. Elle possède également un véhicule hybride électrique/diesel. Soléa n'exploite que des véhicules diesel. Enfin, la quasi-totalité de la flotte de Trace roule au GNV.

	Autobus		Autocars			Total	
Places	10-29	30-59	60	10-29	30-59	60	
Bas-Rhin	73	295	5	164	456	502	1 495
Haut-Rhin	66	104	5	77	270	332	854
Alsace	139	399	10	241	726	834	2349

		Diesel GNV		٧V	Hybride		Total		
		standard	articulé	Petit gabarit	standard	articulé	standard	articulé	
CT	Γ S /12/2008)	76	67		96	13		1	253
_	léa /10/2010)	43	88						131
Tra	ace	5	1	3	30	1			40

39~% des consommations de transports en commun ont lieu sur le réseau urbain. De ce fait, il existe un fort potentiel de report vers les modes moins consommateurs

Plusieurs axes d'actions pour limiter la consommation du secteur du transport peuvent être envisagés:

- des actions sur le matériel roulant pour une meilleure efficacité énergétique,
- un développement du report modal de la route vers les transports collectifs, les modes doux
- un développement des réseaux de transports collectifs urbains, le TER...
- une facilitation de l'inter-modalité: systèmes d'informations, billétique...
- une rationalisation de l'usage de la route (conduite éco-responsable).

6. Agriculture

Comme pour les entreprises, la maîtrise de la consommation de l'énergie et la réduction des émissions de gaz à effet de serre dans l'agriculture supposent l'action sur trois leviers:

- le matériel,
- les modifications de procédés,
- une transformation de l'offre.

Même si l'agriculture ne pèse pas de façon importante sur la consommation énergétique de l'Alsace, l'impact en terme d'émissions de gaz à effet de serre est plus notable et mérite d'envisager certaines actions.

L'amélioration du matériel relève de deux types d'actions. Les premières actions possibles sans investissement massif et donc rapidement mobilisable sont une amélioration des réglages des outils de production. Les moteurs des tracteurs sont notamment concernés. Les secondes actions sont à plus long terme puisqu'elles relèvent d'une modernisation des outils de production par une meilleure isolation des serres et des bâtiments d'élevages (entre 20 et 40 % d'économies d'énergies) ou par des mises en place de récupération d'énergie dans des salles de traite.

La modification des techniques de production pourrait avoir des impacts importants en terme d'émissions de gaz à effet de serre et dans une moindre mesure de consommation d'énergie. Cette modification passera par un développement des pratiques sobres dans les techniques de production (travail du sol, utilisation d'intrants, alimentation des animaux).

Une réflexion sur la transformation de certaines exploitations agricoles alsaciennes pourrait être par ailleurs amorcée. Les circuits courts, l'agriculture biologique ou raisonnée permet en effet de réduire les consommations énergétiques associées à la production agricole.

7. Sensibilisation et formation

L'ensemble des actions envisagées dans les chapitres précédents ne peuvent avoir la meilleure efficience qu'accompagnée d'un comportement adapté de l'utilisateur. Ainsi, l'apport à la réduction de consommation d'énergie ou d'émissions de gaz à effet de serre de ce chapitre ne peut être aisément quantifié.

Trois axes sont identifiés:

- Favoriser le passage à l'acte. Cet axe ne vise pas seulement le grand public mais concerne l'ensemble des publics alsaciens. De nouveaux critères d'achat (priorité aux circuits courts, matériaux performants énergiquement, critères d'achats publics) concernent autant l'achat public que celui de l'individu.
- Accompagner le changement. Dans cet axe, il faut regrouper deux objectifs distincts qui sont la recherche de la meilleure efficacité des matériels performants installés et la recherche de l'adhésion à une nouvelle forme de territoire. Cet axe vise les installateurs au même titre que les utilisateurs.
- Limiter les effets rebonds.

Méthodologie

Dans le cadre des travaux du schéma régional du climat, de l'air et de l'énergie, l'adaptation aux changements climatiques a été pour la première fois traitée de manière intégrée à l'échelle de la région. Un état des lieux global des connaissances existantes concernant les enjeux locaux a donc été constitué.

Les travaux se sont appuyés sur le Plan National d'Adaptation au Changement Climatique en mettant en regard les thématiques abordées au niveau national et les enjeux locaux à des fins de déclinaison territoriale des objectifs d'adaptation déterminés.

La Délégation interministérielle à l'Aménagement du Territoire et à l'Attractivité Régionale (DATAR) ayant commandé auprès de Météo-France une série de modélisations de paramètres météorologiques, ceux-ci ont pu être utilisés pour étayer les constats et les hypothèses prises dans les études locales.

Au final, devant la grande quantité d'informations recueillies et la diversité des formats disponibles, il a été choisi de présenter le résultat des travaux au travers de neuf thèmes: Tourisme, Ressource en Eau, Forêt, Agriculture et Viticulture, Santé, Biodiversité, Risques Naturels, Urbanisme et Gouvernance. Il est à noter que de nombreuses problématiques sont transverses à tous les domaines par nature, certains sujets qui auraient pu figurer dans plusieurs des thèmes retenus, ont dès lors, été développés spécifiquement dans un seul thème pour éviter de trop nombreuses redondances.

Une analyse globale de la vulnérabilité de la région Alsace aux impacts du changement climatique a ainsi été réalisée. Elle précise par ailleurs les territoires sur lesquels les impacts auront les effets les plus importants. La vulnérabilité de l'Alsace aux changements climatiques semble se concentrer aujourd'hui sur deux thématiques principales que sont la protection des activités humaines d'une part et la santé d'autre part.

Il est cependant important de signaler que le travail présenté par la suite résulte d'une compilation de données existantes dont les hypothèses de base n'ont pu être systématiquement vérifiées et dont quelques lacunes n'ont pu être levées (la totalité des analyses thématiques réalisées se trouvent dans les cahiers techniques). Ce travail devra donc être régulièrement mis à jour en tenant compte des constats et hypothèses de simulation des évolutions climatiques ainsi qu'en intégrant l'apport des observatoires en place ou à mettre en place pour surveiller des paramètres les plus pertinents à l'échelle territoriale.

Généralités sur le changement climatique, observations et projections

Le réchauffement du système climatique est sans équivoque, comme le prouvent les hausses des températures moyennes mondiales de l'air et de l'océan, la fonte largement répandue de la neige et de la glace et la montée du niveau moyen mondial de la mer. Ce constat admis par la communauté scientifique est tiré des conclusions du quatrième rapport du GIEC (Groupe d'experts Intergouvernemental sur l'Évolution du Climat). Le rapport, publié en 2007, précise qu'onze des douze dernières années de la période 1995-2006 figurent parmi les douze années les plus chaudes de l'enregistrement des températures de surface mondiales (depuis 1850).

La tendance moyenne sur cent ans (1906-2005) est de l'ordre de 0,74 °C, avec une fourchette comprise entre 0,56 et 0,92 °C.

Le GIEC a été mis en place en 1988 par l'Organisation Météorologique Mondiale et par le Programme des Nations Unies pour l'Environnement. Sa mission est "d'évaluer les informations scientifiques, techniques et socio-économiques nécessaires pour mieux comprendre les fondements scientifiques des risques liés aux changements climatiques d'origines humaine, cerner plus précisément les conséquences possibles de ces changements et envisager d'éventuelles stratégies d'adaptation et d'atténuation".

Météo-France a directement contribué au quatrième Rapport du GIEC dans des domaines particuliers tels que l'étude de la variabilité du climat (moussons, cycle hydrologique...), les scénarios de changement climatique aux échelles globales et régionales ou encore les impacts du changement climatique sur l'enneigement et l'hydrologie.

La résolution des modèles climatiques globaux est de l'ordre de 200 à 300 km. La grille d'ARPEGE-Climat, le modèle de Météo-France, a la capacité d'être étirée pour augmenter la résolution dans une zone d'intérêt. ARPEGE-Climat offre ainsi une résolution horizontale d'environ 50 km sur la France, et permet de répondre à la forte demande en terme de climat local.

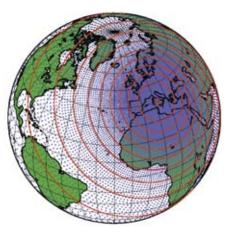


Illustration I: Grille étirée du modèle ARPEGE-Climat offrant une résolution de 50 km

Dans cette configuration, le modèle est forcé par un jeu de données de la température de surface de la mer, issues de simulations couplées à résolution de 300 km. Ses résultats ont été validés et utilisés dans de nombreuses études.

1. L'évolution climatique observée

Les graphes des illustrations II et III montrent l'évolution, au cours du XX° siècle, de la température moyenne sur le globe et sur la France et présentent les écarts à la moyenne calculée.

Illustration II: Évolution de la température moyenne mondiale

Illustration III: Évolution de la température moyenne en France

L'amplitude des variations de température mesurées durant le XXº siècle est plus importante dans l'hémisphère nord (et notamment en France) que sur l'ensemble du globe. Elle s'explique par un réchauffement plus important sur terre que sur mer.

Météo-France a développé des méthodes de constitution de séries de référence permettant de détecter et de caractériser le changement climatique en France à partir de données observées.

L'évolution des températures est calculée sur 70 séries de référence réparties sur le territoire. La France s'est réchauffée d'environ 1 °C au cours du siècle dernier.

L'illustration IV présente les particularités régionales de l'augmentation de la température moyenne et montre un réchauffement plus important dans le sud-ouest de la France.

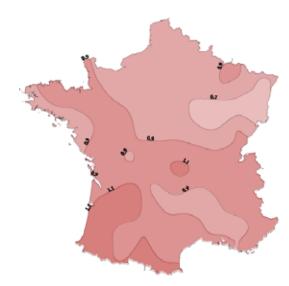
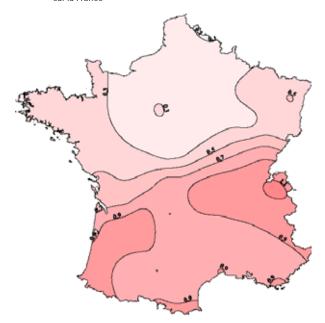
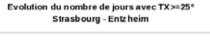
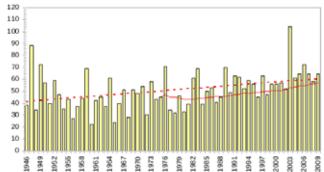



Illustration IV: Évolution de la température moyenne cartographiée sur la France

Si l'on s'intéresse aux températures extrêmes quotidiennes, on observe de façon générale une plus forte augmentation de la température minimale que de la température maximale au cours du XX° siècle. L'évolution des deux paramètres est cartographiée dans l'illustration V.


Illustration V: Évolution des températures minimale (en haut) et maximale (en bas) sur la France



Globalement, l'augmentation des températures minimales est plus marquée à l'ouest qu'à l'est, celle des températures maximales est plus forte dans le sud que dans le nord de la France.

Les longues séries observées disponibles sur quelques stations d'Alsace permettent d'appréhender le réchauffement sur la région. L'illustration VI s'intéresse au nombre annuel de jours avec une température maximale supérieure à 25 °C, et l'illustration VII au nombre de jours de gel aux stations de Strasbourg-Entzheim et de Bâle-Mulhouse.

La droite de régression apparaît en pointillés sur les graphes. La courbe en trait plein est une moyenne glissante sur les 30 ans précédant l'année considérée (exemple: la valeur de 2005 représente la moyenne sur 1976-2005).

Evolution du nombre de jours avec TX>=25° Bâle - Mulhouse

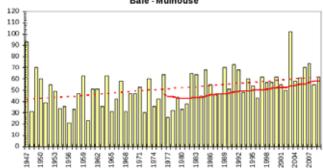
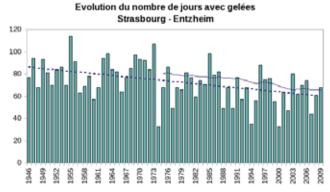



Illustration VI: Évolution du nombre de jours où la température maximale est supérieure à 25 °C aux stations de Strasbourg-Entzheim et de Bâle-Mulhouse

La hausse du nombre de jours annuel où la température dépasse 25 °C est très nette aux deux stations. En 60 ans, cet indicateur a augmenté de 15 à 20 jours.

À l'inverse, le nombre de jours de gel est en net recul que ce soit à Strasbourg-Entzheim ou à Bâle-Mulhouse. Depuis 60 ans, on compte 15 à 20 jours de gel en moins sur une année (illustration VII).

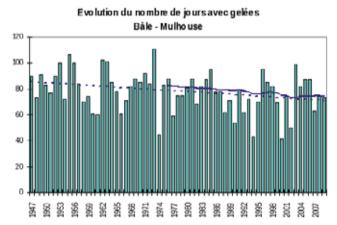
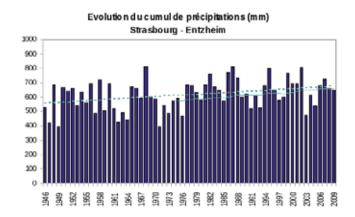



illustration VII: Évolution du nombre de jours de gel aux stations de Strasbourg-Entzheim et de Bâle-Mulhouse

En termes de précipitations, la tendance sur les 60 dernières années est moins nette. Les graphes de l'illustration 8 présentent l'évolution du cumul de précipitations annuel pour les deux stations alsaciennes. La droite de régression révèle toutefois une légère augmentation du cumul annuel quelle que soit la station.

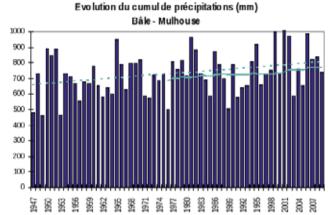
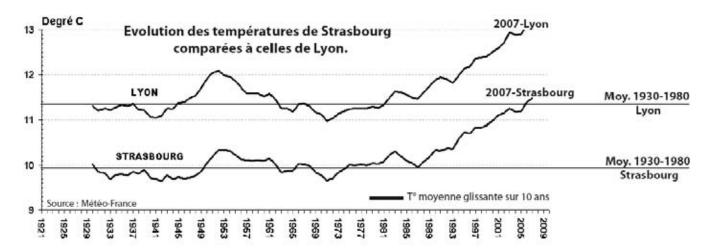



Illustration VIII: Évolution du cumul de précipitations annuel aux stations de Strasbourg-Entzheim et de Bâle-Mulhouse

Comparé à l'amplitude thermique d'une journée (différence entre température maximale et minimale), un degré semble insignifiant. Pour la température moyenne de l'année, un degré représente énormément. La comparaison de l'évolution de ce paramètre à Strasbourg et à Lyon depuis 1921 permet d'en prendre mesure.

Au début du XXI^e siècle, la température moyenne sur 10 ans à Strasbourg se situe à un niveau comparable à celle de Lyon au milieu du XX^e siècle.

Concernant les phénomènes extrêmes (vent, précipitations...), peu d'études sur leur évolution au cours du XX^e siècle ont été menées au niveau régional.

L'illustration X présente sur la France l'évolution du nombre de tempêtes entre 1950 et 1999. Le graphe montre une légère diminution des tempêtes, cependant cette tendance peu marquée n'est pas significative et s'explique principalement par la variabilité interannuelle. L'illustration présente le nombre d'épisodes de pluies diluviennes sur le Sud-Est de la France entre 1958 et 2003. Le graphe ne montre pas d'évolution significative.

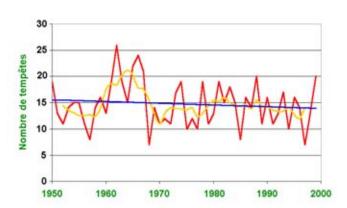


Illustration X: Évolution du nombre de tempêtes en France durant la seconde moitié du XXº siècle

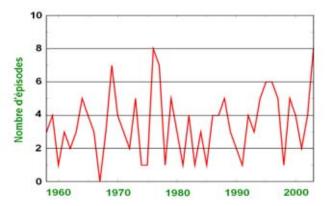


Illustration XI: Évolution du nombre d'épisodes de pluies diluviennes sur le sud-est de la France

2. Les principes généraux de la modélisation du climat

L'idée de base, dans l'étude du climat, est que la température moyenne du globe est fixée par l'équilibre entre l'énergie qu'il reçoit et celle qu'il réémet vers l'espace. Si ce bilan est modifié, c'est-à-dire, si des W/m² (watts par mètre carré) en plus ou en moins sont appliqués au système Terre, alors la température du globe s'ajuste pour que la Terre retourne à l'équilibre radiatif. Le rayonnement émis par la Terre, comme par tout corps, est en effet fonction de sa température.

Plusieurs facteurs ont une incidence sur la température à la surface de la Terre. Certains sont d'origine naturelle: les variations orbitales terrestres, les cycles solaires, l'activité volcanique. Elles ne suffisent cependant pas à expliquer le réchauffement observé.

L'effet de serre est la capacité de certains gaz de l'atmosphère (dioxyde de carbone, méthane, protoxyde d'azote, ozone, gaz fluorés, vapeur d'eau...) à absorber et à émettre du rayonnement

dans l'infrarouge. Le rayonnement réémis vers la Terre contribue, d'après les lois de la physique à réchauffer sa surface. Les gaz à effet de serre sont d'origine naturelle et anthropique mais leurs concentrations dans l'atmosphère ont fortement augmenté sous l'action de l'homme depuis le début de l'ère industrielle.

Les scientifiques simulent le comportement du système terrestre à l'aide de modèles climatiques fonctionnant sur d'énormes calculateurs. C'est le seul moyen dont ils disposent pour comprendre et reproduire la complexité du système terrestre et les multiples interactions entre ses composantes: l'atmosphère, l'océan, les glaces, les sols et la végétation.

Les illustrations XII, XIII et XIV montrent les simulations de plusieurs modèles prenant en compte respectivement les forçages naturels, les forçages anthropiques, ou leur ensemble.

Quand on simule l'effet des seuls facteurs naturels, on obtient une évolution de la température moyenne du globe (en gris) qui n'explique pas le réchauffement observé (en rouge) (illustration XII).

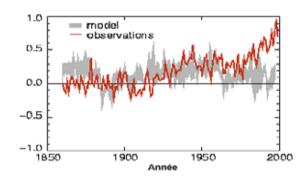


Illustration XII: Évolution de la température moyenne observée (en rouge) et simulée par un ensemble de modèles en prenant uniquement en compte les forçages naturels (en gris)

En revanche, quand on injecte dans la simulation les gaz à effet de serre émis par les activités humaines, la courbe de température reflète le réchauffement récent (illustration XIII).

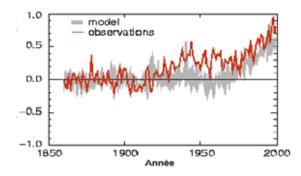


Illustration XIII: Évolution de la température moyenne observée (en rouge) et simulée par un ensemble de modèles en prenant uniquement en compte les forçages d'origine anthropique (en gris)

Enfin, quand la simulation prend en compte l'ensemble des facteurs, naturels et anthropiques, elle parvient à reconstituer très correctement l'évolution observée depuis 1850 (illustration XIV).

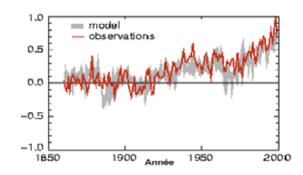


illustration XIV: Évolution de la température moyenne observée (en rouge) et simulée par un ensemble de modèles en prenant en compte l'ensemble des forçages naturels et anthropiques (en gris)

Pour répondre aux questions posées par le changement climatique et ses impacts, le GIEC utilise les modèles du système climatique et des études économiques et démographiques. Ils composent, non pas des prévisions, irréalisables à l'échelle de plusieurs décennies, mais des scénarios d'évolution du climat, supposés couvrir un large éventail d'évolutions possibles.

Le principe est de faire diverses hypothèses sur le développement économique futur et ses conséquences sur l'environnement. Ces scénarios prennent en compte l'évolution de la population, de l'économie, du développement industriel et agricole afin de fournir des scénarios d'évolution des gaz à effet de serre et des aérosols qui sont introduits comme forçage dans les simulations.

Les scénarios A tablent sur une forte croissance économique, les scénarios B privilégient l'environnement. Les scénarios 1 supposent des échanges mondiaux importants, les scénarios 2 mettent l'accent sur les aspects régionaux (illustration XV).

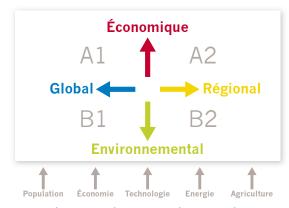


illustration XV: Présentation schématique des scénarios socio-économiques recommandés par le GIEC

La famille de scénarios A1, qui décrit un monde futur dans lequel la croissance économique sera très rapide, se scinde en trois groupes qui décrivent des directions possibles de l'évolution technologique dans le système énergétique:

- Forte intensité de combustibles fossiles (A1FI)
- Sources d'énergie autres que fossiles (A1T)
- Équilibre entre les sources (A1B) (« équilibre » signifiant que l'on ne s'appuie pas excessivement sur une source d'énergie particulière)

Les scénarios préférentiellement étudiés par Météo-France sont B1, A1B et A2, qualifiés respectivement de scénarios optimistes, médian et pessimiste.

La concentration en gaz à effet de serre dans l'atmosphère varie en fonction des scénarios, et de manière plus sensible à partir de 2020-2030. Lorsqu'on simule l'évolution climatique, il est fortement conseillé d'utiliser plusieurs scénarios pour prendre en compte les incertitudes sur l'évolution de la concentration de l'atmosphère en gaz à effet de serre.

Un exercice de simulation du climat futur, coordonné au niveau international, a été réalisé dans le cadre de la préparation du 4° rapport du GIEC. 21 groupes issus de 12 pays et mettant en œuvre 23 modèles différents, ont simulé le climat du XX° et du XXI° siècle suivant les scénarios recommandés par le GIEC.

Les résultats obtenus pour le paramètre température moyenne sont présentés dans l'illustration XVI.

Outre les scénarios déjà présentés, un scénario de stabilisation de la concentration des gaz à effet de serre à partir de 2000, a également été considéré. La simulation correspondante apparaît en orange sur le graphe.

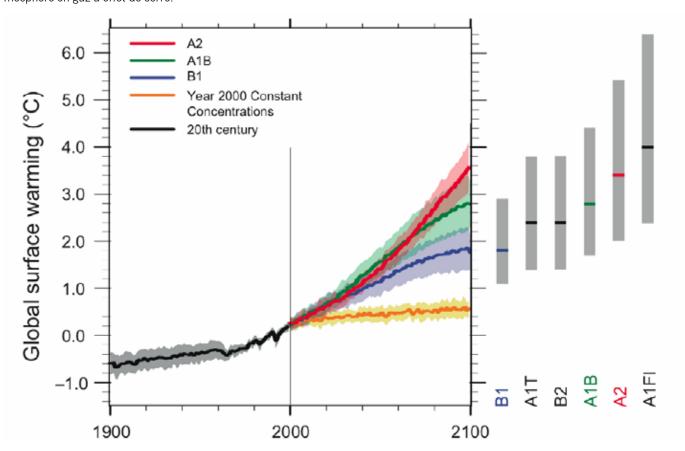


Illustration XVI: Évolution de la température moyenne par rapport à la moyenne calculée sur la période 1980-1999 pour différents scénarios socio-économiques (simulations réalisées par les 23 modèles retenus par le GIEC).

Chaque courbe représente pour le scénario étudié, l'évolution de la température moyenne en comparaison à la période 1980-1999, moyennée sur l'ensemble des 23 modèles globaux. La dispersion des modèles autour de cette moyenne apparaît dans la même teinte.

Le graphique présente ainsi les incertitudes liées aux modèles et aux scénarios d'émissions, toutes deux indispensables à prendre en compte dans l'analyse d'une projection climatique.

Les travaux réalisés en considérant l'ensemble des scénarios socio-économiques recommandés par le GIEC prévoient une augmentation de température moyenne terrestre allant de 1,1 à 6,4 °C d'ici 2100.

Les scénarios de stabilisation indiquent que le système climatique continuerait à se réchauffer de 0,5 à 0,7 °C entre 2100 et 2300, ce qui souligne l'inertie du système.

Les résultats des simulations des modèles climatiques globaux retenus par le GIEC, permettent de dégager quelques tendances climatiques sur l'Europe et la France.

3. Le climat futur

En exploitant d'une part les simulations du modèle ARPEGE-Climat à la résolution de 50 km sur la France, et d'autre part la climatologie de la période de référence établie à la résolution de 1 km, il est possible de cartographier un indicateur climatique sur la région Alsace à divers horizons du XXIe siècle.

L'étude des horizons 2030, 2050 et 2080 correspond à l'étude des paramètres simulés, moyennés sur des périodes de 30 ans centrées sur les années 2030, 2050 et 2080 (soit 2016-2045, 2036-2065 et 2066-2095). Ces périodes de 30 ans glissantes sont tout à fait adaptées à la description du climat selon les normes de l'Organisation Météorologique Mondiale (OMM).

Les projections climatiques en Alsace prévoient pour les décennies à venir une hausse des températures moyennes et du nombre de jours où la température dépasse 25 °C, ainsi qu'une diminution du nombre de jours de gel.

L'illustration XVII montre l'indicateur température moyenne sur la période de référence 1971-2000 et aux divers horizons étudiés.

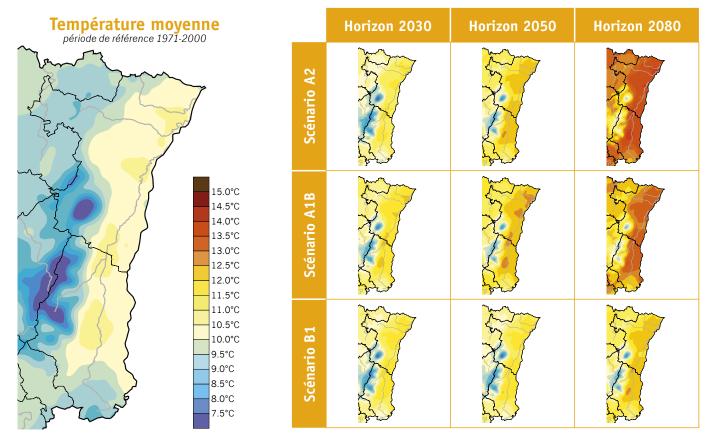


Illustration XVII: Température moyenne sur la période de référence 1971-2000 en Alsace et projections de cet indicateur climatique à différents horizons du XXIº siècle pour les scénarios A2, A1B et B1

Les moyennes établies sur la période de référence 1971-2000 donnent une température moyenne annuelle de l'ordre de 10 à 11 °C en plaine d'Alsace. Sur la majeure partie des reliefs elle varie entre 7 et 9 °C mais est inférieure à 7 °C sur les sommets.

À l'horizon 2030, l'augmentation est de l'ordre de 1 °C par rapport à la période de référence. On note peu de différences suivant le scénario socio-économique étudié.

Son incidence est déjà plus nette sur les projections à l'horizon 2050. La hausse de la température moyenne se situe entre 1 et 2 °C suivant le scénario socio-économique suivi.

À l'horizon 2080, l'augmentation de la température moyenne est encore plus marquée. Dans le scénario B1 dit optimiste, elle est de l'ordre de 1 à 2 °C suivant les régions. Elle oscille entre 2 et 3 °C dans le scénario A1B. Dans le scénario A2 le plus pessimiste, le réchauffement se situe entre 3,5 et 4 °C.

Il reste difficile de se représenter les conséquences d'une augmentation de la température moyenne annuelle de plus de 1 °C sur une région.

Afin d'appréhender les changements qu'une telle hausse peut impliquer à Strasbourg, la température moyenne annuelle de la ville est comparée à celles de plusieurs villes françaises dans le tableau 1. La différence de température moyenne entre Strasbourg et Lyon est actuellement de 1,5 °C. D'après les projections climatiques, les températures de Strasbourg seraient alors en moyenne équivalentes, dès l'horizon 2050, aux températures actuelles de Lyon.

À Montélimar la température moyenne annuelle dépasse celle de Strasbourg de 2,9 °C. Cette valeur est de l'ordre de la hausse de température simulée à l'horizon 2080 pour le scénario intermédiaire A1B.

L'écart de température moyen entre les villes de Marseille et Strasbourg, égal à 4,7 °C, interpelle encore sur les conséquences du changement climatique dans le futur. Dans le scénario A2, à l'horizon 2080, la hausse de températures peut atteindre 4 °C.

	Climat en 2000 (moyenne 1971-2000)	Différence avec Strasbourg	
Strasbourg	10,4 °C		
Dijon	10,7 °C	0,3 °C	
Lyon	11,9 °C	1,5 °C	
Montélimar	13,3 °C	2,9 °C	
Marseille	15,1 °C	4,7 °C	

Tableau 1: Comparaison de la température moyenne annuelle de Strasbourg avec celles d'autres villes françaises

Ainsi on s'attend à des étés plus chauds et plus secs dans le futur. À cette saison, le réchauffement sera probablement plus fort au sud qu'au nord de la France. En hiver, les projections donnent un réchauffement plus fort au nord-est de la France.

Concernant les précipitations, les tendances sur l'Alsace sont beaucoup moins marquées que pour les températures. Les projections donnent une légère diminution des précipitations annuelles aux différents horizons du XXIe siècle.

Les simulations climatiques montrent deux types de réponse en termes de précipitations annuelles sur l'Europe: augmentation au nord et diminution au sud. Il est ainsi probable d'observer, au cours du XXIº siècle, une diminution des précipitations annuelles dans le sud de la France, la tendance est plus incertaine sur le nord

L'évolution est différente selon la latitude, mais également selon la saison: en été, les précipitations devraient diminuer sur l'ensemble de la France; en hiver, elles devraient augmenter sur une moitié nord de la France, l'incertitude subsiste sur la moitié sud.

Les performances des modèles climatiques ne permettent actuellement pas de donner des résultats suffisamment fiables sur certains phénomènes météorologiques extrêmes (précipitations intenses, vents violents, grêle par exemple...). Ces phénomènes sont en effet associés à des échelles beaucoup plus fines que celle des modèles climatiques. Il est par conséquent difficile de simuler des valeurs extrêmes, pourtant observables localement. Il faut garder à l'esprit que les données associées à un point de grille du modèle climatique sont des moyennes sur l'ensemble de la maille, impliquant un lissage des valeurs extrêmes.

D'après les résultats disponibles actuellement, il est très probable de rencontrer, sur la plupart des régions, des fortes précipitations plus fréquentes au cours du XXIe siècle.

En préparation du prochain rapport du GIEC, les travaux de recherche en cours utilisent des modèles à résolution plus fine. Prenant mieux en compte la variabilité spatiale du climat, ils permettront notamment d'avoir des diagnostics plus précis à des échelles régionales et sur des phénomènes météorologiques extrêmes.

Tourisme

1. État des lieux

La région Alsace se place au $11^{\rm e}$ rang des régions françaises en nombre de nuitées en hôtellerie avec 5,8 millions de nuitées. Le secteur du tourisme crée en Alsace 28000 emplois. Ce secteur représente par ailleurs 1350 km d'itinéraires cyclables, dont une partie concerne des pistes inter-régionales, 17000 km de sentiers balisés pour randonnées pédestres, 11 domaines skiables, 490 km de voies navigables, 2 parcs naturels régionaux, 2 sites thématiques et d'autres lieux de visites.

Ce ne sont pas moins de 67 offices de tourisme qui accueillent les touristes venus des quatre coins du monde découvrir l'Alsace. Néanmoins, d'après les statistiques 60 % des touristes sont Français, largement devant les Allemands. La grande majorité des touristes est attirée principalement par la tradition et les spécialités alsaciennes, par sa culture et le patrimoine historique: la Route des Vins avec les visites des caves viticoles est une des premières destinations régionales emblématiques.

2. Faits ou exemples particuliers basés sur les observations

C'est essentiellement dans le secteur du tourisme hivernal que les observations des dernières années permettent d'imaginer les conséquences du changement climatique en Alsace. La température moyenne minimale de l'hiver est représentative des possibilités d'enneigements et donc des impacts économiques potentiels pour les stations de sports d'hiver.

L'illustration XVIII ci-dessous, montre bien les différences marquées de cet indicateur lors des derniers hivers: avec en 2007, l'hiver le plus chaud depuis 1959 et en 2009, un hiver parmi les plus froids des vingt dernières années. D'une manière globale, on constate surtout que cette température minimale augmente depuis 1959 et cette augmentation nuit à l'enneigement.

Les données de l'observatoire du tourisme hivernal du Haut-Rhin pour quatre sites de sports d'hiver (Ballon d'Alsace, Markstein, Schnepfenried, Lac Blanc), mettent en évidence cette influence du climat sur le fonctionnement des stations de ski dans les Vosges. L'hiver 2007, le plus chaud des six années étudiées par cet observatoire, a eu un impact considérable sur le nombre de jours d'ouverture et par conséquent sur les chiffres d'affaires de ces stations qui ont reculé de près de 70 % en moyenne par rapport à une saison favorable comme celle de 2009 (Tableau 1: Impact économique d'un hiver "chaud").

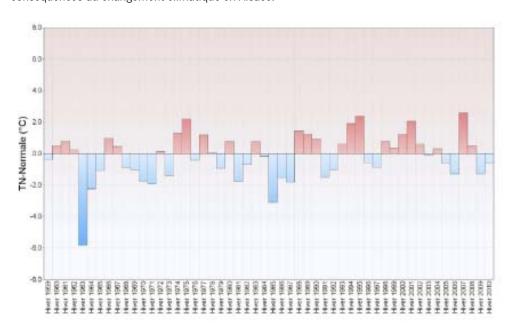


Illustration XVIII: Écart à la moyenne saisonnière (référence 1971-2000) de l'indicateur de température minimale Hiver de 1959 à 2010 (zone climatique: Nord-est/Source Météo-France)

Saison	Nombre moyen de jours d'ouverture	Moyenne des chiffres d'affaire Totaux	Nombre total d'emplois directs
2006-2007	46,75	207 931 €	68
2008-2009	119,75	869 123 €	119
Écarts	-73 jours	-661 192€	-51
Écarts en %	-61 %	-76 %	-43 %

Tableau 1 : Impact économique d'un hiver "chaud"

3. Perspectives climatiques

Selon le Centre de recherche sur la neige de , les Vosges font partie des massifs pour lesquels il existe une inquiétude quant à la possibilité d'avoir une couverture neigeuse suffisante pour la pratique des activités telles que le ski (l'épaisseur minimale exigée est de 20 cm). Avec une hypothèse d'un réchauffement de 2 °C, le nombre de jours avec neige au sol à l'altitude de 1500 m diminue d'un mois environ. Cette même hypothèse entraîne par ailleurs un rehaussement d'environ 300 m de la limite inférieure d'enneigement. Les domaines skiables des Vosges, tous situés entre 550 m et 1350 m, se retrouvent fortement impactés par ses perspectives.

Les modélisations de Météo-France prévoient que le nombre de jours de gel, aujourd'hui compris entre 80 et 100 jours, pourrait diminuer de 20 à 45 %. Cette diminution aura un impact direct sur la possibilité de formation et d'entretien de la neige en station mais aussi sur la possibilité de recourir à la neige de culture dont la fabrication nécessite des températures inférieures à ·2 °C ainsi que des apports importants en énergie et en eau. Cette solution pourrait s'avérer d'autant plus inefficace lors des redoux fréquents qui seront à prévoir à l'avenir.

4. Impacts régionaux

Si l'ensemble du secteur du tourisme subira des effets, positifs ou non, liés au changement climatique, ce sont les activités de loisirs de baignade et la pratique du ski qui seront les plus touchées et qui devront faire preuve d'imagination pour s'adapter aux nouvelles conditions climatiques.

Les activités liées à la baignade seront impactées par la hausse des températures des plans d'eau entraînant la prolifération des algues, des bactéries et des parasites. Une surveillance et une prévention accrue de ces plans d'eau sera nécessaire.

Le domaine du tourisme hivernal devra en revanche adapter son activité à des conditions d'enneigement de plus en plus difficiles.

Ce secteur est d'autant plus vulnérable qu'un lien fort existe entre le taux d'enneigement et la performance économique des stations de ski (cf. tableau 1):

- Une saison amputée d'un mois d'activité équivaut à une baisse de chiffre d'affaires de l'ordre d'un quart
- Si la saison ne dure plus que deux mois la perte est alors de plus de 50 %

Actuellement la saison skiable dans les stations des Vosges est en moyenne de trois mois et demi. Une réduction d'un mois de la saison pour certaines stations entraînera de sérieuses répercussions sur sa viabilité économique.

Le secteur du tourisme doit maintenant relever un défi qui est celui d'élargir les activités liées aux sports d'hiver et de développer de nouvelles activités.

Forces et faiblesses du territoire

- ♣ La hausse des températures est favorable à une augmentation de la fréquentation touristique notamment en ville et dans le massif Vosgien en été mais également durant les périodes printanières et automnales
- + Une saison touristique « estivale » plus longue
- + Un territoire aux caractéristiques contrastées permettant un grand potentiel de diversification des activités estivales et hivernales: les stations de sports d'hiver auront la possibilité d'augmenter leurs activités estivales comme la randonnée ou la pratique du VTT
- ♣ La pratique d'activités culturelles bénéficiera également de périodes élargies d'accès à l'ensemble du massif
- Enneigement de plus en plus incertain remettant en cause la pratique du ski et la fréquentation de certains sites
- Prolifération des algues, bactéries et parasites dans les plans d'eau de baignade

Ressources en Eau

1. État des lieux

Les ressources en eaux terrestres sont alimentées par les précipitations. Ces précipitations, en plus d'influer directement sur les débits des cours d'eau, constituent une donnée d'entrée principale dans le bilan hydrique. L'analyse de ce bilan permet de déterminer la part des « pluies efficaces » qui alimentent les réserves utiles pour l'alimentation directe des plantes ainsi que les réserves des sous-sols par infiltration et notamment les nappes.

Les masses d'air qui arrivent de l'Atlantique se trouvent confrontées au massif Vosgien. En approchant de ce relief, elles se refroidissent et se condensent. Ainsi ce sont les sommets des Vosges qui reçoivent le maximum de précipitations (1400-1800 mm/an) tandis que la plaine d'Alsace, ainsi protégée, est moins arrosée (500-1000 mm/an).

Le Rhin

De régime hydrologique dit nivo-glaciaire, alimenté par la fonte de neige et de glace des massifs alpins, il est caractérisé par une période des hautes eaux centrée sur juin-juillet et une période de basses eaux en janvier-février. Les débits varient au cours de l'année mais restent pondérés par des lacs préalpins et notamment le lac de Constance qui joue un rôle de régulateur naturel.

Au niveau de Strasbourg, le débit moyen annuel est estimé à 1080 m³/s, tandis que le débit mensuel d'étiage est estimé à 625 m³/s. Le fleuve se caractérise par de forts débits durant d'assez longues périodes mais grâce aux nombreux aménagements réalisés tout le long de son parcours, le caractère menaçant du fleuve a pu être maîtrisé rendant la navigation possible ainsi que l'exploitation de son potentiel de production électrique. Actuellement, les centrales hydrauliques alsaciennes sur le Rhin assurent environ la moitié de la consommation électrique régionale.

Outre la production d'électricité, le bassin du Rhin accueille de nombreuses industries qui utilisent le fleuve pour le transport, les besoins en eau mais également en tant qu'exutoire des rejets dans le respect de la réglementation relative aux installations classées pour la protection de l'environnement.

L'Alsace, région riche en eaux souterraines, est dotée d'un réseau d'eaux de surface important. Ce réseau est étroitement lié à la nappe alluviale de la plaine d'Alsace qui constitue l'un des plus grands réservoirs d'eaux souterraines en Europe. La quantité d'eau stockée sur sa seule partie alsacienne est estimée à environ 35 milliards de m³. Elle couvre, sur la région Alsace, une surface d'environ 3200 km².

Sa spécificité tient à son accès à faible profondeur par rapport à la surface du sol: de quelques dizaines de centimètres dans le Ried au niveau de Sélestat jusqu'à une vingtaine de mètres au niveau de Mulhouse dans la forêt de la Hardt. Les variations de niveau de la nappe évoluent dans le temps et dépendent de:

- La pluviométrie
- L'alimentation et le drainage par les rivières
- Les prélèvements effectués

Ces fluctuations à la hausse ou à la baisse ont des conséquences sur l'environnement telles que:

- L'assèchement de certaines zones humides
- La remontée d'eau dans les caves et les parkings souterrains
- L'apparition des nouveaux vecteurs de pollution des eaux à partir du sol ou des eaux de surface

2. Faits ou exemples particuliers basés sur les observations

L'observation de l'été 2003 et de la longue période de canicule qui le caractérise, permet d'établir plusieurs constats.

Les relevés de mesures de la température dans le Rhin confirment une augmentation d'environ 3 °C entre 1954 et 2009.

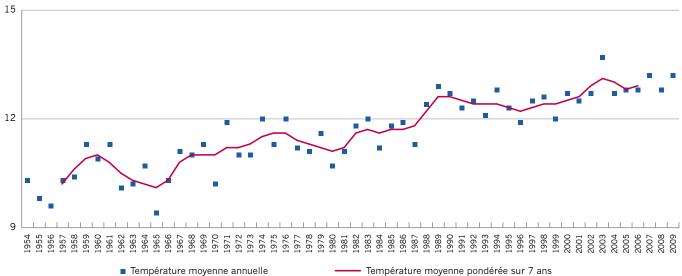
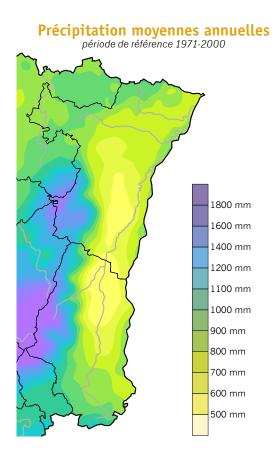
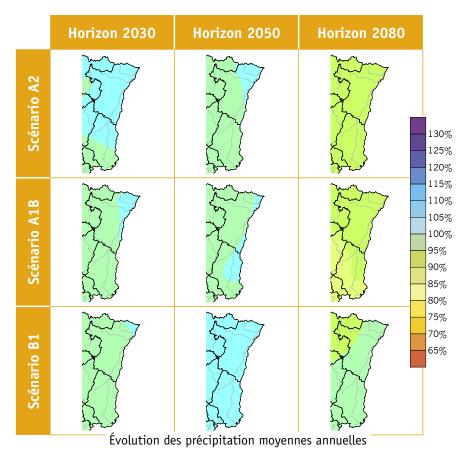


Illustration XIX: Température moyenne annuelle de l'eau du Rhin au niveau de Bâle sur la période 1954-2009 (source: Office Fédéral de l'Environnement)

Température moyenne pondérée sur 7 ans


Durant l'été 2003, la température de l'eau du Rhin a atteint des valeurs sans précédent: 28 °C sur les tronçons français et allemand. À cette situation, s'est ajouté le fait que la fonte des neiges a eu lieu plus tôt que la normale au cours du printemps de 2003. Sous l'effet de ces deux actions cumulées, le niveau d'eau durant l'été a été très faible favorisant ainsi une élévation de la température du fleuve. De pareilles augmentations entraînent la prolifération des algues et peuvent provoquer l'eutrophisation du cours d'eau. Cette tendance a été observée lors de la canicule de 2003.


L'approvisionnement en eau ne pose globalement pas de problème sur la région Alsace. En revanche, toujours durant l'été 2003, si l'approvisionnement en eau potable a pu être assuré, de sévères restrictions ont été mises en place pour la distribution d'eau à des fins industrielles ainsi qu'un suivi des rejets d'eau de refroidissement (Centrale de Fessenheim notamment).

Le débit très diminué lors de cet épisode (environ 20 % moins important que la moyenne) a aussi été responsable d'une baisse de la production d'électricité d'origine hydraulique. Sur l'année 2003, la production des centrales hydroélectriques basées sur le Rhin s'est élevée à 6 TWh contre 8 une année normale.

3. Perspectives climatiques

Les projections de Météo-France concernant les tendances annuelles en terme de cumul de précipitations, montrent une légère augmentation aux horizons 2030 et 2050. Une baisse de 5 à 10 % est ensuite simulée à l'horizon 2080. Plus que le cumul annuel, les évolutions saisonnières des précipitations prévues par Météo-France semblent plus affectées par le changement climatique. Une diminution des précipitations en été à l'horizon 2080 est envisagée alors que les tendances hivernales sont plutôt à l'augmentation quel que soit le scénario retenu. Le centre Alsace serait d'ailleurs touché de manière plus sensible par ces évolutions.

La hausse des précipitations en hiver se traduira notamment par une intensité accrue des épisodes pluvieux qui pourront être fortement localisés.

Néanmoins, compte tenu du caractère imprévisible de ces événements, il est encore difficile, voire impossible de prévoir leur fréquence ainsi que leurs effets sur les débits des cours d'eau.

4. Impacts régionaux

L'alimentation des cours d'eau dépend notamment des apports provenant de la fonte des neiges. Le stockage de neige agit comme un effet tampon sur le débit des rivières. Ainsi, le décalage dans le temps de la fonte des neiges aura des conséquences sur les débits en hiver et au printemps. De ce fait, le risque de crues s'accroît en période des hautes eaux surtout sur les petits bassins versants alimentés à la fois par la fonte des neiges et les précipitations. Ces crues plus précoces auront des impacts en termes d'érosion (sol sans couverture végétale) et de dégradation de la qualité des eaux (transferts de polluants vers les eaux de surface).

En Alsace, ce sont essentiellement les affluents de l'III qui seront concernés par ces changements. La réduction de la couverture neigeuse sera à l'origine de l'augmentation des débits en hiver et de la diminution des apports d'eau en été accentuant ainsi les périodes extrêmes.

Cette situation aura des répercussions sur les échanges existant entre les cours d'eau et la nappe phréatique. Cette interdépendance accroîtra la pression et le besoin de suivi des eaux de transferts tant pour leur volume que pour leur qualité.

Le Rhin sera lui aussi touché par ce phénomène mais dans une proportion moindre. Le fait qu'il soit canalisé sur la partie alsacienne et qu'il puisse être régulé en amont à partir des lacs alpins entraînera des modifications de son régime bien moins importantes que pour les plus petits cours d'eau. En revanche, ses liens importants avec la nappe et le fait que le volume d'eau soit nettement plus important avec l'augmentation des débits plus tôt dans l'année se combineront avec les précipitations hivernales et pourront être à l'origine de « crues de nappe ».

La navigation fluviale sera impactée par ces changements climatiques. En effet, si les débits du Rhin ne sont pas amenés à varier de manière trop importante sur sa partie canalisée, il en sera différemment en aval de Lauterbourg. Les variations de débits attendues sur cette partie aval, sont beaucoup plus significatives et pourraient avoir des répercussions sur les possibilités de navigabilité durant les périodes de basses eaux entre août et novembre.

Ces constats permettent aussi d'assurer que la production des centrales hydroélectriques sera impactée par l'évolution des débits du Rhin mais pas forcément de manière brutale. L'évolution de ces débits reste plutôt défavorable puisqu'elle tend à faire augmenter les extrêmes tout en conservant une moyenne annuelle stable. Les possibilités de production seront donc plus faibles durant les périodes de basses eaux alors que les périodes de hautes eaux sont déjà exploitées au maximum. L'année 2003 représenterait à ce titre une année moyenne de la fin du siècle.

Forces et faiblesses du territoire

- **★** Malgré une évolution des répartitions des débits, les projections de débit annuel reste stables
- ♣ Le débit hivernal du Rhin en hausse permettra de produire autant, voire davantage d'énergie hydroélectrique pendant la même période si de nouveaux équipements viennent exploiter cette possibilité
- ♣ Les épisodes de crue hivernaux et printaniers, s'ils sont anticipés, pourront se faire au profit des zones humides et permettront de restaurer les écosystèmes des espaces inondables
- + L'augmentation hivernale du débit des cours d'eau sera favorable aux développements des écosystèmes aquatiques
- Une augmentation de la fréquence des crues-éclairs surtout sur les petits bassins versants tels que les affluents de l'III, accentuée par la fonte plus précoce et plus intense de la neige, aggravera le risque d'inondation dans les zones sensibles
- L'évolution des débits vers une accentuation des extrêmes entraînera des impacts sur les unités de production hydroélectrique
- Le trafic fluvial sur le Rhin risque d'être impacté par des problèmes de navigabilité en aval de Lauterbourg dans la seconde moitié du XXI^e siècle
- Si la nappe d'Alsace représente un stock d'eau douce important, les étiages estivaux réguliers projetés pour la deuxième moitié du XXI° siècle risquent de créer des conflits d'usage notamment dans les zones situées en bordure de cette nappe

Agriculture et viticulture

1. État des lieux

En Alsace, les exploitations agricoles couvrent 40 % de l'ensemble du territoire régional. Près de 30 % du territoire alsacien est occupé par les grandes cultures, environ 38 % par les forêts et 1.9 % par le vignoble.

Ce secteur d'activité concentre plus de 17000 actifs dont 2315 salariés permanents et plus de 7500 chefs d'exploitation et coexploitants.

Dans le cadre des recherches sur les impacts du changement climatique sur l'agriculture, un important projet national rassemble de nombreuses données: CLIMATOR.

Par ailleurs, des spécialistes en agrométéorologie de Météo-France s'intéressent également à la question de l'impact du climat futur sur la production agricole à travers leurs publications et participations aux différents programmes de recherches.

Il est à noter que les différentes cultures, annuelles ou pérennes, devront s'accommoder des changements climatiques par des moyens différents en fonction de leur propre mécanisme d'adaptation. Pour les cultures annuelles, les possibilités de migrer, d'introduire des nouvelles variétés ou de changer de pratiques culturales, permettront de s'adapter aux nouvelles conditions climatiques. Les cultures pérennes, étant des écosystèmes d'une longévité importante, disposent en revanche d'une faible capacité d'adaptation au changement de leur environnement habituel qui les rend plus vulnérables.

2. Faits ou exemples particuliers basés sur les observations

La culture du maïs est déjà affectée par l'évolution récente du climat en Alsace. L'illustration XX présente l'évolution du nombre de degré jour disponibles pour le maïs sur les 25 dernières années (les degrés jours caractérisent les écarts de température par rapport à une température de référence et sont utilisés pour prévoir les différents stades de développement des cultures).

Si ce constat est jusqu'ici plutôt favorable au développement de la culture du maïs, il se heurtera en réalité à un phénomène de seuil au-delà duquel l'augmentation de température n'est plus favorable à la culture. En effet, des températures trop importantes peuvent finir par nuire aux rendements.

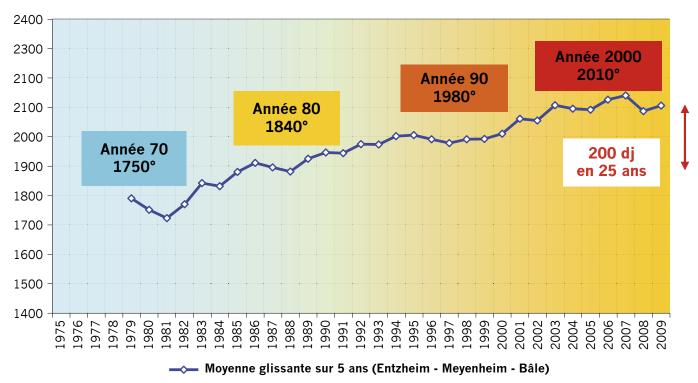


Illustration XX: Évolution du nombre de degré jours disponibles pour le maïs

Concernant les vignes, le XX° siècle a vu une avancée conséquente des stades de développement des raisins.

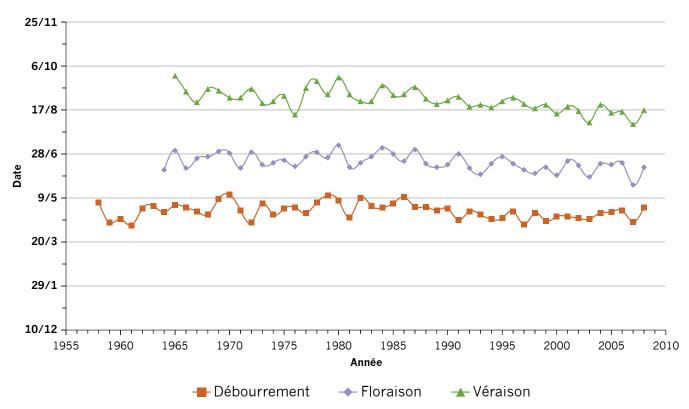


Illustration XXI: Dates et moyenne sur 10 ans des principaux stades de développement de la vigne en Alsace.

L'augmentation des températures pendant la phase de maturation des raisins, de l'ordre de 4 °C en 30 ans, est en grande partie à l'origine de ce décalage dans le temps.

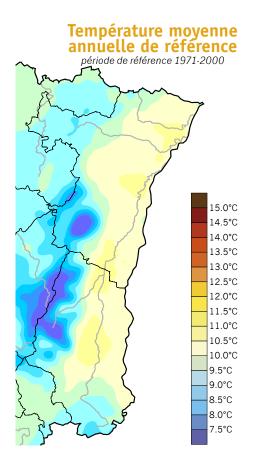
Par ailleurs, avec des conditions favorables au réchauffement, la teneur en degré d'alcool probable au moment de la récolte augmente avec la hausse de la teneur en sucre naturel. C'est ainsi que depuis 30 ans, le degré d'alcool des récoltes ne cesse d'augmenter.

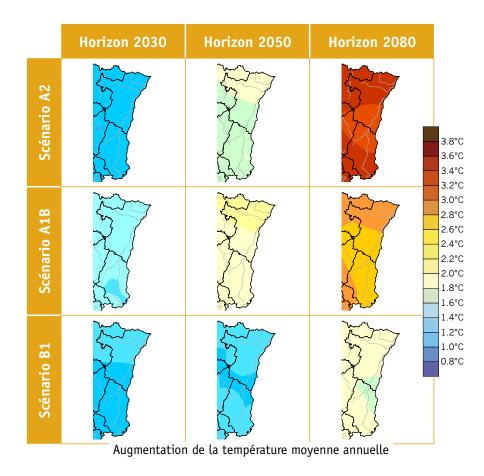
3. Perspectives climatiques

Les perspectives climatiques pour la fin du siècle vont accentuer les effets déjà ressentis dans les domaines agricoles et viticoles.

Pour la région d'Alsace, la hausse des températures moyennes pour le scénario pessimiste serait de l'ordre de 3,5 °C à l'horizon 2080.

Par ailleurs, suivant les scénarios modélisés, les projections aux horizons 2030 et 2050 suggèrent tantôt une situation stable, tantôt une légère hausse du cumul annuel des précipitations. Néanmoins, il faut s'attendre à des évolutions saisonnières plus marquées.


4. Impacts régionaux


La hausse des températures aura moins d'influence sur les cultures hivernales comme celle du blé que sur les cultures printanières comme le maïs. Cependant, la diminution du nombre de jours de gel sera bénéfique aux cultures hivernales qui subiront globalement moins d'épisodes de froid.

L'anticipation attendue des dates de semis est de l'ordre de 10 à 20 jours pour le maïs et d'environ 8 jours pour le blé à l'horizon 2050.

Toutefois, cette hausse entraînera un raccourcissement de la phase de « remplissage des grains » et aura donc un impact négatif sur le rendement.

La demande en évapotranspiration des cultures sera elle aussi plus importante du fait de la hausse des températures et ne sera pas compensée par des apports pluviométriques. Si la nappe phréatique permettra d'absorber cette demande accrue dans la majorité des cas, le stress hydrique pourrait tout de même devenir un nouveau facteur de risque pour les cultures.

Parallèlement à cette hausse des températures, les cultures seront aussi influencées par la hausse de la teneur en CO_2 dans l'air. En effet, cette teneur est importante pour déterminer le rendement des cultures. Ainsi le blé verra une augmentation de son rendement avec l'augmentation de cette teneur, alors que le maïs a déjà dépassé cet optimum et ne verra donc pas d'effet de ce changement.

Le secteur viticole sera lui essentiellement marqué par une modification de son calendrier avec une poursuite de l'avancement des stades de développement du raisin. Comme le blé, le raisin verra un effet bénéfique de l'augmentation de la teneur en CO_2 de l'atmosphère. Couplé à des taux de sucres naturels plus importants, l'effet sera globalement favorable pour les vins de type « vendanges tardives » et « grains nobles ».

En revanche, les évolutions climatiques prévues auront sans aucun doute des impacts sur le terroir même des cépages actuels. Les possibilités d'introduction de nouveaux cépages devront alors être envisagées.

Forces et faiblesses du territoire

- + L'augmentation de la teneur en CO₂ de l'atmosphère favorisera les plantes telles que le blé ou la vigne
- **+** La nappe phréatique permettra d'absorber une partie du déficit hydrique prévu
- + Les périodes de gel moins fréquentes préserveront les récoltes
- La culture du maïs sera exposée à des diminutions de son rendement (l'augmentation de la température et de la teneur en CO₂ ne lui seront pas favorables)
- Le déficit hydrique pourrait devenir un problème dans les zones où l'accès à la nappe sera difficile
- L'évolution du taux de sucre naturel dans les raisins demandera un suivi particulier afin de conserver les singularités des vins de terroirs et des appellations contrôlées. Des adaptations de cépage pourraient être à terme envisagées

Forêt

1. État des lieux

En Alsace, la forêt couvre environ 316000 ha, soit près de 38 % du territoire régional. La majorité de la surface forestière (75 %) est publique et constituée de forêts domaniales (24 %) et communales (51 %). Seulement un quart de la surface boisée appartient aux 85000 propriétaires privés.

C'est une des spécificités de la forêt en Alsace car au niveau national, les proportions sont inversées. Une autre particularité concerne la part prédominante de la surface forestière totale certifiée par un label de gestion durable (près de 75 %).

La forêt alsacienne est une « forêt de production »: elle occupe 99% de la surface totale forestière. Elle représente un volume total de bois sur pied d'environ 81 millions m^3 , soit 3,4% du volume total national, ce qui est relativement important comparé à la superficie du territoire alsacien.

En terme de productivité, et grâce à son mode de gestion, avec un volume moyen de bois à l'hectare d'environ 250 m³/ha l'Alsace se situe largement au-dessus de la valeur moyenne nationale (157 m³/ha pour l'ensemble du territoire français).

La forêt et sa filière bois occupent une place importante dans le paysage et dans l'économie locale. La société porte de plus en plus d'intérêt à cette source de multiples fonctions: la demande en bois, que ce soit le bois-énergie, le bois industriel ou le bois d'œuvre, ne cesse de croître.

Parallèlement, la mise en évidence du rôle des forêts dans le captage de dioxyde de carbone permet de développer une gestion durable des espaces boisés et par ce fait, de contribuer à la lutte contre le réchauffement climatique. Néanmoins, les changements climatiques autant que les choix de politiques énergétiques, auront des impacts sur les ressources de bois et sur le puits de stockage de CO₂ que représente cette ressource.

Temps annuel moyen passé en état de sécheresse (en %)

période de référence 1971-2000

	Horizon 2030	Horizon 2050	Horizon 2080	
Scénario A2				80%
Scénario A1B				70% 60% 50% 40% 35% 30% 25%
Scénario B1				20%

Projection du temps passé en état de sécheresse (exprimé en % d'une année)

2. Faits ou exemples particuliers basés sur les observations

À la suite de la tempête de 1999, les dégâts les plus sévères en Alsace ont été constatés sur la plaine de Haguenau où l'effet protecteur des Vosges n'existe plus par rapport au reste de la plaine du Rhin. C'est le pin sylvestre, l'essence prédominante dans les formations forestières de ce secteur, qui a été le plus touché. Le sapin et l'épicéa présents dans les Vosges ont également souffert des vents violents.

La canicule de 2003 a entraîné, pour les peuplements de hêtres, sécheresse et coups de soleil qui sont à l'origine de difficultés de développement des bourgeons et de pertes foliaires.

Comme dans le domaine agricole, le calendrier des stades de développement est de plus en plus précoce. Ainsi, le début de la période de floraison du bouleau à Bâle a été avancé de 13 jours en 30 ans.

3. Perspectives climatiques

Plus que la hausse des températures sur la région, ce sont les phénomènes de sécheresses estivales qui auront le plus d'impact sur les forêts. Le massif Vosgien est le principal secteur géographique susceptible d'être touché.

Les vagues de chaleur deviendront plus fréquentes et dureront plus longtemps. C'est vers la fin du siècle que la hausse du nombre de jours caniculaires sera la plus importante et touchera davantage le Nord de l'Alsace.

4. Impacts régionaux

Un dépérissement des principales essences est à prévoir. Les formations sapinières seront les plus touchées par les aléas du stress hydrique prévu pour la fin du XXIe siècle. Leur régression apparaît comme étant déjà engagée sur le piémont des Vosges et à l'horizon 2100 leur distribution géographique sera limitée aux sommets des Hautes Vosges.

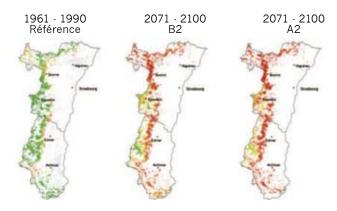


Illustration XXII: Sensibilité, suivant les scénarios du GIEC optimiste B2 et pessimiste A2, des sapins au stress hydrique (du vert: optimum au rouge: vulnérable)

Les hêtraies seront, elles aussi, touchées fortement par le stress hydrique. Leur présence sera localisée dans les zones-refuges situées dans les Hautes Vosges ce qui réduira de façon drastique leur aire de distribution dans la région.

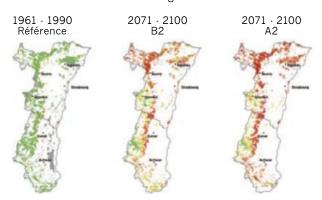


Illustration XXIII: Sensibilité, suivant les scénarios du GIEC optimiste B2 et pessimiste A2, des hêtres au stress hydrique (du vert: optimum au rouge: vulnérable)

Par rapport aux autres espèces, le Chêne sessile s'adapte mieux aux conditions de stress hydrique. D'une manière générale, son aire de distribution devrait rester la même à quelques exceptions près.

Vers la fin du X^e toutes les formations constituées du Chêne pédonculé situées en Alsace, seront dans une situation de vulnérabilité face au stress hydrique et risquent un dépérissement généralisé.

Le Pin sylvestre, présent dans les Vosges, dans la forêt d'Haguenau et plus rare dans la forêt de la Hardt, se trouve dans des conditions actuelles favorables, le changement climatique attendu serait susceptible de le rendre vulnérable face au risque du stress hydrique. Ainsi, sa disparition de la plaine et du piémont des Vosges devient probable pour tous les scénarios envisagés.

Le réchauffement attendu allongera la période de végétation. Le développement des bourgeons et la floraison plus précoces exposeront les arbres aux risques de gel « tardif » au printemps, ainsi qu'à une maturité des graines avancées en fin de saison.

Impacts sur la production du bois: le hêtre, fortement exposé au risque du stress hydrique à l'horizon 2100, est susceptible de devenir rare dans la région. Or, il occupe actuellement la première place du volume de bois par essence (17 Mm³ sur 81). Le sapin, qui serait également en dépérissement vers la fin de ce siècle sur la majeure partie du territoire régional, occupe actuellement la deuxième place du volume total par essence (14 Mm³ sur 81). C'est donc l'équivalent de 40 % du volume aujourd'hui utilisé par la filière bois qui serait menacé à la fin du siècle par le manque d'eau. Toutefois, la réduction de la production globale des forêts françaises sera progressive sur plusieurs décennies même si des accidents tels qu'une sécheresse sévère et une tempête pourront accélérer ce processus de dégradation.

Par ailleurs, les températures plus élevées seront favorables à la propagation des parasites. Là encore, le stress hydrique fragilisera davantage les arbres en les rendant moins résistants face aux attaques des parasites.

Forces et faiblesses du territoire

- ♣ L'Alsace dispose d'une forêt essentiellement publique et peut donc en assurer une gestion durable plus facilement
- ♣ La filière bois est aujourd'hui en plein essor sous la poussée de la demande notamment en terme de boisénergie et de bois d'œuvre. Cet essor ne doit toutefois pas devenir une contrainte forte liée à une demande trop importante
- Le déficit hydrique sera un problème notamment dans le massif Vosgien
- Les principales essences aujourd'hui exploitées sont aussi celles qui sont le plus menacées en cas de difficulté d'accès à l'eau

Santé

1. État des lieux

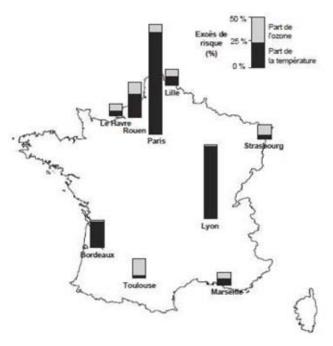
L'Alsace figure parmi les régions françaises dont la population est vieillissante. De ce fait, la santé des personnes âgées devient un enjeu important. Or, les événements climatiques extrêmes tels que les vagues de chaleur touchent en premier lieu cette catégorie de la population.

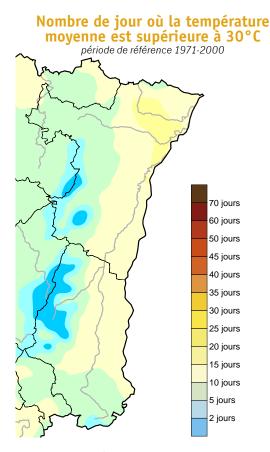
La topographie de la région Alsace structurée par le fossé rhénan encaissé entre les Vosges et la Forêt Noire, est à l'origine de la stagnation des masses d'air en période estivale et par conséquent, de la concentration de polluants dans l'air notamment dans les agglomérations.

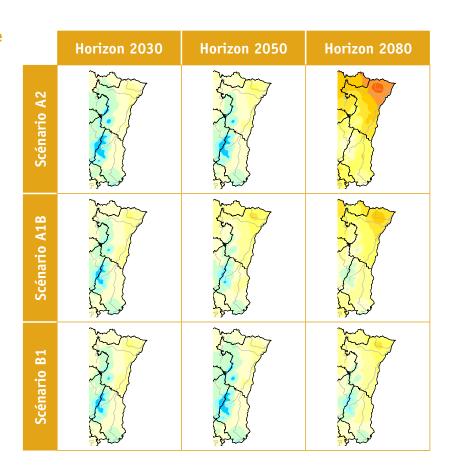
La pollution par l'ozone est un problème que la région rencontre chaque été mais dont l'ampleur dépend directement de l'ensoleillement. Il a été démontré, lors de l'épisode de canicule en 2003, qu'en Alsace, la vulnérabilité de la population urbaine au risque de la pollution par l'ozone est plus importante que celle liée à la chaleur.

Par ailleurs, on compte en France environ un quart de la population souffrant d'allergies aux pollens. Le pic de production des pollens est observé durant la phase de floraison.

2. Faits ou exemples particuliers basés sur les observations




Illustration XXIV: Excès de risque lié à l'ozone et à la température pour la période du 3 au 17 août 2003 (InVS)


Canicule 2003 : à Strasbourg, le taux de surmortalité enregistré a été de l'ordre de 51 % en août 2003. Il est à noter que Strasbourg présente la particularité d'avoir une part des décès liée à l'ozone plus importante que celle attribuable à la chaleur.

3. Perspectives climatiques

Les projections de Météo-France concernant le nombre de jours où la température est supérieure à 30 °C, amènent au constat d'une augmentation des épisodes de fortes chaleurs et plus particulièrement durant la seconde moitié du siècle et plutôt dans la moitié nord de la région.

4. Impacts régionaux

La mobilité accrue des populations et les échanges entre les différentes régions du globe sont le plus souvent à l'origine des transmissions d'agents pathogènes. Le climat plus doux en hiver et plus chaud en été favorisera certainement une émergence ou une réémergence de maladies infectieuses transmises par des parasites et des virus encore mal connus en Europe.

Les hivers doux seront favorables à la longévité des tiques et de leurs hôtes ainsi qu'à une augmentation de la durée de leur activité durant l'année. Leur tendance à remonter vers le Nord du pays est aujourd'hui déjà constatée et continuera de progresser.

L'augmentation de l'humidité liée à la hausse des précipitations annoncée pour les parties Nord et Nord-Est de la France, s'ajoutant au redoux général du climat, se traduira par la propagation des champignons, des moisissures et des bactéries.

L'augmentation du nombre de jours ensoleillés tout au long de l'année augmentera les comportements favorisant l'exposition au soleil. L'action cancérigène des rayons UV-B est bien connue par ces effets sur la peau mais également au travers des dangers pour les yeux.

L'amélioration des connaissances de la relation entre la pollution, la température et leurs parts respectives sur la mortalité ont pu être identifiées dans le taux de surmortalité enregistré au cours de l'été 2003. À Strasbourg, c'est la pollution par l'ozone qui a été la première cause de cette surmortalité. Les prochaines décennies, marquées au niveau régional par des périodes estivales de plus en plus chaudes sera donc favorable à l'augmentation de ce type de pic de pollution. L'ozone est par ailleurs un polluant atmosphérique résultant de réactions chimiques entre plusieurs polluants primaires et sur lequel il est aujourd'hui extrêmement difficile d'agir efficacement.

Par ailleurs, la généralisation de bâtiments (tant en construction neuve qu'en rénovation) très peu consommateurs d'énergie et très fortement isolés (« étanchéifiés ») doit s'accompagner d'une attention particulière aux systèmes, naturels ou non, de ventilation afin de garantir une qualité de l'air intérieur qui assure la santé et le bien-être des occupants et utilisateurs.

Les allergies aux pollens de bouleau, charme et aulne (de mars à avril) sont fréquentes dans le quart Nord-est de la France. La particularité des épisodes d'allergies au pollen réside dans leur avancée calendaire et dans leur durée de plus en plus longue. Par exemple, la saison du pollen de bouleau dans le secteur de Bâle, est aujourd'hui, plus précoce qu'il y a 25 ans. Cette tendance se poursuivra au cours de ce siècle.

En Alsace, le chauffage au bois est le premier responsable d'émissions en particules ultra-fines et HAPs (Hydrocarbures Aromatiques Polycycliques). Les émissions polluantes liées à cette source d'énergie sont directement dépendantes de l'ancienneté des appareils, de leur entretien et de leurs conditions d'utilisation. Le radoucissement des hivers envisagé pour l'ensemble des scénarios prospectifs pourrait permettre de réduire ces nuisances.

Forces et faiblesses du territoire

- + Les hivers moins rigoureux limiteront les impacts du froid sur la santé
- + Le poids des émissions liées au chauffage au bois diminuera avec le radoucissement des périodes hivernales
- L'apparition de nouvelles maladies aujourd'hui cantonnées dans des zones plus méridionales n'est pas à exclure et devra faire l'objet d'un suivi approfondi
- Les agglomérations seront fortement touchées par les épisodes de chaleur de plus en plus fréquents et par les pics de pollution à l'ozone dont l'action cumulée touchera essentiellement les populations les plus sensibles

Biodiversité

1. État des lieux

Le réchauffement observé depuis la fin du XXº siècle a déjà eu pour effet un avancement des cycles de développement de différentes espèces terrestres et aquatiques, de végétaux et d'animaux. Par conséquent, un allongement de la saison de végétation est également constaté. La période de photosynthèse des plantes est désormais plus importante en raison de l'augmentation de l'ensoleillement et de la hausse de la concentration de CO, dans l'atmosphère. La production de matière végétale est donc en augmentation et cela se traduit par une hauteur d'arbres plus importante, une quantité de graines et de fruits plus élevée mais également par une exposition accrue aux risques d'attaques de parasites et autres pathogènes car les végétaux consacrent davantage d'énergie à leur développement plutôt qu'à la capacité de résistance aux maladies.

Les réponses des différentes espèces au changement climatique dépendent de leurs caractéristiques spécifiques telles que les traits génétiques, mais également de leurs liens au sein de l'écosystème. Le premier impact direct du changement climatique se révèle au travers des modifications affectant le synchronisme des espèces (par exemple, entre les plantes au stade de floraison et les insectes pollinisateurs). Toutefois, le manque de connaissances, quant à ce type d'interactions notamment, limite toute estimation de l'évolution de la biodiversité et des écosystèmes à moyen et long termes.

Les changements observés dans les écosystèmes peuvent servir d'indicateurs de changements de l'environnement. Les perturbations sont soit liées aux effets du changement climatique, soit aux pluies acides, aux dépôts azotés, à la progression de la forêt sur les terres abandonnées par l'agriculture etc. Le réchauffement déjà constaté devrait avoir des impacts sur certaines espèces, notamment sur la végétation des zones de montagnes car il correspondrait au déplacement des isothermes d'environ 150 m en altitude en montagne contre 200 km en latitude en plaine mais les observations ne confirment pas encore ces hypothèses et laissent penser que les capacités d'adaptation des différentes espèces sont encore mal évaluées. Les études menées actuellement sur ces différents sujets se heurtent à la différenciation des effets des modifications de l'environnement liés au changement climatique d'une part et ceux liés à l'action de l'homme d'autre part.

2. Faits ou exemples particuliers basés sur les observations

Les observations actuelles concernent essentiellement les effets d'avancement des stades de développement des plantes. Par exemple, le début de la floraison du bouleau à Bâle est avancée d'environ 13 jours tandis que la fin ne survient que 9 jours plus tôt par rapport à 1982.

Pollen de bouleau à Bâle : début et fin de floraison 1982-2007

19 mai Début de floraison 29 a -----Fin de floraison 19 avril Droite de régression (début de floraison) 30 mars 20 mars Droite de régression

1994 Illustration XXV: Évolution des périodes de floraison du bouleau à Bâle

9661 8661 2000 2002

990 992

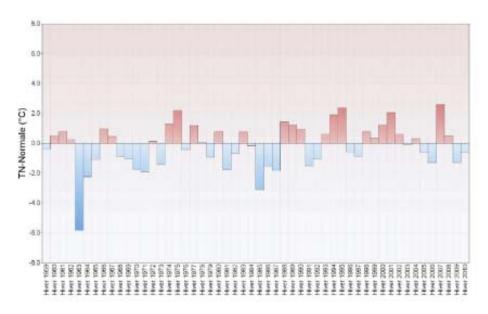
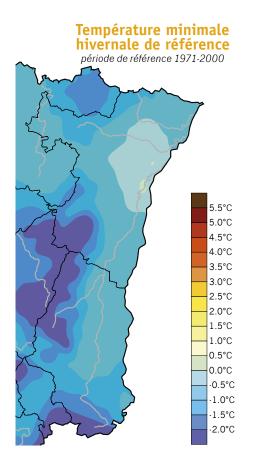
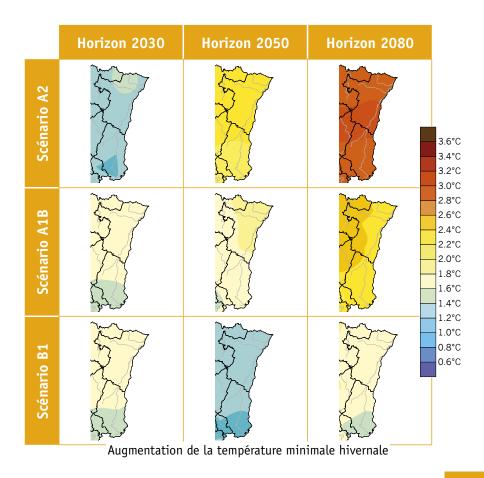
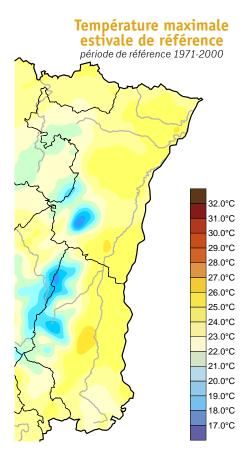
Concernant les espèces animales, le constat actuel fait par les associations et les fédérations alsaciennes pour la protection de la nature, étaye la poursuite de l'érosion de la biodiversité dans la région. Ainsi, le cortège de l'avifaune perd en effectifs. Cependant, on observe aussi des modifications de population parmi les odonates, probablement en raison de la progression des espèces d'affinité méridionale. De nouvelles espèces de papillons sont ainsi observées, majoritairement celles qui sont associées aux milieux fortement impactés par l'homme.

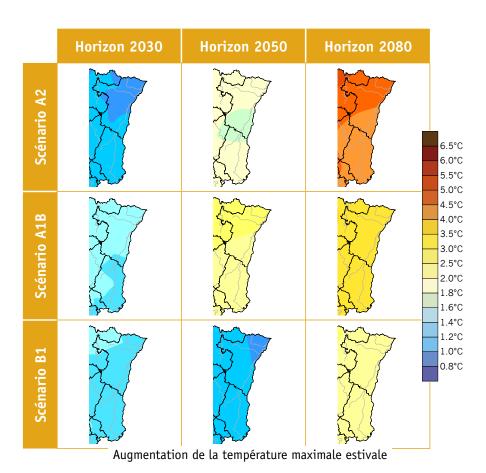
3. Perspectives climatiques

29 février

Parmi les facteurs ayant des impacts importants sur la biodiversité, les températures minimales et maximales font figurent d'indicateurs pertinents notamment dans la définition des aires de répartition des espèces.

Si à l'heure actuelle, l'augmentation des températures est déjà plus marquée en été qu'en hiver, cette tendance se poursuivra: à l'horizon 2080, quel que soit le scénario envisagé, les températures maximales en été augmenteront dans une fourchette de 2 à 5 °C et les minimales en hiver dans une fourchette de 1,4 à 3,2 °C.


Illustration XXVI: Écart à la moyenne saisonnière de référence 1971-2000 de l'indicateur de température minimale (hivers 1959 à 2010)

4. Impacts régionaux

Si les travaux actuellement menés laissent supposer qu'une hausse de température d'environ +1 °C entraînerait une augmentation de la biodiversité, le dépassement de ce seuil provoquerait ensuite la perte de près de 30 % des espèces présentes aujourd'hui dans la région. Le 4° rapport du GIEC annonce lui aussi de manière globale un risque d'extinction d'environ 20 à 30 % d'espèces végétales et animales dans des conditions de hausse de température de l'ordre de 1,5 à 2,5 °C. Avec la propagation des espèces des zones climatiques plus chaudes, la flore et la faune du climat tempéré seront menacées non seulement par les changements des conditions climatiques mais également par la réduction des aires de distributions

Les espèces particulièrement exigeantes en termes d'habitat et de conditions environnementales, souvent attachées à des zones géographiques restreintes, sont considérées comme les plus vulnérables au changement climatique. Les espèces actuellement menacées d'extinction, sont aussi vulnérables du fait de leurs populations déjà très réduites.

La prolifération des insectes ravageurs (chenilles, termites, araignées) aura un impact sur l'agriculture et les habitations, notamment sur les structures des maisons alsaciennes. Le frelon asiatique acclimaté depuis quelques années dans le sud-ouest de la France est susceptible d'arriver jusqu'en Alsace avec de lourdes conséquences sur l'apiculture régionale.

Les températures élevées au printemps et en été, favoriseront le stress hydrique et impacteront différemment les principales essences forestières en Alsace aux horizons 2100 (cf. Forêt).

Avec la diminution des précipitations estivales projetée pour la deuxième moitié du siècle ainsi que la hausse des températures en été les stocks d'eau des nappes vosgiennes peu profondes seront amoindris. Par conséquent, le risque de sécheresse pourrait toucher les tourbières d'altitude et entraîner des feux de tourbes comme lors de la sécheresse de 1976.

Forces et faiblesses du territoire

- ♣ Le cycle végétatif des plantes sera prolongé avec l'augmentation de la température et du taux de CO₂. Cela entraînera une hausse généralisée de la production de la biomasse végétale
- ♣ La remontée des forêts en altitude dégagera davantage d'espace cultivable au pied des Vosges sans porter préjudice aux formations forestières
- + Le déplacement possible pour certaines espèces augmentera la richesse biologique
- La prolifération des insectes aura des conséquences non-négligeables sur la santé des forêts
- La propagation des espèces invasives aura un impact sur le paysage régional ainsi que sur les capacités des espèces les plus vulnérables à s'adapter aux nouvelles conditions de leur environnement
- L'augmentation de la température menacera des espèces du climat boréal et tempéré jusqu'à leur disparition. Les espèces se trouvant à la limite inférieure de leur aire de distribution, ne retrouvant pas les conditions optimales de leurs habitats, risquent de disparaître (le lynx, l'épicéa et le sapin)
- La probabilité d'avoir des périodes de sécheresse plus prononcées accroît le risque de dégradation des zones humides et notamment des tourbières

Risques naturels

1. État des lieux

Les risques naturels liés à l'eau tels que les inondations causées par les crues et débordements des cours d'eau, l'érosion hydrique des sols par les coulées d'eaux boueuses et la submersion des surfaces par les remontées de nappes, sont des risques majeurs en Alsace. À cette liste, il convient de rajouter les phénomènes liés à la circulation atmosphérique (tempêtes et vents violents) et les phénomènes météorologiques tels que la grêle, la foudre etc.

Les crues du Rhin supérieur les plus importantes se produisent généralement en fin d'hiver/début de printemps, lorsque les pluies s'accompagnent d'une rapide fonte des neiges. Ces pics de débit ne sont pas comparables avec les hautes eaux en été. Actuellement, il est admis que le Rhin peut connaître des crues exceptionnelles en toute saison même si la probabilité reste faible quant aux mois d'octobre et de novembre. Bien que le tronçon alsacien du fleuve soit canalisé et aménagé par des installations de protection (digues, bassins de rétention, canaux de déversement), le risque résiduel existe toujours. En Alsace, on constate que sur la surface totale des zones inondables du Rhin supérieur qui est de l'ordre de 1840 km², 60 % sont des terres agricoles, 26 % concernent divers types d'occupation des sols dont les forêts, 9 % des surfaces urbanisées et seulement 5 % sont occupés par les implantations industrielles. Les zones inondables du Rhin supérieur concernent une population de près de 800000 personnes.

Parallèlement, plusieurs rivières peuvent aussi causer des inondations en Alsace. La Bruche qui prend sa source sur les hauteurs des Vosges et arrive sur la plaine d'Alsace au niveau de Molsheim à une allure quasi-torrentielle traverse ensuite des zones fortement urbanisées situées dans l'ancien lit majeur dédié naturellement aux inondations lors des crues exceptionnelles. Le Giessen, dont le fonctionnement hydraulique est comparable à la Bruche, rejoint l'III au niveau de Sélestat et si les biens de la zone d'activité sont protégés par les digues, les champs agricoles sont régulièrement inondés par les débordements de ce petit cours d'eau. La petite taille des bassins versants de la Doller, de la Thur, de la Lauch et de la Fecht sont favorables aux crues rapides et parfois dévastatrices. La Moder se caractérise par ses crues d'une vitesse de propagation relativement lente. À l'opposé, la Zorn est comparable à la Bruche, avec des inondations plus importantes sur des secteurs fortement urbanisés.

La nappe phréatique de la plaine d'Alsace, proche de la surface du sol, conditionne le risque lié aux remontées de nappe. Si dans les zones humides c'est un phénomène naturel et indispensable au bon fonctionnement des écosystèmes spécifiques aux milieux régulièrement inondés (les rieds, les forêts alluviales, les prairies inondables), ce type d'inondation cause des dommages aux activités et installations humaines. De plus, les remontées de nappe augmentent le risque de pollution des eaux souterraines par transferts de polluants d'origine agricole et/ou industrielle. Ainsi, le périmètre allant de Sélestat jusqu'au bord du Rhin, celui entre Colmar et le Rhin, la forêt d'Erstein et la zone entre Guebwiller et Mulhouse sont des zones de sensibilité élevée.

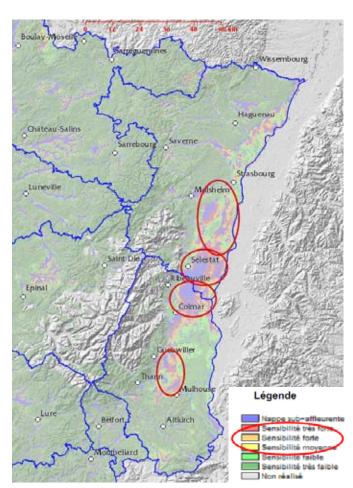


Illustration XXVII: Carte des zones sensible aux remontées de nappe

Le phénomène de coulée de boue est étroitement lié à la hausse des précipitations intenses en hiver et aux pluies diluviennes au printemps et en été qui favorisent l'érosion des sols. En Alsace, les secteurs vulnérables sont recouverts de sols meubles et occupés par des grandes cultures sur les bassins versants de la Bruche et de la Sauer ainsi que le Sundgau. Lorsque les espaces dédiés à l'agriculture intensive sont encore peu végétalisés au début du printemps, les averses de forte intensité provoquent très vite un engorgement des sols en même temps qu'un débordement des cours d'eau. L'excès d'eau tombé est évacué par ruissellement avec une importante charge de sédiment. Tout comme dans le cas des inondations, la vulnérabilité de la société humaine à ce type de phénomène augmente avec la progression des zones urbanisées sur les secteurs inondables au sein des bassins versants mais également avec l'accentuation du phénomène d'érosion des sols. L'étalement des zones urbanisées et l'imperméabilisation des sols qui l'accompagne accentuent d'autant plus ce risque.

2. Faits ou exemples particuliers basés sur les observations

Si les derniers résultats des recherches menées dans le domaine des sciences du climat et de l'atmosphère indiquent une tendance à l'augmentation des perturbations météorologiques de l'Atlantique (à l'origine des tempêtes) en raison du climat plus chaud et des températures plus élevées de la surface de l'océan, aucun lien direct n'a encore pu être établi avec l'augmentation de la fréquence et de l'intensité de ces phénomènes. Si les études prédisent que les conditions climatiques futures influenceront les directions des vents et intensifieront leurs forces, rien ne permet de prévoir où et quand ces phénomènes apparaîtront. En termes de dommages et de pertes causés par les tempêtes de décembre 1999, le premier secteur touché a été celui de la sylviculture.

En Alsace, suite à la tempête de 1999, les dégâts les plus sévères ont été constatés sur la plaine de Haguenau où les Vosges ne font plus écran (cf. Forêt).

3. Perspectives climatiques

Selon la définition du GIEC, les extrêmes sont les occurrences rares d'un phénomène en particulier. Une augmentation dans la fréquence d'un extrême, comme par exemple les jours caniculaires sur l'échelle des températures journalières, sera souvent accompagnée d'une diminution de l'extrême opposé tel que le nombre de jours de gel pour l'exemple cité.

Augmentation en moyenne

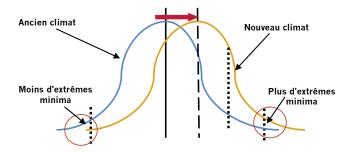
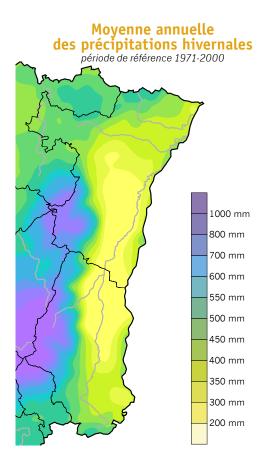
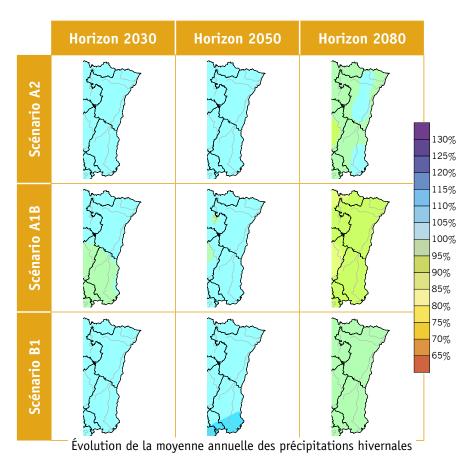




Illustration XXVIII: Visualisation de l'évolution de l'aléa influencé par le changement

Par rapport aux risques d'inondations, Météo-France a simulé l'évolution de la moyenne annuelle des précipitations hivernales. Si à l'horizon 2080, la tendance est globalement à la baisse, une augmentation des pluies hivernales reste globalement prévue d'ici 2050. Cette augmentation en lien avec les modifications dans le profil de débit du Rhin tendra à augmenter le risque d'inondation en fin d'hiver.

4. Impacts régionaux

Bien qu'en manque d'étude locale sur l'évolution du risque inondation dans le cadre du changement climatique, des résultats à plus grande échelle sont disponibles. Ainsi, l'étude européenne « Euro Wasser » a produit des projections concernant l'évolution des crues et des débits maximaux des cours d'eau en Europe. Pour l'Alsace, il apparaît que la période de débit maximal se déplacerait, pour le Rhin, du mois de juin vers les mois d'avril-mai. Cet avancement s'explique par la fonte des neiges sur les Alpes plus précoce ainsi que par l'augmentation des précipitations hivernales. Pour l'évolution des crues extrêmes, la modélisation de la crue centennale voit son débit augmenter de 10 à 25 % pour le Rhin au niveau de l'Alsace.

Si les épisodes de chaleur, et leur augmentation attendue, sont traités dans la partie relative à la santé, les épisodes de grand froid verront quant à eux leur fréquence baisser. En effet, la tendance observée lors des soixante dernières années va se confirmer et la baisse d'environ 20 % des jours de gel déjà constatée se poursuivra pour atteindre une fourchette comprise entre 35 et 50 %.

5. Forces et faiblesses du territoire

- + Une température minimale en hiver plus élevée diminue le risque sanitaire lié aux vagues de froid
- ◆ Les précipitations hivernales, à la hausse, seront nécessaires pour remplir les stocks des réservoirs afin de subvenir aux besoins en été
- **-** L'augmentation des épisodes de canicule entraînera risque sanitaire et une surmortalité accrus
- L'augmentation du débit hivernal des cours d'eau favorisera le risque d'inondation
- Une occurrence des coulées de boue plus importante liée à l'érosion des sols agricoles
- L'impact des tempêtes qui frappe la sylviculture, secteur économiquement important de la région
- La sécheresse favorisera le risque du retrait-gonflement des argiles
- L'intensification des averses augmentera les risques de mouvement de terrain

Urbanisme

1. État des lieux

La forte densité de population qui caractérise l'Alsace (200 à 216 hab/km²; France 111 hab/km²) résulte d'une très forte progression de la population depuis 1962. L'accroissement des villes moyennes s'est fait sous forme d'un doublement de la tâche urbaine en 40 ans. On observe en parallèle un accroissement du nombre de ménages (décohabitation, vieillissement) et ainsi des besoins de logements accrus.

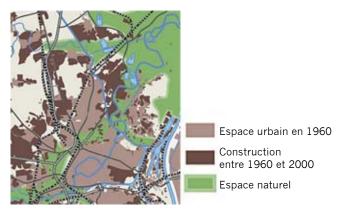


Illustration XXIX: Évolution de l'urbanisation à Strasbourg. Source ADEUS

Près de 50000 habitants supplémentaires sont envisagés en 2030 dans la Communauté Urbaine de Strasbourg, et la population alsacienne pourrait être d'environ 2 millions de personnes. Des besoins annuels de près de 10000 à 11000 logements supplémentaires d'ici 2030 sont à prévoir. Au rythme de construction actuel, cela signifie une consommation d'espace foncier d'environ 15000 ha qui doit être réinterrogée au regard de nouvelles exigences d'efficacité de l'utilisation des sols et de lutte contre l'étalement urbain.

2. Faits ou exemples particuliers basés sur les observations

Comme cela est évoqué au chapitre « risques naturels », le phénomène de coulée de boue est étroitement lié à la hausse des précipitations intenses en hiver et aux pluies diluviennes au printemps et en été qui favorisent l'érosion des sols. Il concerne essentiellement les communes rurales de piémont, le Sud de l'Alsace et également les communes de deuxième couronne de la Communauté Urbaine de Strasbourg. Il s'agit d'un phénomène qui s'amplifie et qui interroge directement les pratiques d'exploitation (vignes et cultures), et la pérennisation du couvert végétal.

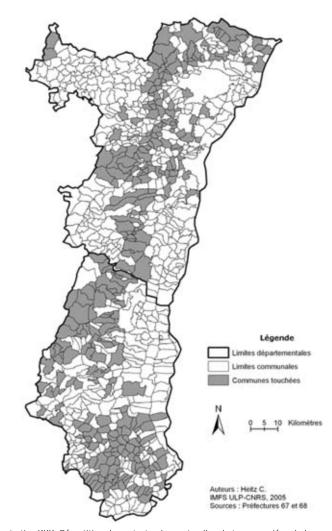
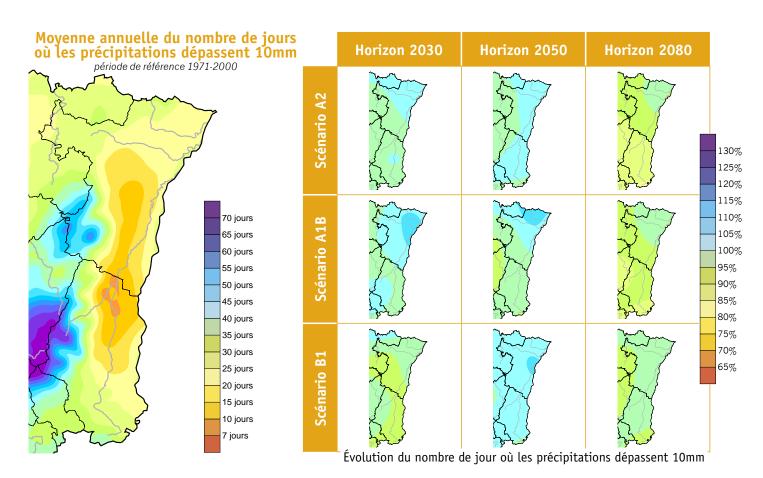


Illustration XXX: Répartition des catastrophes naturelles de type « coulées de boue associée à l'érosion des sols » en Alsace (Sources: Préfectures 67 et 68; Auteurs: Heitz, Henry, 2005)



3. Perspectives climatiques

L'urbanisme sera principalement touché par:

- La nécessaire lutte contre l'étalement urbain permettant de limiter les besoins en déplacements ainsi que les consommations d'énergies liés au chauffage;
- L'intensification des trames vertes et bleues dans les agglomérations qui devra accompagner la ville « compacte »;
- L'évolution des régimes de précipitation qui sera la cause de la mise en évidence des actuelles limites du système d'assainissement par exemple.

Les projections de Météo-France pour ce paramètre indiquent, quelque soit le scénario, une légère augmentation du phénomène à l'horizon 2050 avant une diminution globale prévue pour la fin du siècle.

4. Impacts régionaux

En lien avec les effets prévisibles sur la ressource en eau de la région, l'urbanisation existante dans les secteurs inondables des cours d'eau constitue une vulnérabilité qui augmentera avec les changements climatiques attendus dans l'espace du Rhin Supérieur. L'augmentation de la moyenne annuelle des précipitations, les hivers plus courts, plus humides et plus doux, rendent prévisibles des situations conflictuelles liées à un moindre stockage de l'eau sous forme de neige et à des modifications des écoulements. Face à ce risque, les enjeux sont à la fois humains et financiers.

Une autre conséquence liée à l'augmentation de la fréquence des épisodes de pluie extrême vient de la menace de pollution du milieu naturel par le fonctionnement du système d'assainis-sement. En effet, ce système aujourd'hui principalement unitaire déverse le trop-plein directement dans les cours d'eau lors des épisodes pluvieux de fréquence décennale. Ce risque se cumule en plus à la saturation des réseaux dans leur partie amont et aux drainages des composés polluants en surface. La capacité des cours d'eau à absorber les polluants reste limitée en raison de leur qualité déjà médiocre et de leur débit réduit.

En lien cette fois avec l'augmentation des épisodes de fortes chaleurs, il faut craindre que dans un contexte fortement urbanisé et en relation avec l'augmentation du nombre personnes vulnérables (vieillissement de la population), les impacts sanitaires soient de plus en plus importants. Les zones urbaines où la présence végétale est faible et où la systématisation des revêtements de sols très minéraux est de mise, sont des facteurs aggravants notamment dans le fossé rhénan où la ventilation naturelle est faible.

Forces et faiblesses du territoire

- ♣ Limiter l'étalement urbain est encore possible en intensifiant les fonctions urbaines pour lesquelles des marges de manœuvre sont encore disponibles
- Le réseau d'assainissement unitaire ne permet pas d'absorber les impacts de l'augmentation des pluies hivernales
- La densité de l'Alsace déjà importante accentue le rôle déterminant des choix effectué en matière d'urbanisme
- L'intensification des averses augmentera les risques de mouvement de terrain

Gouvernance

État des lieux et perspectives

Le changement climatique est un thème de travail récent pour l'État et les collectivités locales. Si les connaissances s'améliorent rapidement, les incertitudes quant aux modèles employés et aux hypothèses retenues ne permettent pas de fixer précisément les effets potentiels ni leurs ampleurs. Cependant, l'existence du phénomène, n'est plus soumise à débat et des manifestations locales commencent même à apparaître.

Le plan national d'adaptation au changement climatique s'est penché sur la question. Le rapport du groupe de travail sur la gouvernance souligne la complexité de l'exercice qui tient d'un côté de la diversité des acteurs et de leurs intérêts divers et parfois divergents; d'un autre côté, de l'importance de cohérence en matière de stratégie; et enfin, du fait que les actions soient adaptées aux potentiels locaux des territoires. Cette complexité exige une approche globale et intégrée du développement territorial.

Parce qu'elle est encore mal appréhendée, cette approche nécessite des apports en connaissance, en conseil, des consolidations en matière de formation et d'information. Et il faut commencer par une évolution des mentalités, avec une prise de conscience des enjeux et des vulnérabilités des territoires face au changement climatique. C'est en mettant en avant les conséquences des décisions prises par les acteurs que l'appropriation des enjeux liés à l'adaptation pourra se faire.

La difficulté réside dans les incertitudes avec lesquelles on évoque le changement climatique ainsi que dans l'appréhension du concept de « risque acceptable ». L'analyse de la vulnérabilité du territoire est donc l'outil susceptible de sensibiliser des acteurs malgré les prévisions floues du futur et des horizons lointains. La notion de résilience de la société humaine, totalement ignorée jusqu'à présent, commence, elle aussi à trouver un certain écho. Si depuis le début de l'apparition de la notion du risque, l'homme avait pour but de lutter contre les aléas, maintenant, la résilience définit ses capacités d'adaptation aux perturbations pour faire face et maintenir le fonctionnement de la société en fonction de modifications apportées à son environnement.

Le réchauffement climatique en cours, du fait de l'inertie du système global, rend les changements inévitables. C'est pourquoi les actions d'adaptation aux conséquences « prévisibles » sont nécessaires et viennent compléter celles d'atténuation, déjà engagées.

En Alsace, le réchauffement attendu pour la fin de ce siècle est beaucoup plus important que celui déjà observé au cours du siècle dernier. Selon le scénario A2, du GIEC, dit « pessimiste », et les simulations obtenues de dix modèles climatiques régionaux européens, la période caniculaire de l'été 2003 n'aura rien d'exceptionnelle et sera représentative d'un été « normal » de la fin du siècle. C'est dans le but de limiter l'ampleur des conséquences du changement climatique que les actions d'atténuation sont mises en place. Parallèlement à ces mesures d'atténuation, le but de l'adaptation est de limiter les aspects négatifs des impacts du réchauffement.

L'importance des rôles combinés des collectivités territoriales, des services déconcentrés de l'État mais également de l'ensemble des parties prenantes localement devient capitale non seulement dans la lutte contre le réchauffement climatique mais aussi et surtout dans la réussite de la mise en œuvre des mesures d'adaptation. Afin de se préparer dès à présent à limiter les impacts négatifs et à tirer des profits des effets positifs, c'est à l'échelle locale qu'il faut travailler pour garantir à la fois efficacité et pragmatisme. Les connaissances et les observations spécifiques à chaque territoire permettent de mieux cibler les secteurs et les enjeux prioritaires lors d'une analyse des vulnérabilités. Pour les secteurs qui demandent une vision à plus long terme, et impliquent des réalisations de longue durée (par exemple, les bâtiments et les réseaux de transport), l'État doit assurer son rôle de pilote de la politique d'adaptation nationale en mettant à disposition les éléments décisionnels pour que les collectivités puissent bénéficier d'une vision plus globale de la problématique.

Identifier des indicateurs territoriaux pertinents pour caractériser la vulnérabilité des territoires au changement climatique est une priorité. Il s'agit de mettre en avant les paramètres territoriaux qui sont susceptibles d'influencer la fréquence et la gravité des impacts attendus. Les indicateurs économiques sont, de toute évidence, les plus utilisés à l'échelle des territoires et servent déjà d'aide à la décision. Sur la base de l'analyse des vulnérabilités du secteur, ces indicateurs devront donc être complétés pour garantir une prise en compte plus globale des effets du changement climatique et des politiques d'adaptation et d'atténuation qui sont menées.

Le défi de la gouvernance territoriale au cours de ce siècle sera dans la recherche d'une nouvelle articulation entre les secteurs d'activités qui concentrent les forces et l'attractivité du territoire. De nouvelles règles de gestion des ressources disponibles devront être mises en place pour d'éviter les conflits d'intérêts. Le développement de nouvelles capacités d'adaptation aux risques et situations critiques devra aussi être recherché. Enfin, les questions délicates telles que la cohésion sociale, les inégalités écologiques, la participation démocratique des citoyens, risquent de devenir encore plus importantes sous un climat plus chaud.

Climat Air Énergie Alsace

Inventaire des principales émissions des polluants atmosphériques

Méthodologie

La méthodologie utilisée pour l'inventaire des émissions des polluants atmosphériques est la même que celle utilisée pour les gaz à effet de serre. Cet inventaire porte sur les principaux polluants atmosphériques comptabilisés au niveau régional:

- Les gaz acidifiants et les précurseurs de l'ozone (O₃)
 - Dioxyde de soufre (SO₂)
 - Oxydes d'azote (NO_x)
 - Monoxyde de carbone (CO)
 - Composés organiques volatils non méthaniques (COVNM)
 - Ammoniac (NH₃)
- Les particules de diamètre moyen 10 μm et 2,5 μm (PM10 et PM2,5)
- Les métaux lourds (le plomb Pb, l'arsenic As, le nickel Ni, le cadmium Cd et le mercure Hg)
- Les composés organiques cancérigènes(1)
 - Benzène (C₆H₆)
 - Benzo(a)pyrène B(a)P.

Comme pour les gaz à effet de serre, cet inventaire est basé sur le format « SECTEN » suivant six secteurs de sources qui sont par la suite déclinés en sous-secteur:

- Transformation d'énergie
- Résidentiel/Tertiaire
- Industrie manufacturière
- Transport routier
- Autres transports
- Agriculture/Sylviculture

1. Estimation de l'évolution des émissions

1.1. Gaz acidifiants et précurseurs de l'ozone

1.1.1. Bilan des émissions en 2007

Le tableau suivant présente pour l'année 2007, la répartition des émissions (en tonnes) pour chaque polluant en fonction des différents secteurs émetteurs.

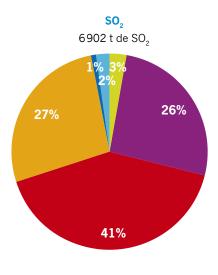

Secteur	SO ₂	NO _x	со	COVNM	NH ₃
Agriculture/ sylviculture	228	6516	6649	21 756	6526
Industrie	1823	6673	6218	10467	797
Transformation énergie	2756	1088	271	1 187	1
Résidentiel tertiaire	1881	3202	35 178	9927	91
Autres transports	94	1 421	1285	236	0
Transport routier	120	20164	27461	5 182	243
Total	6902	39066	77062	48756	7659

Tableau 1: Émissions sectorielles des gaz acidifiants et précurseurs de l'ozone en Alsace pour l'année 2007 (en tonnes de polluant émis à l'atmosphère). Source ASPA

⁽¹) Les PCB, dioxines et furannes ne sont pas traités dans ce rapport mais les données sont présentées dans le rapport complet de l'ASPA en annexe

L'illustration suivante présente cette même répartition de manière graphique.

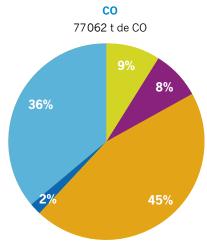
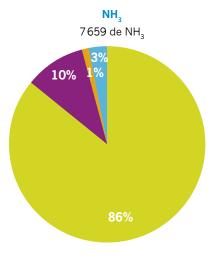
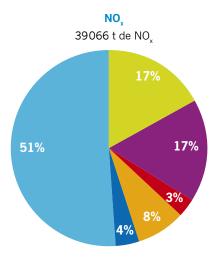
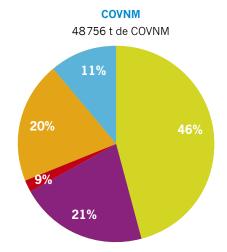





Illustration I: Répartitions sectorielles des émissions de SO_2 , NO_{x^*} , CO, COVNM et NH_3 sur la région Alsace en 2007. Source ASPA Inventaire A2007 $V2006\ V2$

1.1.2. Le dioxyde de soufre (SO₂)

Les émissions en Alsace s'élèvent, en 2007, à 6900 tonnes, représentant 3,8 kg de ${\rm SO_2}$ émis par habitant contre 7,0 kg/habitant au niveau national. Le secteur de la transformation d'énergie dont la raffinerie de Reichstett avec près de 40 % des émissions et celui de l'industrie sont à l'origine des 2/3 des émissions (respectivement 41 % et 26 % des émissions comme le montre l'Illustration l). Le résidentiel/tertiaire vient en troisième position avec près de 27 % des émissions.

Ces émissions ont enregistré une baisse de près de 50 % entre 2000 et 2007 (illustration II) avec une décroissance régulière. Cette évolution est en lien notamment avec la substitution des combustibles soufrés (fiouls et charbons...) par le gaz naturel et l'électricité, ainsi qu'à une baisse des teneurs en soufre dans les combustibles et dans une moindre mesure aux économies d'énergie.

L'industrie est le secteur qui a enregistré la plus forte baisse (près de 60 % contre 40 % en moyenne pour les autres) en relation avec le raffinage de pétroles de moins en moins soufrés à la raffinerie de Reichstett.

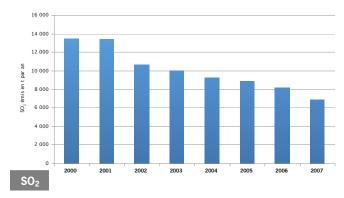


Illustration II: Évolution des émissions de ${\rm SO_2}$ en Alsace entre 2000 et 2007. Source ASPA

1.1.3. Les oxydes d'azote (NO)

En 2007, les émissions s'élèvent à 39000 tonnes, soit 21,4 kg/habitant (valeur proche de la moyenne française). Comme au niveau national, les transports routiers représentent le premier émetteur avec 51 % des émissions. Les secteurs de l'agriculture et de l'industrie arrivent ensuite à parts égales (17 % chacun). Le secteur résidentiel/tertiaire représente moins de 10 % du total.

Cependant, dans les zones sensibles où le trafic est important (grandes agglomérations et vallées des Vosges), le secteur du transport routier peut représenter alors jusqu'à plus de 60 % des émissions.

Les rejets ont globalement diminué de 18 % entre 2000 et 2007 (illustration III). Cette baisse régulière est ressentie depuis les années 2002 et 2003 après une phase de stabilisation. Elle est essentiellement attribuable à l'amélioration du parc routier et plus particulièrement à la sévérisation progressive des normes Euro applicables aux véhicules. En revanche, si cette baisse est visible au niveau régional, la tendance est beaucoup moins marquée au sein des agglomérations.

On notera enfin que l'industrie a réduit ses émissions dans les mêmes proportions que le transport routier soit environ 20 %.

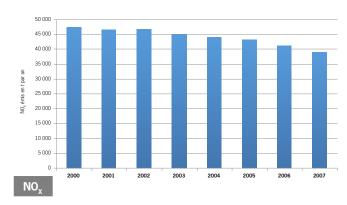


Illustration III: Évolution des émissions de NO_x en Alsace entre 2000 et 2007. Source ASPA

1.1.4. Monoxyde de carbone (CO)

Les émissions sont de 77 000 tonnes environ en 2007, soit 42,2 kg par Alsacien (75,6 kg/hab au niveau national). Alors que les rejets nationaux sont dominés par trois secteurs (résidentiel, industrie et transports routiers), en Alsace les principaux secteurs sont le résidentiel/tertiaire (45 %) et les transports routiers (36 %) (illustration I). À la différence du niveau national, l'industrie locale est peu émettrice du fait de la faible présence de la métallurgie des métaux non ferreux, l'industrie contribue ainsi à moins de 10 % des émissions, soit autant que l'agriculture.

Les émissions ont globalement diminué depuis les années 2000 (illustration IV). C'est le secteur du transport routier avec l'amélioration du parc roulant (véhicules de plus en plus catalysés) qui en est à l'origine. Le secteur du résidentiel/tertiaire a connu en revanche une évolution plus chaotique mais la tendance reste tout de même à la baisse.

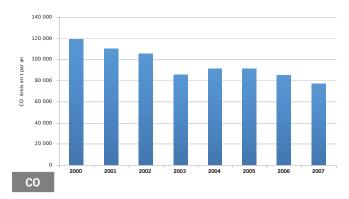


Illustration IV: Évolution des émissions de CO en Alsace entre 2000 et 2007. Source ASPA

1.1.5. Composés organiques volatils non méthaniques (COVNM)

En 2007, les émissions s'élèvent à près de 49000 tonnes, soit près de 26,7 kg/Alsacien. Ces composés sont émis par diverses sources: l'agriculture/sylviculture et l'industrie tout d'abord (respectivement 46 % et 21 %), mais également le résidentiel/tertiaire (20 %) et les transports routiers (11 %).

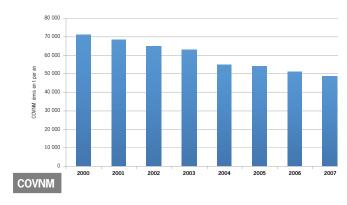


Illustration V: Évolution des émissions de COVNM en Alsace entre 2000 et 2007. Source ASPA

Depuis 2000, les émissions sont en continuelle diminution (illustration V) avec une baisse du secteur industriel de près de $50\,\%$ sur cette période et une stagnation des rejets de l'agriculture et du résidentiel/tertiaire.

1.1.6. L'ammoniac (NH3)

En 2007, les émissions sont évaluées sur le territoire alsacien à environ 7600 tonnes (illustration I), soit 4,2 kg/habitant (11,9 kg/habitant au niveau national). L'agriculture avec près de 86 % des émissions est la principale activité émettrice en Alsace. Le secteur de l'industrie contribue également aux émissions (10 %). Dans le

reste de la France, les rejets sont presque exclusivement liés à l'agriculture et plus particulièrement à l'élevage.

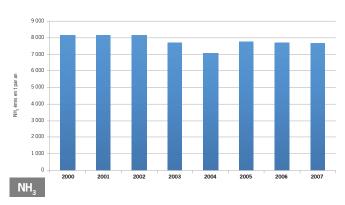


Illustration VI: Évolution des émissions de $\mathrm{NH_3}$ en Alsace entre 2000 et 2007. Source ASPA

Compte tenu de la part importante du secteur agricole, les évolutions constatées entre les années 2000 et 2007 sont à rapprocher des évolutions dans ce secteur (illustration VI). L'augmentation des émissions observée entre 2004 et 2005, est liée au secteur industriel (traitement des déchets). Alors que les émissions dues aux transports routiers ont diminué de plus de 20 %.

1.2. Les particules de diamètre moyen 10 μm et 2,5 μm (PM10 et PM2,5)

1.2.1. Bilan des émissions en 2007

Les émissions de particules de diamètre inférieur à $10 \, \mu m$ (PM10) s'élèvent, en 2007, à plus de 9400 tonnes. Cela représente, en Alsace, $5,2 \, kg$ par habitant contre $7,4 \, kg$ au niveau national.

Ces particules sont des polluants multisources: le résidentiel/tertiaire (combustion du bois) et l'agriculture (moissons, labours, élevages) sont les premiers secteurs émetteurs avec respectivement 31 % chacun des émissions, devant les transports routiers (21 %) et l'industrie (14 %) (illustration VII).

Cette répartition est différente au niveau national où l'industrie se place en première position avec l'agriculture, devant le résidentiel et les transports routiers. C'est cette différence des émissions industrielles qui explique l'écart constaté entre les émissions par habitant.

Les émissions de particules de diamètre inférieur à 2,5 µm (PM2,5) sont d'environ 5 700 tonnes, soit 3,1 kg/habitant (au niveau national cette valeur est de 4,7 kg/habitant). Contribuant à la moitié des émissions, le secteur résidentiel par la combustion du bois essentiellement est le principal émetteur Avec 1/4 des émissions, les transports routiers sont également fortement émetteurs.

A contrario, au niveau national la part du résidentiel/tertiaire est

plus faible et les secteurs industriel et agricole sont plus importants que les transports routiers. À noter que les PM10 émises par le secteur résidentiel sont en grande partie de diamètre inférieur à 2,5 µm alors que pour l'agriculture, les PM2,5 ne sont que peu représentées parmi les émissions de particules PM10.

Le tableau suivant présente pour l'année 2007 en fonction des différents secteurs, les émissions en tonnes de PM10 et PM2,5.

Secteur	PM10	PM2,5
Agriculture/sylviculture	2925	568
Industrie	1 315	571
Transformation énergie	89	59
Résidentiel tertiaire	2964	2886
Autres transports	172	119
Transport routier	1958	1 467
Total	9423	5669

Tableau 2: Émissions sectorielles des particules en Alsace pour l'année 2007 (en tonnes émises à l'atmosphère). Source ASPA

L'illustration suivante présente cette même répartition de manière graphique :

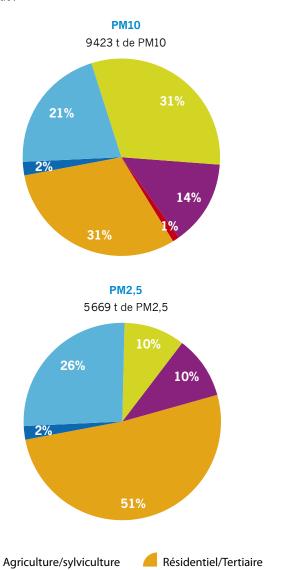


Illustration VII: Répartitions sectorielles des émissions de particules sur la région Alsace en 2007. Source ASPA Inventaire A2007 V2006 V2

Autres transports

Transport routier

Industrie manufacturière

Transformation énergie

1.1.2. Évolution des émissions

Que l'on considère les PM10 ou bien les PM2,5, l'évolution des émissions entre 2000 et 2007 est semblable: globalement à la baisse. Toutefois cette diminution est légèrement plus importante pour les PM2,5 (23 % de baisse pour les PM2,5 contre 17 % pour les PM10). Une première phase de diminution a eu lieu entre 2000 et 2003, puis les émissions annuelles ont stagné entre 2004 et 2006. Enfin depuis 2007, les niveaux d'émissions sont à nouveau à la baisse entrainant ainsi une réduction globale sur la période 2000-2007 pour l'ensemble des émetteurs.

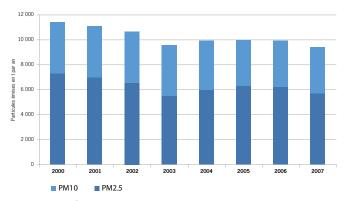


Illustration VIII: Évolution des émissions de particules en Alsace entre 2000 et 2007. Source ASPA

Les variations observées sont similaires, avec une tendance à la baisse légèrement plus importante pour les plus petites particules (PM2,5).

Concernant les PM10, le résidentiel/tertiaire, les transports routiers et l'industrie enregistrent une baisse respective d'environ 20 % depuis 2000. Pour ce qui est des PM2,5, les émissions dues aux transports routiers et au secteur industriel, en baisse depuis 2000, ont diminué de 25 % environ en 2007. Cette baisse est légèrement moins importante pour le secteur résidentiel (•20 %) alors que l'agriculture enregistre une diminution de 12 %.

1.3. Les métaux lourds (le plomb Pb, l'arsenic As, le nickel Ni, le cadmium Cd et le mercure Hg)

1.3.1. Bilan des émissions en 2007

Le tableau suivant présente pour l'année 2007, la répartition des émissions (en kg) pour chaque polluant en fonction des différents secteurs émetteurs.

Secteur	Pb	As	Ni	Cd	Hg
Agriculture/ sylviculture	13	3	29	2	1
Industrie	461	81	1302	49	160
Transformation énergie	79	56	1584	15	133
Résidentiel tertiaire	843	101	127	29	16
Autres transports	269	0	2	< 1	0
Transport routier	0	0	83	12	0
Total	1664	240	3126	107	311

Tableau 3 : Émissions sectorielles des métaux lourds en Alsace pour l'année 2007 (en kilos de polluant émis à l'atmosphère). Source ASPA

L'illustration suivante présente cette même répartition mais de manière graphique.

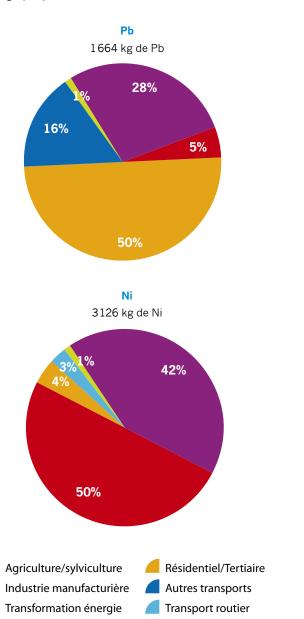
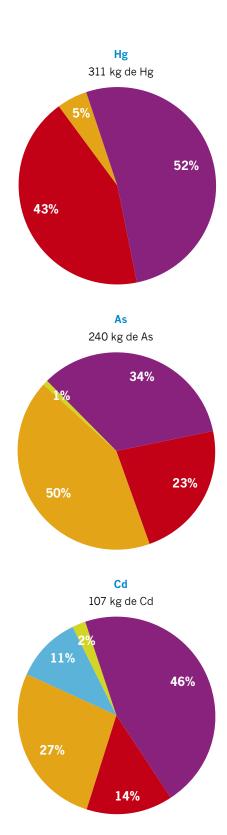



Illustration IX: Répartitions sectorielles des émissions de métaux lourds sur la région Alsace en 2007. Source ASPA Inventaire A2007 V2006 V2

Le plomb (Pb)

Les émissions s'élèvent à environ 1 660 kg en 2007. En France, les rejets atmosphériques sont largement associés au secteur industriel (75 % environ), le résidentiel ne représentant qu'un quart des émissions. En Alsace, le secteur résidentiel/tertiaire est le premier émetteur avec près de 50 % des émissions (illustration IX). L'industrie et les transports non routiers (l'aviation légère utilise encore de l'essence plombée) contribuent respectivement à 28 % et 16 % des émissions.

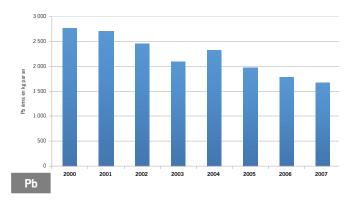


Illustration X: Évolution des émissions de plomb en Alsace entre 2000 et 2007.

Les rejets sont globalement en diminution depuis l'année 2000 (illustration X). Cette tendance est valable quel que soit le secteur d'activité mais des différences entre secteurs peuvent être importantes. En effet, le secteur du traitement des déchets enregistre une baisse d'environ 75 % suivie par le secteur industriel avec environ 60 %. Le secteur résidentiel qui représente près de 50 % des émissions en 2007 a de son côté baissé d'environ 20 % ainsi que les transports non routiers et la production distribution d'énergie.

L'arsenic (As)

En 2007, les émissions sont de 240 kg. L'arsenic est émis par diverses sources: le résidentiel/tertiaire tout d'abord (42 % des émissions sont liées à la consommation de fioul et de bois), mais également la transformation de l'énergie et l'industrie (illustration IX). Ces mêmes sources se retrouvent dans le profil des émissions nationales avec cependant une part nettement plus importante pour des activités industrielles peu représentées en Alsace.

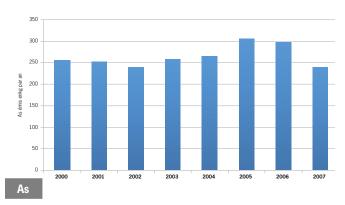


Illustration XI: Évolution des émissions d'arsenic en Alsace entre 2000 et 2007.

Les émissions sont restées assez stables entre 2000 et 2004. Les années 2005 et 2006 se sont en revanche accompagnées d'une forte hausse avant de revenir en 2007 à un niveau inférieur à celui de 2000 (illustration XI).

C'est le sous-secteur du traitement des déchets qui explique cette variation qui est due à la mise en place de l'usine d'incinération des ordures ménagères de Sausheim. Les émissions entre 2000 et 2007 sont en baisse pour le résidentiel (-20 % environ) et la transformation de l'énergie (-30 % environ). Les émissions du secteur industriel subissent depuis 2000 des variations annuelles relativement importantes mais n'ont au final, en 2007, pas évolué sur la période.

Le nickel (Ni)

Les rejets sont environ de 3130 kg pour l'année 2007. Les émissions sont dominées par deux secteurs: la transformation de l'énergie et l'industrie (contribuant respectivement à $50\,\%$ et $42\,\%$ des émissions) du fait d'une forte utilisation du fioul lourd (illustration IX).

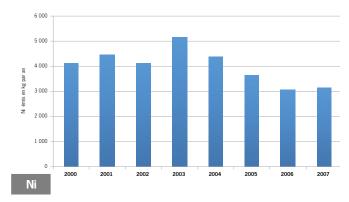


Illustration XII: Évolution des émissions de nickel en Alsace entre 2000 et 2007. Source ASPA

Les émissions annuelles enregistrent une baisse d'environ $25\,\%$ entre 2000 et 2007, en lien avec une diminution de la consommation de fioul lourd (illustration XII). En effet, les rejets atmosphériques de nickel proviennent principalement de l'utilisation de ce combustible.

La transformation de l'énergie et de l'industrie (92 % des émissions) voient leurs émissions respectives diminuer entre 2000 et 2007 de 30 % environ pour la transformation de l'énergie, et de près de 10 % pour l'industrie.

À noter que la hausse importante des émissions en 2003 est associée au secteur du traitement des déchets, et plus particulièrement à l'UIOM de Sausheim.

Le cadmium (Cd)

Les émissions s'élèvent, en 2007, à près de 110 kg. Le cadmium est un polluant émis par un grand nombre de secteurs consommateur de combustibles fossiles (fioul ou charbon) ou de bois, mais aussi par l'incinération des déchets. Les émissions régionales se repartissent donc essentiellement entre l'industrie (46 %), le résidentiel/tertiaire (27 %), la transformation de l'énergie (14 %), les transports routiers (11 %).

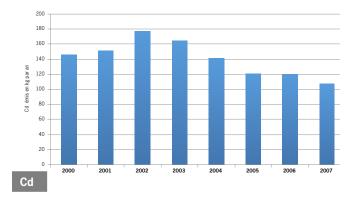


Illustration XIII: Évolution des émissions de cadmium en Alsace entre 2000 et 2007.

Après une hausse relativement importante en 2002, les émissions sont depuis lors à la baisse. En 2007, les rejets sont environ de 25 % inférieurs à ceux de l'année 2000 (illustration XIII). Les variations sont liées principalement au secteur du traitement des déchets et plus particulièrement aux usines d'incinération d'ordures ménagères. Les émissions des autres secteurs sont en revanche assez variables: à la baisse pour le résidentiel/tertiaire et la transformation de l'énergie (-25 % environ entre 2000 et 2007), alors que pour le secteur des transports routiers, les rejets en 2007 sont de 5 % supérieurs à ceux de l'année 2000.

Le mercure (Hg)

Les rejets sont environ de 310 kg pour l'année 2007. Ils proviennent en grande partie (95 %) des secteurs de l'industrie (industrie du chlore) et de la transformation de l'énergie (raffinage). Les activités du traitement des déchets, en particulier l'incinération, sont également des sources non négligeables (illustration IX). Ces principaux émetteurs suivent la répartition nationale.

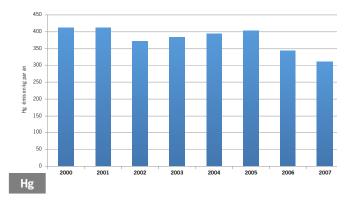
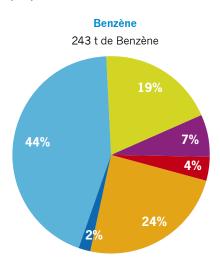


Illustration XIV: Évolution des émissions de mercure en Alsace entre 2000 et 2007.

L'évolution des émissions entre 2000 et 2007 est caractérisée par quelques fluctuations (illustration XIV). Depuis 2006, les rejets suivent une tendance à la baisse atteignant, en 2007, un niveau inférieur de 25 % aux émissions de l'année 2000. Les variations observées sont en grande partie fonction de l'activité du secteur industriel (industrie du chlore) et de la transformation de l'énergie (raffinage). Ces secteurs voient une baisse par rapport à 2000 (-14 % pour l'industrie et -30 % pour la production d'énergie). Il faut aussi noter que près de 90 % des émissions industrielles sont le fait d'une seule installation à Thann. Le traitement des déchets (en particulier l'incinération) impacte également l'évolution des émissions par la forte augmentation observée en 2005.

1.4. Les composés organiques cancérogènes


1.4.1. Bilan des émissions en 2007

Le tableau suivant présente pour l'année 2007, la répartition des émissions (en kg) pour chaque polluant visé en fonction des différents secteurs émetteurs.

Secteur	Benzène C6H6	Benzo(a) pyrène BaP
Agriculture/sylviculture	45090	1,5
Industrie	17 247	3
Transformation énergie	8563	0,3
Résidentiel tertiaire	58576	616,3
Autres transports	5975	0,7
Transport routier	107 131	19,4
Total	242581	641,2

Tableau 4: Émissions sectorielles des composés organiques cancérogènes en Alsace pour l'année 2007 (en kilos de polluant émis à l'atmosphère). Source ASPA

L'illustration suivante présente cette même répartition mais de manière graphique.

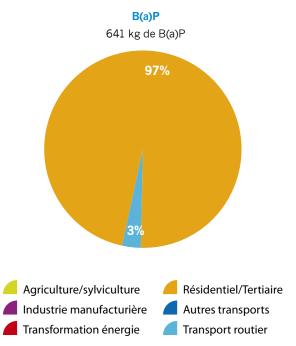


Illustration XV: Répartitions sectorielles des émissions de composés organiques cancérogènes sur la région Alsace en 2007. Source ASPA Inventaire A2007 V2006 V2

Le benzène (C₆H₆)

Les rejets de benzène s'élèvent, en 2007, à plus de 240 tonnes. Avec 44 % des émissions, les transports routiers sont les premiers émetteurs, devant le secteur résidentiel/tertiaire à cause de la combustion de biomasse (24 %) et l'agriculture à cause des engins mobiles (19 %) (Illustration XV).



Illustration XVI: Évolution des émissions de benzène en Alsace entre 2000 et 2007. Source ASPA

Les émissions sont en constante diminution depuis 2000 (illustration XVI). En 2007, une baisse de plus de 45 % est enregistrée par rapport à 2000. L'évolution constatée est due en grande partie aux transports routiers, qui ont diminué de 65 % entre 2000 et 2007 par une diminution du taux de benzène dans les essences et surtout la diésélisation du parc automobile... Les émissions du résidentiel/tertiaire et de l'agriculture ont peu évolué depuis 2000.

Le benzo(a) pyrène B(a) P

En 2007, les émissions sont d'environ 640 kg. Elles sont liées à la consommation de bois comme moyen de chauffage. En effet, les rejets proviennent presque exclusivement (97 %) du secteur résidentiel/tertiaire dont la combustion de bois (Illustration XV).

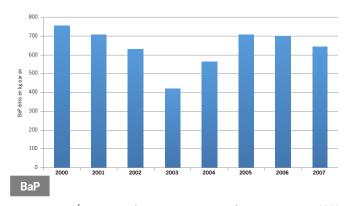


Illustration XVII: Évolution des émissions de benzo(a)pyrène en Alsace entre 2000 et 2007. Source ASPA

Les émissions ont diminué de 15 % entre 2000 et 2007 avec toutefois des variations importantes. L'évolution est surtout caractérisée par le niveau le plus bas enregistré en 2003 (-45 % par rapport à 2000). Ensuite, après une hausse entre 2003 et 2005, les émissions enregistrent à nouveau une baisse.

L'évolution globale est liée aux variations observées dans le secteur résidentiel/tertiaire fonction de la consommation en bois énergie. Globalement, les émissions de gaz impliqués dans les phénomènes d'acidification et de photochimie ont diminué entre 2000 et 2007 avec une forte baisse pour le dioxyde de soufre et le monoxyde de carbone, plus modéré pour les oxydes d'azote et l'ammoniac.

Les émissions de particules baissent depuis 2000, d'environ 20 % pour les secteurs du résidentiel/tertiaire, de l'industrie et du transport routier et de 10 % pour l'agriculture.

Les émissions de benzène ont fortement diminué depuis 2000 (plus de 40 %). Cette baisse est principalement liée au transport routier. Les émissions de B(a)P sont fortement liées à la consommation de biomasse dans le secteur résidentiel. Une légère diminution entre 2000 et 2007, est constatée.

Les émissions de métaux lourds sont dans la plupart des cas largement tributaires de l'activité industrielle, des énergies utilisées et du traitement des déchets. Leurs variations peuvent être importantes d'une année à l'autre. Mis à part l'arsenic dont les émissions sont quasi constantes depuis 2000, les émissions des différents métaux lourds présentent une tendance à la baisse.

Évaluation de la qualité de l'air

1. Enjeux de qualité de l'air

1.1 Réduction des concentrations en particules PM2,5

En lien avec les enjeux sanitaires, la loi de programmation relative à la mise en œuvre du Grenelle de l'environnement a retenu l'adoption d'un « plan particules ». L'objectif de ce plan qui décline les engagements 149 et 151 du Grenelle est de réduire les concentrations dans l'air de PM2,5 de 30 % entre 2010 et 2015. Il vise également à réduire les émissions d'oxydes d'azote (NOx) et d'ammoniac (NH3) précurseur de PM10 et concerne tous les secteurs d'émissions de ces polluants atmosphériques: le résidentiel/tertiaire, l'industrie, les transports et l'agriculture.

Parallèlement à cette réduction, tout doit être mis en œuvre pour ne pas dépasser la valeur limite annuelle pour les PM10 (40 μ g/m³) et la valeur limite journalière PM10 (50 μ g/m³ à ne pas dépasser 35 jours dans l'année).

En Alsace, les concentrations annuelles de PM2,5 dans les agglomérations de Strasbourg et de Mulhouse, actuellement de $19\cdot20~\mu g/m^3$, devront diminuer de 30~% pour atteindre à $13\cdot14~\mu g/m^3$ à l'horizon 2015 bien en deçà de la valeur limite 2015 fixée à $25~\mu g/m^3$.

1.2 Autres polluants prioritaires

La fiche 2 du Plan National Santé Environnement 2 (décliné localement en Plan Régional Santé Environnement 2) vise à réduire de 30 % (entre 2007 et 2013) les rejets dans l'air de 6 substances toxiques jugées prioritaires: le benzène, les HAP (hydrocarbures aromatiques polycycliques), l'arsenic, le mercure, les dioxines et le PCB (polychlorobiphényle).

	Émissions 2000	Émissions 2007	Tendance 2000-2007	Objectif 2013
Benzène	452 t	243 t	<i>א</i> ר	170 t
HAP Dont B(a)P	12,9 t 0,76 t	11,4 t 0,64 t	k K	7,95 t 0,52 t
Arsenic	0,26 t	0,24 t	\rightarrow	0,17 t
Mercure	0,41 t	0,31 t	Ŕ	0,22 t
Dioxines	18,2 g	5,7 g	<i>א</i> ר	4,0 g
PCB	0,04 t	0,04 t	→	0,03 t

Tableau 1: Émissions des 6 substances prioritaires en Alsace en 2000 et 2007 (inventaire ASPA année référence 2000-version 2006-v3 et année référence 2007-version 2006-v2) ainsi que les objectifs 2013.

Toutefois, le Groupe de travail sur l'exposition responsable de pathologie à fort impact sur la santé du PRSE2 (Plan Régional de Santé Environnement) a validé que:

- Les niveaux de benzène (notamment en proximité trafic et industriel) restent très inférieurs à la valeur limite annuelle (5 μg/m³) et ont fortement diminué entre 2003 et 2010 dans les agglomérations alsaciennes (-25 à -30 %).
- L'arsenic n'est pas un enjeu de qualité de l'air en Alsace étant donné que les mesures à proximité d'émetteurs potentiels (usines d'incinération d'ordures ménagère, indsutries...) restent très en deçà de la valeur cible à respecter en 2013, fixée à 6 ng/m³ en moyenne annuelle.
- Les émissions de mercure sont globalement faibles. En revanche, les densités d'émissions sont variables et peuvent être importantes en proximité industrielle en particulier dans la vallée de la Thur (voir partie 2.2.1).
- L'évaluation des niveaux des HAP dans l'atmosphère depuis 2008 et notamment du benzo(a)pyrène (pour lequel il existe une norme de qualité de l'air à respecter d'ici 2013) n'a pas montré de dépassement de la valeur cible (1 ng/m³ en moyenne annuelle).

1.3 Élément d'évaluation préliminaire en proximité de trafic

L'Alsace est une importante région logistique, au cœur de la vallée du Rhin supérieur, à l'interface de l'Europe latine et de l'Europe germanique sur un carrefour international où convergent des corridors routiers, ferroviaires et fluviaux.

La thématique du transport génère deux questions:

- Une problématique urbaine née de la conjonction de densité à la fois des émissions de polluants et de la population exposée. Cette échelle urbaine de la pollution atmosphérique exige une attention particulière en matière de santé publique et notamment aux abords des axes les plus chargés comme à Strasbourg le long de l'A35 (trafic pendulaire) et dans la vallée de la Thur dans la zone de Thann.
- Un trafic important notamment de poids lourds pose la question de l'évaluation de l'exposition de la population en zone interurbaine en proximité trafic: le long des axes autoroutiers, des axes départementaux chargés Strasbourg-Belfort (RD 1083) et Strasbourg-Saverne (RD 1004) et dans les vallées vosgiennes soumises à des trafics de transit (vallée de la Thur, col de la Schlucht...).

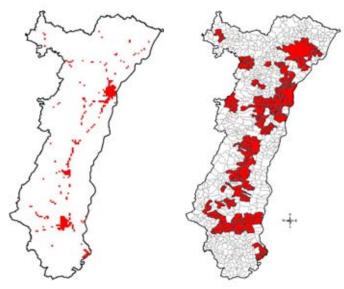
Exposition de la population alsacienne à la pollution de proximité des axes de circulation

Au-delà des automobilistes exposés à la pollution trafic des autoroutes, de nombreuses personnes vivent à proximité de grands axes de circulation régionaux. Sur l'autoroute A35 (164000 véhicules/jour) imbriquée dans la partie urbaine de Strasbourg: 18000 personnes vivent dans un couloir de 250 mètres, 47000 à 500 mètres et 105000 à 1 km.

À l'échelle régionale, 150000 personnes (8 % de la population alsacienne) habitant dans une bande de 250 mètres autour des axes interurbains les plus chargés (>15000 véhicules/jour) sont potentiellement soumises à une pollution importante liée à la proximité du trafic.

1.4 Zones sensibles

Dans ce paragraphe, il s'agit d'identifier les portions des territoires susceptibles de présenter des sensibilités particulières à la pollution de l'air (dépassements de normes, risque de dépassement, etc.) du fait de leur situation au regard des niveaux de pollution, de la présence d'activités ou de sources polluantes significatives, de populations et/ou d'écosystèmes plus particulièrement fragiles.


Dans ces zones, des orientations destinées à prévenir ou réduire la pollution atmosphérique afin d'atteindre les objectifs de qualité de l'air mentionnés aux articles L221-1 et R221-2 pourront être définies et des actions spécifiques engagées.

Une méthodologie générique nationale a été mise au point fin 2010 pour réaliser des cartes régionales des zones sensibles.

La carte des zones sensibles alsaciennes fait ressortir les zones densément peuplées de la plaine et le réseau routier structurant. Les zones de sensibilité environnementale (principalement les Vosges et ses forêts) n'apparaissent pas à travers l'application de cette méthode.

Au final la zone sensible couvre plus de 150 communes alsaciennes correspondant à 28,6 % du territoire et 63 % de la population alsacienne. Cette superficie est importante au regard de l'objectif de prendre en compte 20 % du territoire.

Cartes 1 et 2: Mailles kilométriques considérées comme sensibles selon la méthodologie nationale (à gauche) et communes « sensibles » retenues à (droite).

Méthodologie de définition des zones sensibles (décembre 2010)

Groupe de travail national « zones sensibles »: MEDDTL, LCSQA, ATMC RHÔNE ALPES, ASPA, AIR NORMAND, AIRPARIF, ADEME - DRC-10-114401-13367A.

Cette méthode en 6 étapes prend en compte la spécificité de chaque région:

Étape 1: Identification des régions françaises dans lesquelles la pollution de fond peut induire un dépassement de valeurs limites pour les particules PM10.

Étape 2: Délimitation des zones soumises ou potentiellement soumises à un dépassement de valeurs limites dans les régions définies ci-dessus pour les particules PM10.

Étape 3: Délimitation des zones présentant des surémissions (par rapport à la moyenne nationale) d'oxydes d'azote.

Étape 4: Délimitation des zones de forte densité de population.

Étape 5: Délimitation des zones jugées sensibles pour les écosystèmes.

Étape 6: Détermination des zones sensibles à partir des zones délimitées dans les étapes précédentes. Les zones définies doivent remplir 1 critère de « pollution » au moins (étape 2 ou 3) plus 1 critère de « sensibilité » (étape 4 ou 5).

À titre de comparaison, les zones sensibles couvrent 9,4 % de la Haute Normandie et 22 % du territoire de la région Rhône Alpes.

2. Évaluation de la qualité de l'air

2.1. Bilan de la qualité de l'air pour les polluants réglementés

Ce chapitre est un bilan synthétique de la qualité de l'air, des évolutions de la situation vis-à-vis des dépassements de valeurs réglementaires (dispositifs préfectoraux, valeurs limites européennes) et de la situation de certains polluants potentiellement problématiques. Il existe des rapports plus détaillés aussi bien sur la qualité de l'air que sur les émissions de gaz à effet de serre et de polluants atmosphériques qui sont disponibles auprès de l'ASPA.

2.1.1. Évolution de la qualité de l'air par polluant

Le bilan des niveaux observés pendant la période 2000 à 2010 a été réalisé en distinguant les indicateurs de pollution liés principalement à l'industrie (dioxyde de soufre), au transport, au résidentiel/tertiaire (oxydes d'azote, particules, benzène...) ou à la photochimie (ozone).

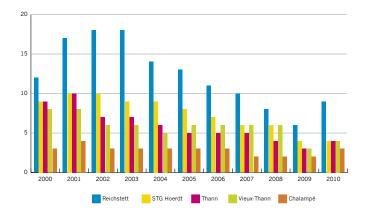
Polluant	Ozone	NO ₂	PM10 *	со	SO ₂	Benzène
Grandeur prise en compte	ME	MA	MA	MA	MA	MA
Strasbourg	+17 %	-18 %	-3 %		-59 %	-30 %
Mulhouse	+7 %	-2 %	-23 %		-67 %	-28 %
Colmar	+14 %	-15 %	-15 %		-43 %	-23 %
Prox. Industrie		-13 %			-23 %	
Prox. Trafic		-12 %	-9 %	-67 %		-26 %
Rural	+7 %					
Rural montagne	+5 %					

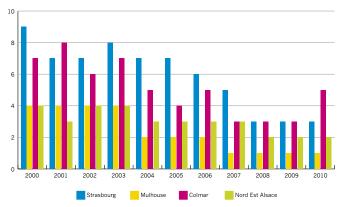
Tableau 2: Évolution des concentrations entre 2000 (2003 pour le benzène) et 2010 pour 6 polluants. Ces pourcentages se basent sur la pente d'évolution des concentrations depuis 2000 définie par régression linéaire.

MA: moyenne annuelle / ME moyenne estivale du 1er avril au 30 septembre.

Entre 2000 et 2010, les indicateurs annuels d'évolution de la qualité de l'air montrent qu'en situation de fond notamment en milieu urbain, la pollution au dioxyde de soufre (d'origine industrielle) continue à diminuer, tout comme celle du monoxyde de carbone (traceurs d'une pollution issue du trafic).

Concernant le dioxyde d'azote, autre traceur d'une pollution issue du trafic, les niveaux sont en baisse sur Strasbourg et Colmar mais stagnent à Mulhouse notamment les 3 dernières années.


Le bilan de 10 ans de mesures des particules PM10 est relativement délicat étant donné l'application depuis 2007 du coefficient d'ajustement (prise en compte de la fraction volatile des particules). Cependant, entre 2007 et 2009, les concentrations annuelles tendent à diminuer à Mulhouse et Colmar mais restent stables à Strasbourg.


Mise à part l'année de la canicule de 2003 favorable à l'ozone, malgré des niveaux très fluctuants, on note une tendance à la hausse de la pollution photochimique.

2.1.2. Pollution d'origine industrielle

Dioxyde de soufre

Sur ces 10 dernières années, les teneurs de fond de SO_2 ont été divisées par deux dans les grandes agglomérations et ne sont plus considérées comme un enjeu prioritaire dans les agglomérations alsaciennes. À Strasbourg, à proximité du premier émetteur de dioxyde de soufre alsacien (raffinerie de Reichstett), la diminution des moyennes annuelles est moindre mais également perceptible (-23 %).

Illustrations I et II: Évolution des concentrations en $\mu g/m^3$ de dioxyde de soufre entre 2000 et 2010 (stations de fond et industrielles).

^{*} L'évolution des niveaux de PM10 est faite sur la fraction volatile des particules. La fraction volatile des particules n'est prise en compte qu'à partir de 2007.

Dioxyde d'azote

En proximité industrielle, le dioxyde d'azote est suivi à proximité de 2 émetteurs importants industriels dans la zone de Chalampé-Ottmarsheim: Rhodia à Chalampé (559 tonnes de NOx en 2009) et PEC Rhin à Ottmarsheim (371 tonnes de NOx en 2009). Au cours des 10 dernières années, seule la station industrielle de Chalampé affiche une franche diminution des concentrations de $\rm NO_2$ entre 2000 et 2010 (environ -18 %). Celles observées sur le site d'Ottmarsheim stagnent depuis 2004 autour de 25 $\rm \mu g/m^3$. Cette évolution des concentrations est à mettre en lien avec l'évolution des émissions sur la même période: -55 % à Rhodia et -27 % à PEC Rhin.

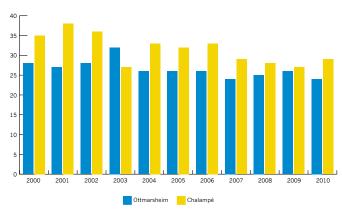


Illustration III: Évolution des concentrations de dioxyde d'azote entre 2000 et 2010 (stations industrielles).

Plomb

Les concentrations en plomb relevées dans l'atmosphère strasbourgeoise ont drastiquement chuté entre 1986 et 1994 en raison de l'utilisation accrue de l'essence non plombée et de l'interdiction du plomb dans les essences à partir de 2000. Depuis 2003, les moyennes annuelles dans les agglomérations alsaciennes sont en diminution (·23 à ·30 %). Le suivi de la pollution au plomb se fait désormais par estimation objective à partir de l'inventaire des émissions et du cadastre associé.

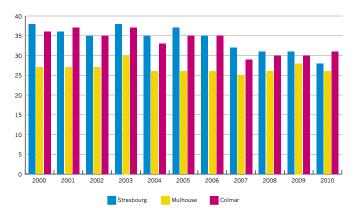
Autres métaux lourds

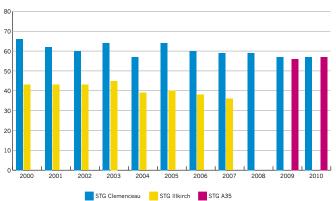
Les métaux lourds cités par la directive européenne 2004/107/CE ne font l'objet d'une évaluation préliminaire systématique que depuis 2009 autour des principaux rejets (raffinerie, UIOM...). Les concentrations relevées sur les deux premières années sont très en deçà des valeurs cibles (ou valeur limite pour le plomb) – (tableau 2).

2.1.3. Pollution d'origine urbaine (transports et résidentiel tertiaire)

Dioxyde d'azote

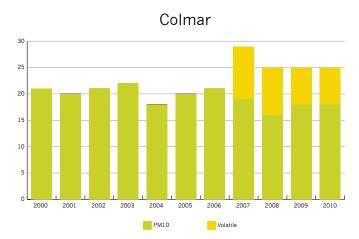
En agglomération, les niveaux de fond de dioxyde d'azote sont à la baisse depuis 2000 (diminution très faible pour Mulhouse). Cette diminution des niveaux, en lien avec l'amélioration des moteurs automobiles, est toutefois contrebalancée en partie:

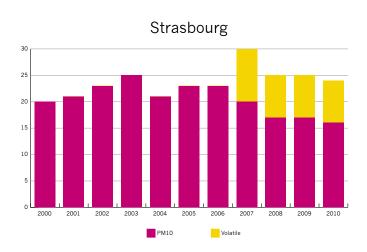

- Par la diésélisation du parc routier.
- Par la généralisation du filtre à particules (FAP) augmentant les émissions d'oxydes d'azote et entraînant une diminution du rapport [NO]/[NO₂] à l'émission des véhicules.
- Par le transfert d'oxydes d'azote sur des longues distances.


En situation de proximité trafic, la baisse des concentrations de NO₂ est moins évidente.

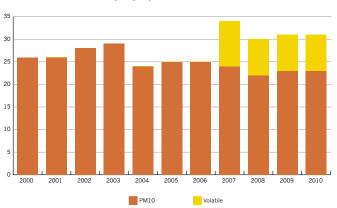
	Pb	Cd	Ni	As	Cr	Cu	Zn
Valeurs cibles (limite pour le plomb) en moyenne annuelle en ng/m³	500	5	20	6	-	-	-
2009							
Hoerdt	8,34	0,20	2,2	0,61	2,88	7,72	38,1
Sausheim	5,87	0,12	1,1	0,37	2,06	12,6	33,0
Schweighouse/Moder	6,63	0,15	1,3	0,45	2,38	7,10	24,1
2010							
Reichstett	7,20	0,20	3,1	0,5	2,00	9,60	23,7
STG Rhin	13,4	0,30	2,5	0,8	4,1	13,5	87,4

Tableau 2: Concentrations annuelles en ng/m³ de métaux lourds pour les années 2009 et 2010 – Pb: plomb – Cd: cadmium – Ni: nickel - As: arsenic – Cr: chrome – Cu: cuivre - Zn: zinc




illustrations IV et V: Évolution des concentrations en µg/m³ de dioxyde d'azote entre 2000 et 2010 (Moyennes des stations de fond urbaines/ périurbaines et stations trafics).

Mulhouse 30 25 20 15 10 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010



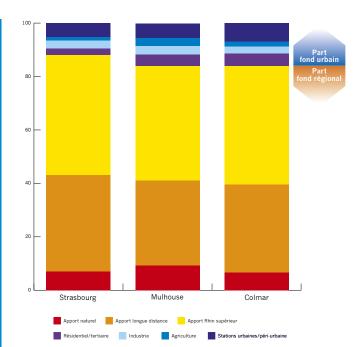
Particules PM10

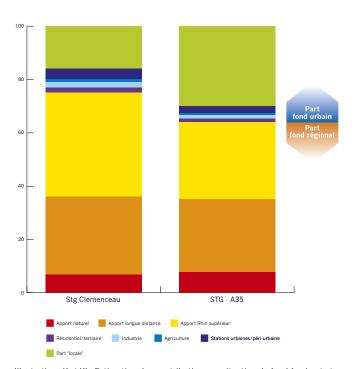
Concernant la fraction non volatile (la seule mesurée depuis 10 ans), les niveaux baissent en proximité trafic comme en fond urbain. La fraction volatile n'est prise en compte que depuis 2007 et provoque des dépassements de normes de qualité de l'air (voir « situations vis-à-vis des seuils réglementaires »).

STG Clemenceau

Illustrations VI à IX: Évolution des concentrations en μg/m³ de particules PM10 entre 2000 et 2010 (en fond dans les agglomérations alsaciennes et en proximité trafic à Strasbourg).

Origine des particules en Alsace


Quelle est la part importée de la pollution particulaire PM10? La part locale? Et pour cette dernière, quels sont les secteurs d'émissions principaux? Un travail d'estimation des contributions à différentes échelles spatiales (aux niveaux régional, urbain et local) a été réalisé pour l'Alsace pour les journées ayant présenté des dépassements des $50 \, \mu \text{g/m}^3$ sur 24 heures pour 3 années de référence (2007, 2008 et 2009).


En situation de fond, dans les grandes agglomérations alsaciennes, la part « fond urbain » représente 15 % des PM10 et l'apport « Rhin supérieur » 44 %. Ces deux contributions sont attribuables aux émissions des agglomérations pour le premier et aux émissions de l'ensemble du fossé rhénan pour le second.

En conséquence, des actions de réduction des émissions locales (temporaires ou permanentes) discutées et/ou décidées dans les différents outils de gestion de qualité de l'air à différentes échelles géographiques (Plan de protection de l'Atmosphère, Plan de Déplacement Urbain, Schéma Régional du Climat, de l'Air et de l'Énergie...) peuvent avoir un impact bénéfique sur l'exposition des populations à la pollution aux PM10.

En revanche, Il est difficile d'agir localement sur les apports « naturel » et « longue distance » soit en moyenne 40 % des contributions aux niveaux de PM10.

En situation de proximité trafic, la part locale attribuable aux véhicules sur la voie peut représenter jusqu'à 30 % des concentrations de PM10 mesurées (illustration XI).

Illustrations X et XI: Estimation des contributions en situation de fond (en haut et en situation) de proximité trafic (en bas): Parts régionale et urbaine avec distinction des apports « longue distance », « Rhin supérieur » et « naturel » (pour la première) et les contributions par secteur d'activité (pour la seconde).

Particules PM2,5

Concernant les PM2,5, à Strasbourg, les niveaux ont baissé entre 2001 et 2008 en situation de fond comme en proximité trafic. À partir de 2009, avec la prise en compte de la fraction volatile, une montée significative des niveaux est également constatée.

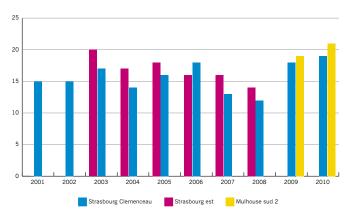


Illustration XII: Évolution des concentrations en µg/m³ de PM2,5 entre 2000 et 2010 sur les stations de fonds (Strasbourg Est et Mulhouse Sud2) et en proximité trafic (Strasbourg Clemenceau).

Monoxyde de carbone

Les concentrations moyennes annuelles en proximité trafic sont en forte diminution au cours des 10 dernières années (-67 % à Strasbourg) en lien avec l'amélioration des moteurs automobiles et des carburants.

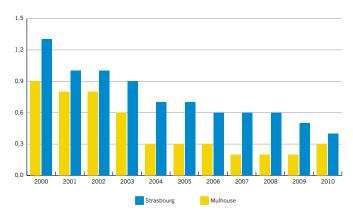


Illustration XIII: Évolution des concentrations en mg/m³ de CO entre 2000 et 2010.

La station de Mulhouse a été requalifiée en station de fond à partir

Benzène

Les évolutions ne sont mesurées en continu dans les agglomérations alsaciennes que depuis l'année 2003. Bien qu'étant légèrement remonté entre 2008 et 2009, les niveaux de fond ont baissé sur les trois grandes villes alsaciennes (-28 %). En situation de proximité trafic, les niveaux ont également baissé (-26 % à Strasbourg).

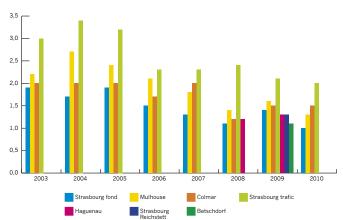
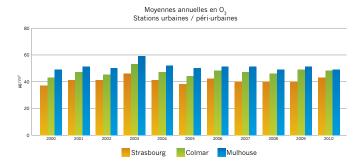


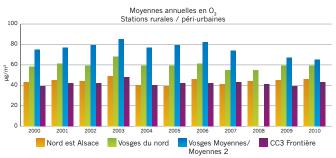
Illustration XIV: Évolution des concentrations en $\mu g/m^3$ de benzène entre 2003 et 2010.

Benzo(a)Pyrène

Les Hydrocarbures aromatiques polycycliques HAP de la 4e directive fille (dont le benzo(a)pyrène) ne font l'objet d'une évaluation préliminaire que depuis 2008 dans les zones urbanisées et dans les vallées vosgiennes. Les concentrations relevées sur les trois dernières années sont en deçà de la valeur cible (tableau 3).

Benzo(a)Pyrène	2008	2009	2010		
Valeur cible en moyenne annuelle en ng/m³	1				
Strasbourg Clemenceau	0.60				
Mulhouse Nord	0.55	0.49	0.46		
Colmar Centre	0.27				
Strasbourg Sud 2		0.65	0.35		
Ste Marie aux Mines		0.56			
Thann			0,68		
Haguenau			0,52		


Tableau 3 : concentrations annuelles en ng/m³ de B(a)P pour les années 2008, 2009 et 2010



2.1.3. Pollution d'origine photochimique

Ozone

Ces 10 dernières années, les niveaux de fond d'ozone ont stagné (illustrations XV et XVI). Les moyennes estivales (du 1er avril au 30 septembre) augmentent sur la région en zones urbaines, rurales et dans les Vosges.

Illustrations XV et XVI: évolution des concentrations en $\mu g/m^3$ en Alsace de 2010 à 2011

Au bilan, les niveaux moyens de pollution tant en fond qu'en proximité sont orientés à la baisse à l'exception de l'ozone. Cette diminution masque des disparités entre polluants (géographiques selon les agglomérations considérées et/ ou de typologie des stations de mesures): diminution importante à très importante pour le SO₂, le CO voire le benzène, modérée voire constat de stagnation pour les particules et le NO₂ ou homogène pour le benzène.

Concernant les HAP et les métaux lourds, il est difficile de définir les tendances sur le long terme en raison du manque de données historiques.

2.1.4. Situation vis-à-vis des valeurs réglementaires

Définition des normes de qualité de l'air

Objectif de qualité de l'air (OQA)	Niveau de concentration de substances polluantes dans l'atmosphère à atteindre à long terme, sauf lorsque cela n'est pas réalisable par des mesures proportionnées, afin d'assurer une protection efficace de la santé humaine et de l'environnement dans son ensemble.
Valeur cible (VC)	Niveau de concentration de substances polluantes dans l'atmosphère fixé dans le but d'éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine ou sur l'environnement dans son ensemble, à atteindre, dans la mesure du possible, dans un délai donné.
Valeur limite (VL)	Niveau de concentration de substances polluantes dans l'atmosphère fixé sur la base des connaissances scientifiques à ne pas dépasser dans le but d'éviter, de prévenir ou de réduire les effets nocifs de ces substances sur la santé humaine ou sur l'environnement dans son ensemble.
Seuil d'infor- mation et de recommanda- tion (Recom.)	Niveau de concentration de substances polluantes dans l'atmosphère au-delà duquel une exposition de courte durée présente un risque pour la santé humaine des groupes particulièrement sensibles de la population rendant nécessaires des informations immédiates et adéquates.
Seuil d'alerte (Alerte)	Niveau de concentration de substances polluantes dans l'atmosphère au-delà duquel une exposition de courte durée présente un risque pour la santé de l'ensemble de la population ou de dégradation de l'environnement justifiant l'intervention de mesures d'urgence.
Objectif à long terme (OLT)	Niveau à atteindre à long terme, sauf lorsque cela n'est pas réalisable par des mesures proportionnées, afin d'assurer une protection efficace de la santé humaine et de l'environnement.

Tableau 4 : normes de qualité de l'air retenues pour l'évaluation de la qualité de l'air vis-à-vis des seuils réglementaires

Dispositifs préfectoraux (seuil d'information et de recommandation et seuil d'alerte)

Si, globalement, les valeurs annuelles ont diminué entre 2000 et 2009, il subsiste néanmoins des épisodes ponctuels de pollution qui se traduisent, entre autre, par des dépassements des seuils de recommandation et d'alerte avec mise en place de procédures réglementaires d'information. Les tableaux suivants récapitulent le nombre de jours de dépassement pour ces deux seuils sur l'Alsace depuis l'année 2003.

	N	02	O ₃		PM10		SO ₂	
	Recom.	Alerte	Recom.	Alerte	Recom.	Alerte	Recom.	Alerte
2003	11 J		36 J	5 J	11 J		2 J	
2004	1 J		9 J		1 J			
2005	5 J		13 J		1 J			
2006	3 J		19 J		2 J			
2007	10 J		3 J		17 J	2 J		
2008	10 J	3 J	3 J		16 J			
2009	13 J		2 J		23 J	5 J		
2010	11 J		8 J		18 J			

Tableau 5 : Nombre de jours de dépassement des seuils de recommandation (recom) et d'alerte sur les sites de fond et de proximité trafic en Alsace de 2003 à 2010. À partir de 2007, la fraction volatile des PM10 est prise en compte.

	NO ₂	SO ₂
2003	2 J	4 J
2004		3 J
2005	5 J	5 J
2006		1 J
2007		2 J
2008		1 J
2009		
2010	0 J	1 J

Tableau 6: Nombre de jours de dépassement des seuils de recommandation sur les sites de proximité industrielle en Alsace de 2003 à 2009.

Les dépassements d'ozone sont très dépendants des conditions météorologiques. Entre 2007 et 2009, les étés alsaciens n'ont été ni chauds ni très ensoleillés: le nombre d'épisodes de pollution a donc reculé. À noter cependant une légère augmentation des jours de dépassement du seuil de recommandation pour l'année 2010 où le mois de juillet a été agréable.

Les dépassements de seuils de recommandation pour le dioxyde d'azote sont quasiment circonscrits dans la zone urbaine de Strasbourg aux alentours de l'autoroute A35.

Les épisodes de pollution de PM10 sont en nette progression depuis 2007 en lien avec la prise en compte de la fraction volatile des particules combinée avec des épisodes hivernaux (novembre – février) mais également des épisodes printaniers (particules secondaires volatiles) particuliers.

Valeurs limites

Ce paragraphe fait le bilan des dépassements, sur 4 zones alsaciennes, des valeurs limites édictées par la réglementation nationale et les directives européennes. Les tableaux 7 et 8 ci-dessous résument les dépassements de valeurs limites pour les 5 dernières années 2005-2010.

	S	02	S	SO ₂		Les valeurs cible des		ırds sont re 0 2	spectivement de 6 ng/ Benzène	
	en mo journalièr	5 μg/m³ byenne e à ne pas er 3 jours	en moyen à ne pas	VL - 350 µg/m³ en moyenne horaire à ne pas dépasser 24 heures		VL - 40 µg/m³ en moyenne annuelle		0 μg/m³ ne horaire dépasser eures	VL - 5 μg/m³ en moyenne annuelle	
	Fond	Prox.	Fond	Prox.	Fond	Prox.	Fond	Prox.	Fond	Prox.
Agglo. de Strasbourg	•	•	•	•	•	8	•	©	•	⊖
Agglo. de Mulhouse	9	•	•	9	•	NE	•	NE	•	NE
Agglo. de Colmar	•	NE	•	NE	•	NE	•	NE	•	NE
Reste de la région	9	9	9	9	•	NE	•	NE	9	NE

	P₩	110	PM	PM10		PM2,5		СО		Pb	
	en mo journalièr) µg/m³ byenne e à ne pas r 35 jours	VL - 40 µg/m³ en moyenne annuelle		VL - 25 µg/m³ en moyenne annuelle (à partir de 2015)		ne en moyenne e 8 heures maximum		VL · 0,5 µg/m³ en moyenne annuelle		
	Fond	Prox.	Fond	Prox.	Fond	Prox.	Fond	Prox.	Fond	Prox.	
Agglo. de Strasbourg	•	8	•	9	•	NE	NE	9	9	•	
Agglo. de Mulhouse	9	NE	•	NE	•	NE	•	NE	NE	NE	
Agglo. de Colmar	©	NE	•	NE	NE	NE	NE	NE	NE	NE	
Reste de la région	•	NE	•	NE	NE	NE	NE	NE	NE	NE	

 $Tableaux\ 7\ et\ 8:\ D\'epassement\ des\ valeurs\ limites\ pour\ les\ 4\ zones\ alsaciennes\ pour\ les\ ann\'ees\ 2005-2010$

NE non évalué - VL: Valeur limite.

Valeurs cibles et objectifs de qualité de l'air

Ce paragraphe fait le bilan des dépassements, sur 4 zones alsaciennes, des valeurs cibles et des objectifs de qualité de l'air édictés par la réglementation nationale et les directives européennes. Les tableaux 9 et 10 ci-dessous résument les dépassements pour les 5 dernières années 2005 – 2010.

m³ en moyenne annuelle pour l'arsenic, 5 ng/m³ pour le cadmium, 20 ng/m³ pour nickel et 500 ng/m³ pour le plomb.

	SO ₂	SO ₂	PM2,5	Métaux lourds*	B(a)P
	VC - 120 µg/m³ sur 8h à ne pas dépasser 25 jours (moyenne sur 3 ans)	VC - 18000 µg/m³.h de mai à juillet (moyenne sur 5 ans)	VC - 20 µg/m³ en moyenne annuelle	VC en moyenne annuelle	VC - 1 ng/m³ en moyenne annuelle
	Fond	Fond	Fond	Fond/Prox.	Fond
Agglo. de Strasbourg	8	8	•	⊖	⊗
Agglo. de Mulhouse	8	8	8	⊜	⊕
Agglo. de Colmar	8	8	NE	⊜	⊕
Reste de la région	8	8	NE	•	•

^{*} Les valeurs cible des métaux lourds sont respectivement de 6 ng/m³ en moyenne annuelle pour l'arsenic, 5 ng/m³ pour le cadmium, 20 ng/m³ pour nickel et 500 ng/m³ pour le plomb

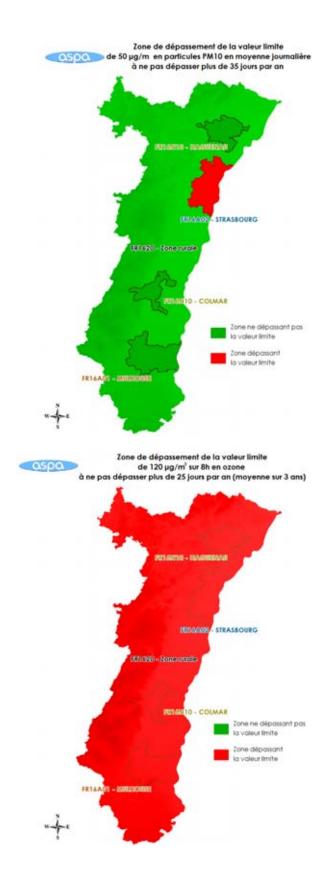
	0 ₃	03	PM2,5	PM10		Pb	Benzène
	OLT 120 µg/m³ sur 8 heures	OLT - 6000 µg/ m³.h de mai à juillet	OQA 10 µg/m³ en moyenne annuelle	.0 μg/m³ 30 μg/m³ en moyenne		30 µg/m³ 0,25 µg/m³ en moyenne en moyenne	
	Fond	Fond	Fond	Fond	Prox.	Fond/Prox.	Fond/Prox.
Agglo. de Strasbourg	8	8	8	❷	8	⊖	•
Agglo. de Mulhouse	8	8	8	❷	NE	⊖	•
Agglo. de Colmar	8	8	NE	❷	NE	⊖	•
Reste de la région	8	8	NE	•	NE	•	⊖

Tableaux 9 et 10 : Dépassement des valeurs cibles et des objectifs de qualité de l'air pour les 4 zones alsaciennes en Alsace pour l'année 2010.

NE non évalué - VC: Valeur cible – OQA Objectif de Qualité de l'air – OLT Objectif de Qualité de l'air long terme.

Les seuils réglementaires (valeur limites et cibles, objectif de qualité de l'air ou long terme) sont respectés pour le dioxyde de soufre, le benzène, le monoxyde de carbone, le benzo(a)pyrène et les métaux lourds. Ils le sont également en situation de fond pour le dioxyde d'azote PM10.

En revanche, il subsiste des dépassements de valeurs réglementaires pour les PM10 et PM2,5 (objectif de qualité de l'air) et l'ozone en situation de fond et pour les oxydes d'azote et les particules PM10 et PM2,5 en situation de proximité trafic.


Cartographies par polluant

Au bilan sur les cinq dernières années et selon les critères retenus par la directive 2008/50/CE, on note:

- Des dépassements de valeurs limites pour la santé humaine pour le NO₂ et les PM10 dans la zone de Strasbourg (à noter que les autres zones administratives de surveillance n'ont pas encore de station de proximité trafic à l'origine des dépassements sur la zone de Strasbourg).
- Des dépassements de valeurs cibles pour l'ozone sur l'ensemble de la région.
- Aucun dépassement des valeurs limites ni des valeurs cibles pour le dioxyde de soufre, le plomb, le monoxyde d'azote et le benzène. L'évaluation pour les polluants de la directive 2004/107/CE (As, Cd, Ni, HAP) est en cours.

Illustrations XVII à XIX: Zones présentant un dépassement de valeurs limite pour le dioxyde d'azote (au dessus) les particules PM10 (en haut à droite) ou de valeurs cible pour l'ozone (en bas à droite).

Exposition de la population et des écosystèmes

L'ASPA dispose d'une plateforme de modélisation complète (de la rue à la région) qui permet de dresser des cartes de qualité de l'air dans la vallée du Rhin supérieur. Ces cartes de pollution permettent d'évaluer l'exposition potentielle de la population à des dépassements de normes réglementaires.

	NO ₂	PM10	Benzène	O ₃	O ₃	O ₃
	VL · 40 µg/m³ en moyenne annuelle	VL · 50 µg/m³ en moyenne J à ne pas dépasser 35 jours	VL - 5 µg/m³ en moyenne annuelle	VC · 120 µg/m³ sur 8 heures à ne pas dépasser 25 jours	VC - 18000 µg/ m³.h de mai à juillet	OQA 120 µg/m³ sur 8 heures
			Superficie	9		
2007	<10 km²	38 km²	<1 km²	8306 km²	<1 km²	8306 km²
2008	<20 km²	<10 km²	<1 km²	1 453 km²	7943 km²	8306 km²
2009	<50 km²	<50 km²	<1 km²	8305 km²	<10 km²	8306 km²
			Population exp	oosée		
2007	99000	246000	4500	1825000	-	1825000
2008	129000	60000	6400	313000	-	1825000
2009	128000	75 000	< 2000	1825000	-	1825000

Tableau 11 : Superficie exposée à des dépassements de valeurs limites ou valeurs cibles en Alsace et population exposée à des dépassements de valeurs limites ou valeurs cibles en Alsace entre 2007 et 2009.

Dioxyde d'azote

Les zones soumises à une pollution de fond en NO_2 dépassant la valeur limite 2010 de 40 $\mu g/m^3$ annuel en dioxyde d'azote représentent moins de 1 % de la superficie régionale. Toutefois en 2009, près de 130000 Alsaciens (soit 7 % de la population) y sont potentiellement soumis. Ces derniers sont principalement circonscrits dans l'agglomération strasbourgeoise (illustration XX).

Ozone

En 2009 (illustration VII), la quasi-totalité de la population (99,7 %) était soumise à des teneurs en ozone supérieures à la valeur cible de protection de la population humaine (120 μ g/m³ sur 8 heures à ne pas dépasser 25 jours dans l'année).

L'objectif de qualité de l'air est quant à lui dépassé sur l'ensemble de la région en 2007, 2008 et 2009.

Particules PM10

En 2009, les dépassements de la valeur limite journalière de protection de la santé humaine

(50 $\mu g/m^3$ sur 24 heures à ne pas dépasser plus de 35 jours dans l'année) concernent

32 km² du territoire alsacien (principalement dans l'agglomération strasbourgeoise – illustration XXIII) et environ 75000 habitants.

En 2007 (année de forte pollution en PM10), plus de 200000 habitants ont été soumis à des dépassements de la valeur limite journalière.

Benzène

Les dépassements de la valeur limite annuelle sont circonscrits à la proximité des axes urbains de circulation les plus importants, sur une zone très limitée avec moins de 10000 habitants potentiellement concernés.

Illustration XX: Concentrations annuelles de dioxyde d'azote en Alsace – résultats de méthodes géostatistiques - année 2009.

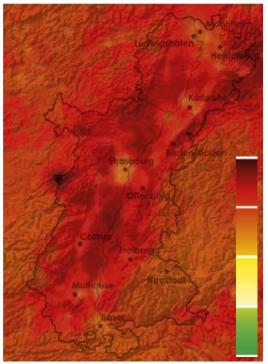
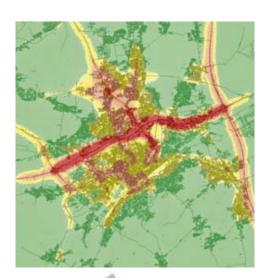
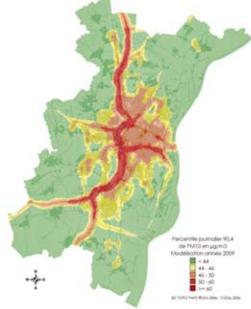




Illustration XXI: Répartition spatiale de la valeur cible (120 µg/m³ sur 8 heures) pour l'ozone en nombre de jours – Résultats de modélisation redressés par les données aux stations de mesures – Année 2009.

Illustrations XXII et XXIII: Dépassement de la valeur limite journalière de PM10 (pour Mulhouse en haut et Strasbourg en bas) – résultats de la modélisation urbaine pour l'année 2009.

2.2 Bilan des autres polluants (non réglementaires)

2.2.1. Le mercure

La surveillance du mercure dans l'air ambiant, si elle est abordée dans la directive européenne 2004/107/CE ne fait pas l'objet, contrairement aux autres métaux lourds, de valeur cible. En 2002, la valeur de 50 ng/m³ avait été évoquée mais n'a pas été retenue. Dans le cadre d'une action soutenue par le Groupement Régional de Santé Publique (GRSP - action n° 2009/0095/GRSP), le suivi du mercure atmosphérique a été engagé à proximité d'une installation de production de chlore par électrolyse à cathode de mercure de la société PPC ABERMARLE (en fonctionnement depuis 1930). Une campagne de mesures s'est déroulée en 2009 et 2010 sur le site de Vieux-Thann et à l'école la Sapinette dans la vallée de la Thur. Les résultats des mesures soulignent des niveaux moyens de mercure gazeux de 100 ng/m³ (phase hivernale) et de 749 ng/ m³ (phase estivale) à Vieux Thann et 70 ng/m³ à l'école de la Sapinette (phase estivale). Par comparaison, ces niveaux sont plus élevés que ceux enregistrés à proximité du site de même type de la société ARKEMA à Jarrie dans l'Isère (niveaux moyens 7 ng/m³).

2.2.2. Les produits phytosanitaires

Au regard de l'ensemble des éléments concernant la pollution par les produits phytosanitaires – en zone rurale mais également en zone urbaine proche des zones de cultures dans un espace restreint – une réflexion a été engagée sur la stratégie de suivi à déployer en Alsace sur le long terme dans le cadre du PRSE2. Trois axes de travail se dégagent:

- Réalisation d'un inventaire des produits phytosanitaires émis pour constituer une liste de matières actives représentatives des pratiques agricoles régionales.
- Réalisation de campagnes de mesures ciblées par l'inventaire des émissions.
- Réalisation d'un suivi des produits phytosanitaires interdits d'utilisation au vu de la persistance de ces produits dans l'environnement.

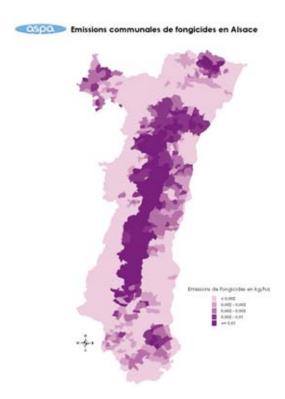


Illustration XXIV: Répartition spatiale des émissions de fongicides (matières actives) en Alsace – inventaire ASPA année de référence 2001.

Un inventaire exploratoire des matières actives a été réalisé pour l'année de référence 2001 (première étape) et montre la pression des produits phytosanitaires de type herbicides et fongicides en lien avec la pratique de la culture du maïs en plaine et de la vigne dans les collines sous Vosgiennes.

Type de Produits	Émissions en kg par an	Cultures principalement concernées
Fongicides	8400	Viticulture, arboriculture
Herbicides	40700	Maïs, Blé
Insecticides	5400	Viticulture, Maïs
Produits div.	130	Blé

Tableau 12: Émissions de matières actives en Alsace – inventaire produits phytosanitaires ASPA année de référence 2001 version 2004-v1.

2.2.3. La pollution aérobiologique: les pollens

Le réseau national de surveillance aérobiologique (RNSA) dispose d'un point de mesures en Alsace au Laboratoire d'Allergologie - Nouvel Hôpital Civil. En 2009, deux périodes de production de pollens allergisants ont eu lieu de février à juillet (aulne, bouleau,

charme, chêne, châtaignier, frêne, peuplier...) et de mai à septembre pour les graminées et le plantin. Des traces d'ambroisies ont été relevées en août et septembre.

En 2009, le bilan RNSA parle de symptômes modestes jusqu'en avril (longueur de l'hiver) avec des rhino-conjonctivites et manifestations asthmatiques très marquées à partir de la mi-avril et ce durant environ deux semaines (pollinisation des bétulacées). Ensuite, la saison des graminées a été modérée et n'a occasionné qu'une symptomatologie modeste durant tout le reste du printemps et de l'été (source: RNSA- Laboratoire d'Allergologie - Nouvel Hôpital Civil – Dr Nicolas Hutt).

2.2.4. Exposition de la population à la pollution de l'air intérieur

Devenue un sujet essentiel aux plans national et international (comme en témoigne le Plan National Santé Environnement (PNSE) adopté en 2004 dont plusieurs des 12 actions prioritaires sont relatives à cette problématique) la qualité de l'air intérieur fait l'objet d'une surveillance croissante, notamment dans les lieux accueillant du public et plus spécialement les écoles.

Pour répondre à la demande de certaines collectivités locales, plusieurs campagnes de mesures ont été réalisées depuis 2004 dans les écoles et lieux d'accueil de la petite enfance (LAPE) strasbourgeois et de l'agglomération mulhousienne (mesures de formaldéhyde par système de prélèvement passif). Si la teneur moyenne mesurée en formaldéhyde (env. 20 $\mu g/m^3$) reste en adéquation avec celle enregistrée dans les écoles et les crèches françaises, ces premières campagnes soulignent une grande disparité d'exposition. Les concentrations ont varié entre 10 et plus de 100 $\mu g/m^3$ sur 48 heures dépassant largement les références proposées par l'OMS au niveau international et l'AFFSET en France.

Les enjeux concernant les produits phytosanitaires, les pollens et la qualité de l'air intérieur sont également abordés dans le cadre du Plan Régional Santé Environnement.

3. Évaluation des effets de la qualité de l'air

3.1 Impact sanitaire

Les substances polluantes dans l'air pénètrent dans les poumons et peuvent exercer leur toxicité soit directement soit, via les alvéoles pulmonaires et la circulation sanguine, sur d'autres organes (reins, foie, systèmes nerveux...). Les effets sanitaires vont dépendre de nombreux facteurs comme le polluant considéré, sa concentra-

tion, la durée d'exposition, la sensibilité individuelle ou de certaines catégories de population (personnes âgées, personnes souffrant de maladies respiratoires ou cardiovasculaire par exemple).

3.1.1. Effet à court terme

La pollution peut avoir des conséquences qui peuvent aller de la simple irritation au décès. À des niveaux élevés de concentration de polluants, des manifestations cliniques, fonctionnelles ou biologiques survenant dans des délais brefs – quelques jours à quelques semaines – suite à des variations horaires ou journalières de concentration de polluants, sont constatées.

L'étude PSAS9 (Programme de Surveillance Air et Santé 9 villes) a montré qu'une augmentation de $10~\mu g/m^3$ des niveaux de pollution du jour et de la veille se traduisait par une augmentation de l'excès de risque de mortalité de +0,8 % pour les fumées noires22, +1,1 % pour le SO_2 , +1 % pour le SO_2 et +0,7 % pour SO_3 (ozone).

À l'échelle de Strasbourg

Le programme PSAS9 a permis d'établir que pour 100000 habitants, 25 décès annuels (dont 8 pour la mortalité cardiovasculaire et 2 pour la mortalité respiratoire) pourraient être évités si les concentrations de SO_2 , NO_2 , O_3 et Particules redescendaient à une concentration de $\mathrm{10~\mu g/m^3}$ (pour chacun des polluants).

3.1.2. Effet à long terme

Les effets à long terme sont plus difficiles à mettre en évidence. Ils nécessitent la mise en œuvre d'études sur de longues périodes avec un suivi de l'exposition à la pollution d'une population importante avec la mise en perspective d'autres déterminants de santé pouvant être des facteurs de confusion.

En Europe, les évaluations présentées au programme "Air pur pour l'Europe" (CAFE) en 2005 indiquaient que près de 350000 décès prématurés sur le continent étaient imputables à la pollution atmosphérique (particules PM10 et ozone).

Plus récemment, le projet Aphekom ("Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe") coordonné par l'Institut de veille sanitaire (InVS), a montré une perte d'espérance de vie de 2 ans (pour les personnes âgées de 30 ans) liée aux niveaux de concentrations actuelles en PM2,5 (sur 25 villes étudiées) par rapport à la valeur guide préconisée (10 µg/m³ en moyenne annuelle) par l'Organisation Mondiale de la Santé (OMS).

À Strasbourg

L'étude donne une perte d'espérance de vie liée à la pollution en PM2,5 de près de 6 mois pour un individu de 30 ans (illustrations XXV et XXVI).

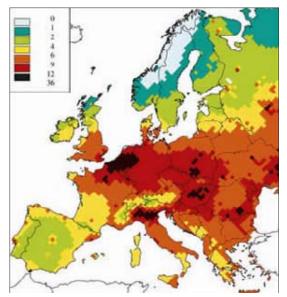


Illustration XXV: Pertes d'espérance de vie (moyenne en mois) dues aux concentrations de PM2.5

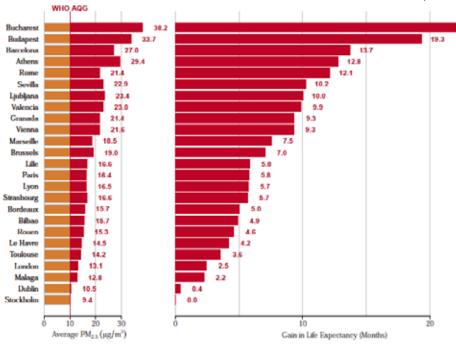


Illustration XXVI: Concentrations moyennes en PM2,5 en $\mu g/m^3$ (à gauche). Gains moyens de l'espérance de vie (en mois) attendus pour les personnes de 30 ans et plus si les niveaux étaient conformes à la valeur guide de l'OMS (10 $\mu g/m^3$) (à droite)

3.1.3. Effet des principaux polluants

Le dioxyde de soufre

Le SO_2 est un gaz irritant, notamment pour l'appareil respiratoire. Les fortes pointes de pollution peuvent déclencher une gêne respiratoire chez les personnes sensibles (asthmatiques, jeunes enfants...). Des études épidémiologiques récentes ont montré qu'une hausse des taux de SO_2 s'accompagne notamment d'une augmentation du nombre de décès pour cause cardio-vasculaire.

Les oxydes d'azote

Le monoxyde d'azote (NO) inhalé passe à travers les alvéoles pulmonaires, se dissout dans le sang où il limite la fixation de l'oxygène sur l'hémoglobine, réduisant de ce fait l'oxygénation des organes. Le dioxyde d'azote pénètre dans les voies respiratoires profondes, où il fragilise la muqueuse pulmonaire face aux agressions infectieuses, notamment chez les enfants. Aux concentrations rencontrées habituellement, le dioxyde d'azote (NO $_2$) provoque une hyperactivité bronchique chez les asthmatiques.

Les particules

La toxicité des particules dépend de leur taille et de leur composition. Leur rôle a été démontré dans certaines atteintes fonctionnelles respiratoires, le déclenchement de crises d'asthme

> et la hausse de décès pour cause cardio-vasculaire ou respiratoire, notamment chez les sujets sensibles (enfants, bronchitiques chroniques, asthmatiques...). Les particules les plus grosses, visibles à l'œil nu, ne sont pas les plus inquiétantes pour la santé. Retenues par les voies aériennes supérieures (nez, gorge), elles ne pénètrent pas dans l'appareil respiratoire. Elles peuvent cependant s'impacter dans les carrefours bronchiques et provoquer des cancers bronchiques ou être ingérées et avoir des effets extra-pulmonaires (cancer également).

Les particules les plus fines, de diamètre inférieur à 2,5 µm, sont les plus dangereuses car elles sont en mesure de pénétrer au plus profond de l'appareil respiratoire, où elles se déposent par sédimentation, ou passent dans le système sanguin. Ces particules peuvent véhiculer de plus, des composés toxiques, allergènes, mutagènes ou cancérigènes, comme les hydrocarbures aromatiques polycycliques et les métaux.

L'ozone

L'ozone, polluant au pouvoir fortement oxydant, est irritant pour les muqueuses du nez, des sinus, des conjonctives et des bronches. Il peut entraîner des réactions d'irritation, de toux et de gêne respiratoire chez les personnes les plus fragiles. Diverses études ont également montré une augmentation des admissions aux urgences pour asthme, ainsi qu'une recrudescence des pneumonies lors des pics de pollution par l'ozone. Toutefois l'évaluation des effets de ce gaz reste difficile car, toujours associé à la présence d'autres polluants lors des pics d'ozone, il n'est qu'un facteur nocif parmi d'autres.

3.2 Impacts environnementaux

3.2.1. Impact de la pollution atmosphérique sur les végétaux

L'ozone

Les fortes concentrations d'ozone peuvent entraîner une limitation des échanges gazeux et une perturbation du métabolisme limitant ainsi la photosynthèse de la plante et pouvant conduire jusqu'à des nécroses sur les feuilles. Il en découle alors une baisse des rendements de la production de biomasse et dans le pire des cas un dépérissement du végétal.

Le dioxyde de soufre

En pénétrant principalement par les stomates des feuilles, le dioxyde de soufre entraîne des lésions qui se manifestent sous forme de nécroses pour les expositions ponctuelles et par un jaunissement généralisé du végétal lors d'expositions chroniques. C'est aussi un gaz toxique qui est à l'origine du phénomène bien connu des dépôts acides secs et humides (pluies acides) ayant un impact significatif sur la végétation. Enfin, le dioxyde de soufre dans l'atmosphère sert de noyau de nucléation à des aérosols dont l'albédo est relativement élevé pouvant donc aller à l'encontre du réchauffement climatique.

Les particules

Les particules fines en suspension dans l'air peuvent freiner la croissance végétale par simple dépôt sur les feuilles en limitant les processus de photosynthèse. De plus, les particules sont également capables de véhiculer à leurs surfaces des composés toxiques qui peuvent avoir une influence directe sur le métabolisme de la plante.

Autres polluants...

D'autres polluants tels que les fluorures issus de la combustion (de charbon, pour la production de briques...) ou l'ammoniac lié principalement à l'épandage d'engrais provoquent d'importants dégâts sur les plantes. L'effet des fluorures s'observe en général par des tâches ocre à rougeâtres sur les feuilles. L'ammoniac quant à lui occasionne des zones nécrotiques décolorées sur les deux faces de la feuille.

3.2.2. Impact de la pollution atmosphérique sur les cultures

Effet des concentrations d'ozone sur la culture du blé

La canicule en 2003 et le printemps chaud en 2006 ont mis en évidence l'impact de deux facteurs qui évoluent ces dernières années: le changement climatique et les concentrations d'ozone troposphérique. Les concentrations d'ozone plus élevées durant la période printanière (en lien avec des températures plus fortes) réduisent l'activité d'un enzyme clef de la photosynthèse: la Rubisco

Effet des concentrations de CO,

De nombreux travaux scientifiques ont mis en avant l'effet fertilisant du CO_2 à condition que les autres facteurs influençant la croissance végétale ne soient pas limitants. Il est avéré que la vitesse de photosynthèse des plantes augmente avec la concentration en CO_2 environnante. Attention toutefois, la fixation accrue de ce gaz s'accompagne en général d'une augmentation de l'utilisation de l'eau disponible dans le sol.

Effet du climat sur l'agriculture

Avec l'augmentation des températures moyennes, la photosynthèse et la respiration des plantes et des micro-organismes augmentent (augmentation de croissance). Toutefois les températures supérieures à 40-45 °C sont généralement néfastes, car elles entraînent la dénaturation du système enzymatique de l'organisme. L'augmentation de la température entraînerait dans les moyennes latitudes un allongement de la saison de croissance des cultures.

La disponibilité en eau pour les plantes est intimement liée aux précipitations et à d'autres facteurs (température, structure du sol...). Dans le futur, on s'attend à des sécheresses de plus en plus généralisées entraînant un risque croissant de déficit hydrique. De plus, la hausse des températures pourrait provoquer (couplée à la hausse du rayonnement) une augmentation de l'évapotranspiration.

Outre l'intensité des précipitations, un décalage de la période des pluies affecterait la croissance des végétaux (déphasage disponibilité de l'eau et croissance des cultures).

En Alsace, effets opposés selon les cultures

En Alsace, le maïs est une culture très répandue. Les rendements actuels en Alsace sont les meilleurs au niveau national et se situent entre 90 et 100 tonnes de matière sèche par hectare (70 à 90 tonnes dans les régions voisines). Leurs rendements, dans un contexte de pluviométrie déjà faible, diminueraient progressivement au cours du siècle (à l'inverse des régions voisines).

À l'inverse, les évolutions climatiques attendues en Alsace devraient contribuer à une augmentation de la culture et du rendement du colza (diminution du risque de gel).

Les cultures de tournesol en Alsace devraient voir leurs rendements globalement augmenter (disponibilité thermique de la région) à condition que la réserve utile en eau du sol soit suffisante.

3.2.3. Impact de la pollution atmosphérique sur les écosystèmes

Impact sur les massifs forestiers

Les principaux polluants acidifiant l'atmosphère sont le dioxyde de soufre, les oxydes d'azote, et l'ammoniac. En atmosphère humide, il se forme des acides sulfuriques et nitriques susceptibles de retomber sous forme de dépôts acides. Ces précipitations vont avoir un effet sur l'environnement de la plante en lessivant les éléments nutritifs du sol et en solubilisant des métaux lourds toxiques qui seront alors biodisponibles.

L'effet des dépôts acides, couplé aux propriétés oxydantes de la pollution à l'ozone, peut entraîner une dégradation généralisée d'un écosystème forestier si ce dernier est déjà fragilisé par un passé cultural ayant appauvri les sols.

Phénomène d'Eutrophisation

L'eutrophisation est un phénomène qui se définit par un apport en excès de substances nutritives (en général azote et phosphate) dans un écosystème, engendrant ainsi la prolifération de certains végétaux et débouchant sur l'asphyxie du milieu. Les dépôts d'azote sur un sol peuvent entraîner une modification indésirable de la composition du couvert végétal et une sensibilité accrue à certains agents pathogènes.

3.3 Impact sur le patrimoine bâti

Le patrimoine bâti est confronté à des problèmes de pollution notamment dans les agglomérations où les densités d'émissions de polluants sont les plus importantes. L'impact va dépendre d'une part des polluants considérés et d'autre part des matériaux de construction (pierre, métal, verre, bétons, briques...) et des concentrations auxquelles ils sont soumis.

3.3.1. Exemple du dioxyde de soufre

Le dioxyde de soufre a un impact direct sur les matériaux de construction. Si les réactions de dégradation restent lentes avec la forme gazeuse, elles sont beaucoup plus rapides en présence d'eau et de catalyseurs métalliques. En effet, combiné à l'eau le dioxyde de soufre (SO₂) forme de l'acide sulfurique (H₂SO₄).

En contact avec une pierre calcaire, la pollution soufrée entraîne la formation de « croûtes noires » (cristaux de gypse – sulfate de calcium). Au-delà des dommages esthétiques, les dégradations de la pierre sont très importantes sous ces croûtes. Malgré la forte diminution des émissions de dioxyde de soufre, et par conséquent des concentrations dans l'air, les « croûtes noires » persistent.

Les « croûtes noires » peuvent également se développer sur les métaux et provoquer de la corrosion, notamment sur les éléments d'ornements extérieurs en bronze. Les bétons réagissent également avec les composés soufrés jusqu'à l'aboutissement de l'éclatement du béton.

Les vitraux du XIIIº siècle sont particulièrement sensibles à la pollution soufrée en raison de leur fabrication à base de fondant potassique (cendres de bois de fougères). Ils subissent, sur leur face externe, une dissolution sélective du potassium et du calcium (lixiviation) avec la formation d'une couche de gypse conduisant à un obscurcissement du verre ou à la formation de cratère.

Impact économique

L'impact économique – potentiellement important – est lié aux coûts de nettoyage des salissures (considération esthétique) et à la restauration du patrimoine historique (monument en calcaire et vitraux médiévaux par exemple).

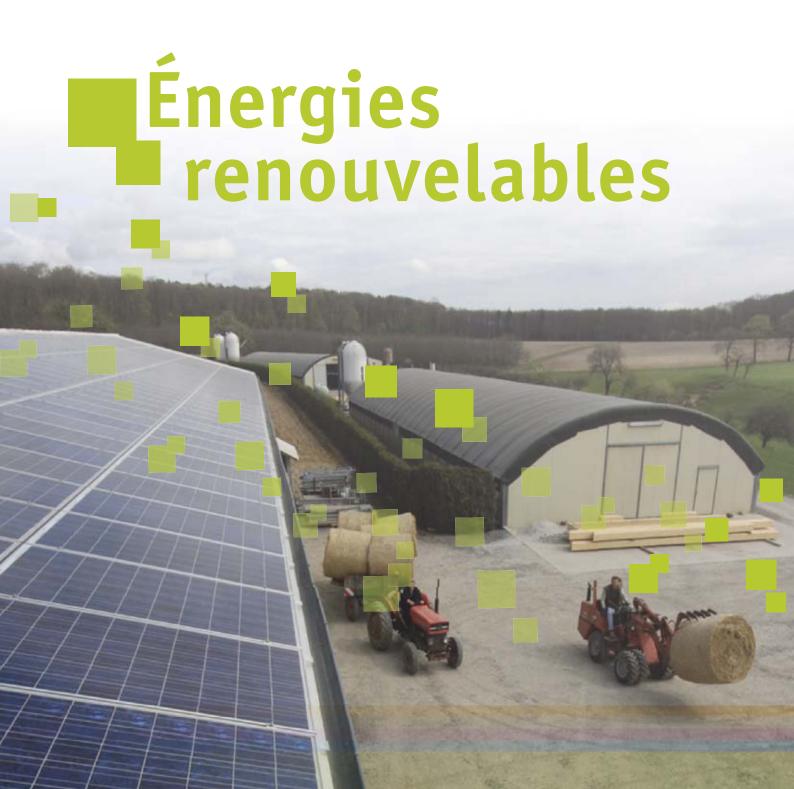
Le patrimoine bâti en Alsace

L'Alsace est dotée d'un riche patrimoine bâti avec 1340 monuments protégés dont 307 classés. Parmi ces monuments, figurent de nombreuses constructions en grès des Vosges particulièrement sensibles à la pollution acide et particulaire (formation de cristaux de gypse). Les centres historiques des villes constituent des zones particulièrement exposées à cet égard.

Les variations attendues des concentrations des différents polluants sont contrastées.

Pour la pollution photochimique (ozone) deux éléments sous-tendent l'évolution des niveaux:

- Les émissions de précurseurs (oxyde d'azote et COV) à l'échelle continentale (à la baisse conformément aux engagements internationaux de réductions des émissions),
- et l'augmentation des épisodes de fortes chaleurs estivales en lien avec le changement climatique (occurrence de canicule renforcée).


Les particules (même en légère diminution ces dernières années) resteront à des niveaux présentant des dépassements de valeurs limite durant encore plusieurs années en raison de l'impact des émissions des véhicules diesels et du développement du chauffage au bois sur l'évolution des niveaux de particules (PM10 et PM2,5).

Dans la région, l'évolution future des niveaux en dioxyde d'azote restera également un enjeu majeur en proximité trafic.

Schéma régional

Climat Air Énergie Alsace

Le contexte national

L'objectif européen est, à l'horizon 2020, d'atteindre une proportion de 20 % d'énergies renouvelables dans la consommation d'énergie finale. Cet objectif, déclinable par État Membre, a été fixé à 23 % pour la France.

En France, la production d'énergies renouvelables (ENR) dans la consommation finale était d'environ 12% en 2009 et a atteint 12.9% en 2010.

L'illustration ci-contre précise la répartition de la production d'ENR entre les différentes filières au niveau national.

Le plan d'action national en faveur des énergies renouvelables (PNA) prévu par la directive européenne ENR fait apparaître la contribution attendue de chaque filière afin d'atteindre l'objectif de 23 % pour la France. Le tableau ci dessous donne une première indication sur les valeurs à atteindre en 2020.

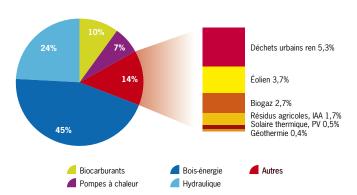


Illustration I: Part de chaque filière dans la production primaire d'énergie renouvelable en 2010 (en %)

	Situation 2005 (bilan SOeS)	Situation 2010 (bilan SOeS)	Objectif 2010 (PNA)	Objectif 2012 (PNA)	Objectif 2020 (PNA)
	en ktep	en ktep	en ktep	en ktep	en ktep
	(À)	(B)	(C)	(D)	(E)
Électricité renouvelable					
Hydraulique normalisé ¹	5723	5494	5 4 9 5	5504	5541
Éolien normalisé ²	101	903	1001	1544	4979
Photovoltaïque	2	58	53	116	592
Marémotrice	41	41	43	49	99
Géothermie	82	13	132	187	409
Biomasse	320	419	468	558	1 477
Total électricité renouvelable	6270	6928	7 191	7959	13097
EnR thermiques pour chaleur ³					
Solaire thermique	37	89	130	185	927
Géothermie profonde	130	90	155	195	500
PAC (pompes à chaleur)	164	1336	886	1300	1850
Biomasse solide	8954	10711	9870	10456	15900
Bois-énergie	8371	9724			
- individuel	6550	7581	6835	6945	7400
- collectif/tertiaire	197	379			
- industrie	1584	1724			
Déchets urbains incinérés	382	495			
Autre biomasse	201	491			
Biogaz	85	129	83	86	555
Total EnR thermiques pour chaleur	9370	12356	11 124	12222	19732
Biocarburants ⁴	403	2708	2715	2900	3500
Total consommation finale EnR	16043	21992	21030	23081	36329

¹ La production hydraulique normalisée (hors pompage) de l'année n est obtenue en multipliant les capacités du parc de l'année n par la moyenne sur les quinze dernières années du rapport « productions réelles/capacités installées ».

Illustration II: Consommation finale d'énergie renouvelable Métropole + DOM (en Ktep) Source: SOeS, bilan de l'énergie 2010

² La production éolienne normalisée de l'année n est obtenue en multipliant les capacités moyennes de l'année n (soit [capacité début janvier + capacité fin décembre]/2) par la moyenne sur les cinq dernières années du rapport « productions réelles/capacités moyennes installées ».

³ Les combustibles utilisés pour la production de chaleur ou de froid (notamment le bois-énergie) sont comptabilisés en données primaires réelles (pas de correction climatique).

⁴ Seuls les biocarburants sont comptabilisés dans cette rubrique. Pour le calcul de la part d'énergie renouvelable dans les transports, il faut y ajouter la part d'électricité renouvelable dans les transports.

Le contexte régional

En 2009, en Alsace, la production des énergies renouvelables par rapport à la consommation d'énergie finale représente 17,5 % environ. La production d'énergies renouvelables est de 938 ktep pour une consommation d'énergie finale d'environ 5400 ktep.

Cette situation, meilleure que la moyenne nationale à l'heure actuelle, s'explique notamment par l'exploitation de longue date de centrales hydroélectriques sur le Rhin et par une présence importante de forêts exploitées. Ces deux filières constituent à elles seules plus de 90 % de la production d'ENR alsacienne (70 % au niveau national). Les autres ENR représentent encore une part marginale de la production mais affichent des potentiels de développement encore inexploités.

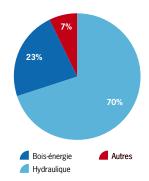


Illustration III: Part des ENR dans la production d'énergie renouvelable en 2009 en

L'ensemble des filières ENR a été étudié dans le cadre du SRCAE en s'appuyant notamment sur les éléments d'information déjà existants en Alsace, issus notament de la Conférence Régionale pour l'Énergie et l'Atmosphère (CREA). Des contributions, qui figurent dans les cahiers techniques, ont été élaborées pour étudier dans le détail chaque filière et permis d'élaborer les synthèses (qui figurent ci après dans le document) et les fiches d'orientations associées.

Pour pouvoir comparer facilement les énergies provenant de sources différentes, on utilise une unité commune qui fait référence au pétrole: la tonne équivalent pétrole ou tep.

Les filières suivantes seront étudiées dans le document:

- hydroélectricité
- · biomasse bois
- · biomasse déchets
- · biomasse agricole
- · agrocarburants
- géothermie
- solaire thermique
- · solaire photovoltaïque
- biogaz

Hydroélectricité

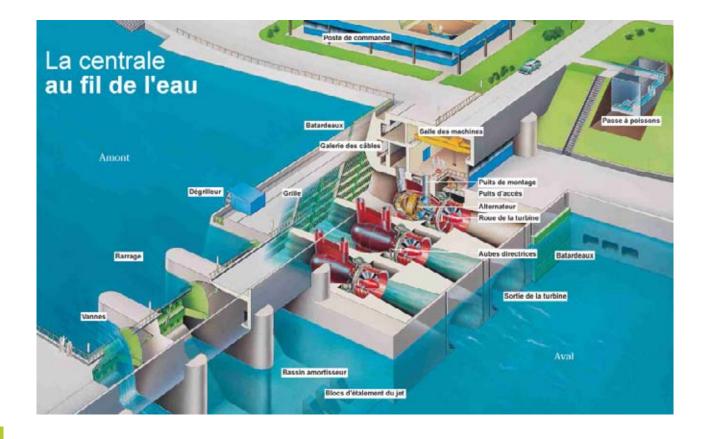
L'hydroélectricité, c'est-à-dire la production d'électricité à partir de la force de l'eau, est apparue au milieu du XIX^e siècle. Appelée la "houille blanche", elle a été synonyme d'un développement économique très important.

Elle représente, en 2010, environ 25 % dans le mix énergies renouvelables de la France.

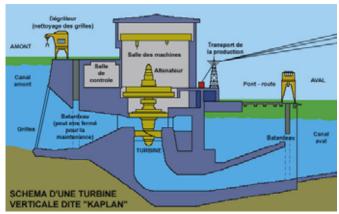
1. Présentation de la filière

Toutes les centrales hydrauliques fonctionnent selon un même principe, elles utilisent la force de l'eau qui coule.

La quantité d'énergie produite dépend soit de la hauteur d'eau, soit du débit disponible, soit des deux à la fois:


- L'eau accumulée derrière un barrage de montagne possède beaucoup d'énergie car elle tombe de très haut sur les turbines placées dans la vallée.
- L'eau turbinée sur un grand fleuve ne tombe pas d'aussi haut, mais son débit (la quantité d'eau qui passe) est très important.

Il y a deux types de centrales hydrauliques en Alsace:


- les centrales au fil de l'eau sur le Rhin ou les rivières, elles utilisent le débit du cours d'eau, sans capacité significative de modulation par stockage.
- les usines de pompage-turbinage, elles font remonter l'eau à leur point de départ après son passage dans les turbines, par exemple entre deux lacs de montagne.

La puissance d'une installation hydroélectrique est proportionnelle à la hauteur de chute et au débit, ainsi qu'au rendement du système qui convertit l'énergie potentielle de l'eau en énergie électrique

En général, le productible est donné pour une année de fonctionnement.

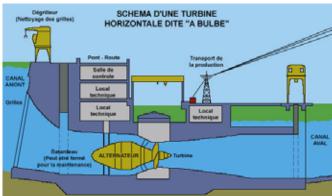


Illustration I: Schémas de principes de centrales hydroélectriques

2. État des lieux en Alsace

2.1. Études

Plusieurs études, dont la liste se trouve dans les cahiers techniques ENR joints, ont été déjà réalisées en Alsace concernant l'hydroélectricité pour réaliser des états des lieux et déterminer le potentiel pour la région. Parmi elles, nous pouvons citer l'étude réalisée dans le cadre de la révision du Schéma Directeur d'Aménagement et de Gestion de l'Eau (SDAGE) des bassins Rhin et Meuse par l'Agence de l'Eau en avril 2008 ou encore des études plus ponctuelles comme celle réalisée plus récemment par le Conseil Général 68 sur le département du Haut-Rhin en 2010.

2.2. Hydrographie

Le réseau hydrographique alsacien, particulièrement dense, est formé de trois systèmes: celui de l'III (et ses affluents), celui du Rhin et celui de la Sarre. Les deux premiers systèmes cheminent parallèlement vers le nord à une dizaine de kilomètres de distance jusqu'au-delà de Strasbourg où l'III rejoint le Rhin immédiatement à l'aval de l'usine hydroélectrique de Gambsheim. Le réseau de la Sarre rejoint à l'Ouest, la Moselle.

Les valeurs représentatives des débits moyens annuels (appellés autrement module) pour ces rivières en différents points de leur bassin versant sont les suivantes:

Pour le Rhin Identification du point	Surface du bassin versant en km²	Module en m³/s
Kembs	35370	1050
Neuf-Brisach	36494	1060
Strasbourg	39650	1075
Confluence avec l'III	45515	1 177
Seltz-Plittersdorf	48354	1 235
Lauterbourg	49300	1 255

Tableau 1 : Débits du Rhin en différents points

Pour l'III Identification du point	Surface du bassin versant en km²	Module en m³/s
Altkirch	233	2
Didenheim	656	6
Ensisheim	1038	11
Colmar Ladhof	1784	19
Ohnheim	3280	36
Chasseur-Froid	4600	54

Tableau 2 : Débits de l'III en différents points

Pour la Sarre Identification du point	Surface du bassin versant en km²	Module en m³/s
Confluent du Landbach	507	5
Confluent de l'Isch	716	7
Keskastel	878	9
Confluent de l'Albe	1302	13
Confluent de l'Eichel	1663	17
Sarreinsming	1 759	19

Tableau 3 : Débits de la Sarre en différents points

On constate des différences très importantes entre les modules du Rhin et des autres rivières. Par exemple, le débit du Rhin est 25 fois supérieur à celui de l'III à la confluence.

Illustration II: Carte du réseau hydrographique des cours d'eau alsaciens

Cette carte prend également en compte les canaux, qui apparaissent en rectiligne. En été, certains servent pour assurer le soutien d'étiage de l'III en prélevant de l'eau du Rhin.

2.3. Installations existantes et production

2.2.1. L'aménagement du Rhin

L'aménagement du Rhin tant pour la navigabilité que l'utilisation de la force motrice a débuté au XIX^e siècle et s'est fait en plusieurs phases.

La première partie de l'aménagement du Rhin comprend les quatre usines hydrauliques se trouvant sur le grand canal d'Alsace (Kembs, Ottmarsheim, Fessenheim et Vogelgrün). Cet ensemble était complété par l'usine de turbinage/pompage du Lac Noir dans le but d'absorber en partie l'énergie produite de nuit à Kembs pour la restituer de jour. La deuxième partie comprend les quatre usines de Marckolsheim, Rhinau, Gerstheim et Strasbourg aménagées sous forme d'île. La troisième partie comprend, les deux usines en ligne franco-allemandes de Gambsheim et d'Iffezheim. L'aménagement de la dernière section formant la frontière entre la France et l'Allemagne prévoyait un dernier barrage situé à proximité d'Au am Rhein en Allemagne avec un partage de l'énergie produite entre les deux pays. Cette dernière unité, dont la construction a été abandonnée, avait également pour objectif de garantir la tenue du profil d'équilibre du Rhin.

La centrale de Breisach, de plus petite puissance, est installée sur le Vieux-Rhin, avant la confluence entre le Grand Canal et le Vieux-Rhin.

La carte suivante montre la position des différents aménagements du Rhin

Illustration III: Aménagement du Rhin

Les caractéristiques des installations et l'énergie hydraulique produite depuis 2002

Nom	Puissance	Prod	Production d'énergie primaire annuelle (GWh/an) pour la France					Débit maximum turbinable		
de l'installation	installée (MW)	2002	2003	2004	2005	2006	2007	2008	2009	en m³/s
KEMBS à 80 %	147,39	806	601	684	661	717	712	750	692	1 400
OTTMARSHEIM	158,00	1093	800	905	882	941	979	984	921	1 400
FESSENHEIM	175,00	1 172	838	961	913	1006	1050	1058	973	1 400
VOGELGRUN	125,00	921	651	748	714	776	821	818	762	1400
MARCKOLSHEIM	173,20	1003	720	830	790	888	923	916	850	1 400
RHINAU	169,96	1001	721	827	803	902	936	920	849	1 400
GERSTHEIM	151,70	910	659	730	714	768	819	803	748	1400
STRASBOURG	149,60	984	716	798	771	828	889	880	815	1 400
GAMBSHEIM à 100 %	110,00	666	555	620	576	603	605	639	601	1 100
IFFEZHEIM	110,00		énergie distribuée sur le réseau allemand					1 100		
BREISACH	2,70	/	/	/	/	/	/	/	20	60
Total	1472,55	8556	6261	7103	6824	7429	7734	7768	7231	

Tableau 4: Tableau de production des installations hydrauliques du Rhin

Différents accords internationaux existent entre la France, la Suisse et l'Allemagne pour la répartition de la production d'électricité. Ainsi, la centrale de Kembs produit à 20 % pour la Suisse, les centrales de Gambsheim et d'Iffezheim à 50 % pour l'Allemagne. Physiquement, l'intégralité de la production de Gambsheim alimente le réseau électrique français et l'intégralité de la production d'Iffezheim alimente le réseau allemand. Ce sont des réajustements comptables qui sont faits entre les deux pays en fonction des différences de production des deux usines et de l'impératif de répartition équitable à respecter. Par la suite, l'analyse portant exclusivement sur la production d'énergie vers les réseaux de distribution, il a été pris en considération 100 % de la production de Gambsheim sans tenir compte des ajustements comptables d'Iffezheim.

La production, à destination du réseau français, de l'ensemble de ces installations en 2009 a été d'environ 7231 GWh. L'Alsace produit ainsi environ 45 % de son énergie électrique grâce à l'hydro-électricité du Rhin.

Les variations interannuelles de production sont fonction du débit du fleuve. En moyenne, ces dernières années (2006-2009), elle était de l'ordre de 7540 GWh soit 650 ktep. On peut cependant noter que dans des années sèches, comme en 2003, la production est descendue à 6261 GWh soit 540 ktep. On peut noter également des variations interannuelles par usine qui sont liées à des

indisponibilités de groupes pour des raisons de maintenance et d'entretien courant

2.2.2. La centrale du Lac Noir

Le principe consiste à échanger la même eau entre le Lac Blanc et le Lac Noir, séparés par 120 m de dénivelé. À l'origine, reliée directement à Kembs, la centrale avait pour but de produire de l'électricité en journée et d'utiliser la production nocturne de Kembs pour le pompage de l'eau vers le lac supérieur.

Cette centrale est à l'arrêt depuis 2002 suite à un incident technique. Il est cependant envisagé de la remettre en fonctionnement, pour une puissance installée de 50 MW environ.

Consommatrice d'énergie pour remonter l'eau, elle n'est pas considérée comme productrice d'énergie de source renouvelable mais présente un intérêt fort pour le lissage de la pointe électrique.

2.2.3. La petite hydroélectricité

Les autres installations existantes en Alsace relèvent de la petite hydroélectricité et sont réparties sur les affluents en rive gauche du Rhin.

On dénombre en Alsace une centaine de petites installations hydroélectriques de faible puissance (inférieure à 500 kW pour la majorité).

Le tableau suivant, basé sur différentes sources d'information disponibles, permet d'estimer la puissance cumulée installée et la production alsacienne:

	Étude du potentiel (Agence de l'eau)	Étude CREA (ADEME) - 2000 -	Obligation de rachats (ES et EDF)
Nombre d'installations	96	95	42 – chiffre 2009 -
Puissance installée en MW	11,6	5,8 (hors III)	9,4 – chiffre 2009
Production en GWh/an	54	18,7	16,5 – moyenne 2001- 2009

Tableau 5 : Recensement de la petite hydroélectricité à travers différentes études

Selon les données d'achat d'électricité disponibles auprès des principaux distributeurs couvrant la période 2001-2009, les fluctuations inter-annuelles sont les suivantes en GWh/an:

	2001	2002	2003	2004	2005	2006	2007	2008	2009
données EDF	14,63	13,04	7,56	11,22	9,86	12,61	14,18	13,09	10,85
données ES	12,71	12,53	12,03	13,93	14,21	18,36	21,64	21,31	21,71
Total	27,34	25,57	19,59	25,15	24,07	30,97	35,82	34,40	32,56
Moyenne	28,39								

Tableau 6: Chiffres de production de la petite hydroélectricité issus de l'obligation d'achat

Au même titre que pour le Rhin, ces variations s'expliquent par les variations de débit des rivières alsaciennes qui sont essentiellement fonction de la pluviométrie.

La centaine de petites installations présentes en Alsace conduirait ainsi à une puissance cumulée installée de l'ordre de 12 MW pour une production annuelle d'environ 30 GWh.

d) Production d'hydroélectricité en Alsace

En reprenant les éléments précédents concernant l'état des lieux, la production totale d'hydroélectricité en Alsace, pour le réseau français, peut être estimée de la manière suivante:

Type d'installations	Puissance installée en MW	Production moyenne annuelle (GWh/an)
Grande hydroélectricité	1 472,55	7540
Petite hydroélectricité	12	30
Total	1 484,55	7 5 7 0

Tableau 7: Bilan de puissance et production hydroélectrique en Alsace

La production annuelle moyenne d'hydroélectricité en Alsace provient donc à plus 99,5 % de la grande hydraulique. Rapportée en équivalent pétrole, cette production équivaut à environ 650 ktep par an.

3. Cadre réglementaire

3.1. Protection de la ressource

Le contexte européen:

- La Directive Cadre sur l'Eau affiche le rétablissement de la continuité écologique sur le Rhin comme l'un de ses enjeux majeurs identifié. Ceci nécessitera des interventions sur la majeure partie des cours d'eau alsaciens pour atteindre l'objectif du bon état des masses d'eau à l'horizon 2027 au plus tard.
- Le plan de gestion adopté par la commission européenne relatif au règlement instituant des mesures de reconstitution du stock d'anguilles, met en place une zone d'action prioritaire couvrant environ une grande moitié de la plaine d'Alsace impliquant une prise en compte de cette espèce pour les installations hydroélectriques.

En parallèle, le plan Rhin 2020, adopté lors de la conférence sur le Rhin à Strasbourg en 2001, a fixé comme objectifs de rétablir la continuité écologique sur le cours principal du Rhin, du lac de Constance jusqu'à la mer du Nord.

Afin d'équilibrer les usages de l'eau, entre la préservation des milieux aquatiques et la production d'énergie renouvelable via l'hydroélectricité, et pour répondre aux attentes des exigences européennes, le législateur a mis en place un ensemble de dispositions qui sont les suivantes:

■ Le projet de révision des classements des cours d'eau au titre de l'article L.214·17 du code de l'environnement instaurant la mise en place de deux listes respectivement pour la préservation et la reconquête de la continuité écologique, y compris le transport solide. Cette disposition a pour vocation en Alsace de répondre aux objectifs d'atteinte du bon état écologique des masses d'eau concernées à l'horizon 2015 et de permettre la libre circulation piscicole des grands migrateurs au sein de la zone d'action prioritaire pour l'anguille et les principaux cours d'eau à saumon (III, Bruche, Giessen, Liepvrette, Fecht, Weiss, Doller).

Projet de classement en liste 1 au titre de l'article L214-17 du Code de l'Environnement Région Alsace

Illustration IV: Classement liste 1

Projet de classement en liste 2 au titre de l'article L214-17 du Code de l'Environnement Région Alsace

Illustration V: Classement liste 2

■ Le relèvement des débits réservés au titre de l'article L.214-18 du code de l'environnement instaurant un débit minimal biologique permettant la préservation des milieux aquatiques. En Alsace, tous les cours d'eau sont concernés à l'exclusion du Rhin dépendant des accords internationaux cités ci-dessus.

Les engagements du Grenelle de l'Environnement pour la préservation et la restauration de la biodiversité passent, entre autres, par la trame verte et bleue qui met en place des objectifs de maintien et/ou de reconquête de corridors écologiques. Par exemple, la préservation de l'anguille fait l'objet d'un règlement européen.

3.2. Tarif d'achat de l'électricité produite à partir de l'hydraulique

L'arrêté tarifaire du 1er mars 2007 permet d'obtenir un tarif d'achat de l'électricité produite à partir de l'hydraulique.

Deux éléments s'additionnent pour ce tarif:

- un tarif de base à 6,07 c€/ kWh;
- une prime comprise entre 0,5 c€/ kWh et 2,5 c€/ kWh pour les petites installations et une prime comprise entre 0 et 1,68 c€/kWh en hiver selon la régularité de la production.

L'arrêté du 14 mars 2011, dit « arrêté rénovation », ouvre également le droit au tarif d'obligation d'achat pour les centrales hydrauliques qui ont ou vont faire l'objet d'investissements de rénovation. Il offre ainsi aux exploitants hydroélectriques la possibilité de bénéficier de nouveau de tarifs garantis par l'État pour la vente de leur électricité, sous réserve d'effectuer certains investissements validés par l'administration.

3.3. Objectif du Grenelle

Le Gouvernement s'est fixé des objectifs ambitieux en matière de production d'hydroélectricité avec une augmentation de la puissance nationale installée de 3000 MW en 2020 au regard des 21000 MW déjà installés, soit une augmentation de 15 % tout en maintenant la restauration des continuités écologiques (trame verte et bleue) et le bon état écologique des masses d'eau (66 % en bon état en 2015).

3.4. Renouvellement des concessions du Rhin

En France, l'exploitation de l'énergie hydraulique des cours d'eau est régie par la loi du 16 octobre 1919. Le texte établit que l'énergie contenue dans les chutes d'eau est un bien national dont l'État se réserve l'usage. Les ouvrages dont la puissance excède 4,5 mégawatts (MW) sont placés sous le régime de la concession, qui, selon la loi Sapin de 1993, se réalise à la suite d'une procédure d'appel d'offre. L'État est propriétaire des ouvrages mais le cahier des charges confie de larges prérogatives au concessionnaire: aménagement, entretien, respect des dispositions garantissant la sécurité et la protection de l'environnement.

Nom de l'installation	Date du décret/arrêté	Date d'expiration titre
KEMBS	17/06/2009	31/12/2035
OTTMARSHEIM	08/04/1928	31/12/2028
FESSENHEIM	25/09/1959	31/12/2032
VOGELGRUN	30/06/1962	31/12/2035
MARCKOLSHEIM	10/05/1971	31/12/2037
RHINAU	10/05/1971	31/12/2040
GERSTHEIM	10/05/1971	31/12/2044
STRASBOURG	10/05/1971	31/12/2048
GAMBSHEIM	18/02/1976	31/12/2049
BREISACH	Accord franco-allemand du 20/06/2000	31/12/2049

Tableau 8: Échéances en matière de renouvellement des concessions hydroélectriques du Rhin

Le renouvellement des concessions hydroélectriques est un enjeu important pour l'État qui souhaite tirer le meilleur parti de ces installations en terme énergétique (puissance installée, capacité de modulation), économique (afin de tirer bénéfice de ces installations amorties) et environnemental (énergie renouvelable non émettrice de gaz à effet de serre) à condition de limiter l'impact des ouvrages sur les milieux aquatiques.

4. Avantages/Inconvénients

4.1. Environnemental

Un des atouts majeurs de la production d'hydroélectricité est qu'elle ne génère pas d'émissions atmosphériques. Elle s'appuie uniquement sur le cycle de l'eau.

Le principal impact des installations hydroélectriques sur l'environnement est qu'elles constituent une barrière pour la faune aquatique. Les installations sont des obstacles pour les poissons migrateurs (ex: saumon ou anguille en Alsace...).

Les barrages occasionnent également une rupture du transport solide à savoir le transport de sédiments (particules, argiles, limons, sables, graviers...) dans les cours d'eau pouvant s'effectuer soit par suspension dans l'eau, soit par déplacement sur le fond du lit du fait des forces tractrices liées au courant essentiel à l'équilibre des cours d'eau et au maintien des habitats aquatiques.

Les installations hydroélectriques peuvent également entraîner une modification des conditions d'écoulement naturel des cours d'eau. Il existe un risque de rupture et donc d'inondation pour les installations sous forme de barrage. Les petites installations d'hydroélectricité ne sont que très peu concernées par ce risque du fait de leur petite taille et de leur fonctionnement au fil de l'eau le plus généralement.

Certains sites peuvent perdre de leur esthétique en raison des constructions de l'installation.

4.2. Économique

Grâce à la production continue d'électricité, les ouvrages peuvent être rapidement rentables, en fonction de la nature des travaux à réaliser, et permettent de produire de l'électricité à un tarif compétitif.

Actuellement, les installations, dont la puissance est inférieure à 12 MW et qui ne fonctionnent pas en autoconsommation, bénéficient de l'obligation d'achat selon l'arrêté ministériel du 1er mars 2007.

4.3. Social

La petite hydraulique peut apporter de l'électricité dans des endroits reculés, maintenir ou créer une activité économique dans une zone rurale.

Des créations d'emplois peuvent être générées par la production d'hydroélectricité. On peut également signaler le risque de conflit d'usage entre l'hydroélectricité et d'autres activités (pêche, sports d'eau par exemple).

5. Potentiel de développement

5.1. Développement de la grande hydroélectricité

- Équipement d'Iffezheim et de Gambsheim: Par une convention additionnelle de mars 1994 à la Convention du 4 juillet 1969 relative à l'aménagement du Rhin, la France et l'Allemagne se sont entendues sur l'extension des usines d'Iffezheim et de Gambsheim. D'un point de vue pratique, les deux ouvrages étant parfaitement symétriques, il a été admis que la production de Gambsheim revenait à la France et la production d'Iffezheim à l'Allemagne.

Les travaux en cours de réalisation à Iffezheim consistent en un suréquipement des installations existantes avec la construction d'un cinquième groupe de turbinage. La mise en service de l'installation est programmée pour 2012. Pour rappel, la production d'Iffezheim est comptabilisée pour l'Allemagne.

Le projet actuel de Gambsheim consiste également en un suréquipement des installations existantes avec la construction d'un cinquième groupe de turbinage qui permettra à échéance 2015 :

- l'augmentation du débit turbinable de 300 à 400 m³/s,
- un gain de puissance de 28 MW (augmentation de 30 % de la puissance installée),
- un gain productible de 100 GWh/an (augmentation d'environ 15 % de la production annuelle).
- Les marches en éclusées sur le Rhin sont généralement interrompues lorsque le débit du Rhin à Kembs approche de 1 300 m³/s.

L'évolution proposée par EDF restant à acter par les commissions plénières, consisterait à abaisser, avant la saturation des centrales, tous les biefs de la hauteur correspondant au marnage autorisé, et ce en procédant à l'émission d'un sur-débit puis à ramener ensuite les biefs à la cote de retenue normale pendant l'épisode de crue. Le gain énergétique correspondant à l'extension de la marche en éclusées aux situations de pré-crues est de 2,5 GWh/an.

- L'augmentation du débit réservé dans le Vieux Rhin à savoir 52 m³/s et 150 m³/s en fonction des conditions du Rhin, en vigueur depuis janvier 2011, va engendrer une baisse cumulée de 86 GWh/an dans les centrales de Ottmarsheim, Fessenheim, et Vogelgrün. La production de l'aménagement de Kembs sera complétée par l'investissement dans une nouvelle centrale de restitution pouvant exploiter un débit de 90 m³/s, soit pour la France une production de 38 GWh/an.

Au final, le bilan est négatif avec une perte de production de 48 GWh/an ce qui représente moins de 1 % de la production annuelle moyenne du Rhin.

La construction de passe à poissons par EDF au droit de l'usine de Strasbourg d'ici 2015, prévue au titre de la continuité écologique, depuis la conférence interministérielle de Bonn en 2007, s'accompagnera d'une possibilité de turbinage d'une partie du débit d'attrait de la passe à poissons. Le potentiel n'est à ce jour pas encore connu.

Par ailleurs, une étude de faisabilité pour la réalisation d'une passe à poissons au droit de l'usine de Gerstheim est en cours. Il est également envisageable d'y installer une turbine pour valoriser l'énergie du débit d'attrait.

5.2. Développement de la petite hydroélectricité

Le potentiel résiduel a été calculé, à partir de l'évaluation du potentiel hydroélectrique du bassin Rhin-Meuse, sur les ouvrages existants.

Le croisement du potentiel d'installations nouvelles avec les enjeux environnementaux, notamment les classements des cours d'eau et la zone d'action prioritaire pour l'anguille, conduit à rectifier la répartition du potentiel d'installations nouvelles dans les trois catégories suivantes par rapport à celle présentée dans l'évaluation réalisée dans le cadre du SDAGE:

- catégorie 1: potentiel non mobilisable
- catégorie 2: potentiel mobilisable sous conditions strictes et très difficilement mobilisable
- catégorie 3: potentiel mobilisable « normalement »

Le tableau ci-dessous indique la répartition du potentiel en fonction des 3 catégories.

Catégorie	Ouvrages	Puissance en MW	Productible en GWh/an
1 : potentiel non mobilisable	16	2	9,2
2: Potentiel mobilisable « sous conditions strictes » et « très difficilement mobilisable »	116	8	38
3: potentiel mobilisable normalement	16	1,75	8,2

Tableau 9 : Tableau de répartition du potentiel mobilisable

Pour illustrer la répartition géographique de ce potentiel à l'échelle alsacienne, les cartes ci-dessous montrent les cours d'eau pour lesquels

- Une protection vis-à-vis de la continuité écologique est mise en place.
- Des actions de reconquête de la continuité écologique seront mises en œuvre.
- Les parties du territoire sur lesquelles se trouvent les ouvrages mobilisables normalement.

Cartes à introduire en attente

5.3. Autres pistes

L'aménagement des écluses des canaux de type Freycinet, peut éventuellement être envisagé pour exploiter les hauteurs de chute au droit de ces ouvrages. Il convient toutefois de noter que le potentiel exploitable sera fonction du trafic fluvial puisque le fonctionnement de ces écluses est conditionné au passage de bateaux. Actuellement ce type de trafic est faible en Alsace.

D'autres potentiels, non quantifiés à ce jour, existent sur les réseaux d'adduction en eau potable. En effet, la mise en place de microturbines sur ce type de réseau est possible. Une première installation a été réalisée à Nice en mai 2010.

5.4. Bilan de développement

Nature de l'opération	Puissance en MW	Productible en GWh/an
Équipement de Gambsheim	28	100
Marche en éclusées		2,5
Débit réservé du Vieux Rhin		- 86
Centrale de restitution Kembs	10,38	38
Petite hydroélectricité	1,75	8,2
Total	40,13	62,7

Tableau 10: Bilan de développement en puissance et productible

Un productible supplémentaire d'environ 54 GWh par an à l'horizon 2020 est ainisi envisagé avec les opérations en cours pour la grande hydraulique. Le potentiel mobilisable pour la petite hydroélectricité représente quant à lui de 8 GWh par an.

En intégrant également d'éventuelles améliorations des performances des installations sur le Rhin, la potentiel total estimé pour 2020 est de 10 ktep dont 9 ktep pour la grande hydraulique et 1 ktep pour la petite hydraulique.

Biomasse bois

La biomasse solide représente les matériaux d'origine biologique qui peuvent être employés comme combustibles pour la production de chaleur et/ou d'électricité. Ce sont principalement les ressources ligneuses d'origine:

- forestière, aussi appelées bois-énergie: le bois bûche, les granulés de bois, les déchets de bois, sous forme de plaquette ou de sciure, et les déchets industriels banals du bois;
- agricole, ou les matières organiques telles que la paille, les résidus de récoltes et les matières animales:
- urbaine, avec les déchets urbains solides renouvelables.

Le volet étudié ci après est dédié au bois-énergie issu de la filière forêt-bois. Une autre partie est consacrée à la biomasse agricole, une autre encore aux déchets.

Le bois énergie représente environ 45 % dans le mix énergies renouvelables de la France en 2010.

1. Présentation de la filière

La filière bois-énergie s'appuie sur différents produits de la filière forêt-bois pour obtenir ses combustibles:

- rémanents, bois d'éclaircies, houppiers;
- élagage;
- produits connexes de la première et de la seconde transformation (écorces, copeaux, sciures, chutes, etc.);
- broyats d'emballages perdus: palettes, caisses, cagettes.

Les types de combustibles sont donc divers, mais trois principaux produits se dégagent:

- le bois en bûche: il est principalement destiné aux particuliers et se développe de plus en plus auprès d'une clientèle d'urbains et de périurbains. Il peut être utilisé avec toute une série d'équipements (cheminées, inserts, poêles, cuisinières, etc.). Il s'agit du combustible bois nécessitant le moins de transformation (abattage, fendage).
- la plaquette: elle est principalement destinée aux chaudières collectives et à la cogénération (co-production d'électricité et de chaleur sous forme de vapeur d'eau). En effet, les capacités de stockage doivent être importantes pour garantir une autonomie suffisante à la chaudière. Deux types de plaquettes sont toutefois à distinguer:
 - la plaquette forestière, qui est un produit à part entière issu du broyage de rémanents, houppiers, etc. Elle correspond à une valorisation de produits de la forêt ou

- éventuellement de l'entretien des paysages qui, par ailleurs, ne trouvent pas ou peu de débouchés.
- la plaquette de scierie, qui est un sous-produit de l'industrie de la première transformation.
- le granulé (ou pellet): il s'agit de sciures compressées, destinées principalement aux particuliers. Le granulé permet l'utilisation de poêles, ou de chaudières à alimentation automatique qui, couplées à un silo de stockage, ne demande qu'un ou deux approvisionnements par an. L'utilisation de ce combustible est donc plus souple pour le particulier que la plaquette. Il nécessite enfin pour sa fabrication, la dépense énergétique la plus élevée de tous les combustibles bois, de par notamment son procédé de production (séchage de la sciure, compression à haute température, etc.).

Ces différents combustibles sont utilisés dans des unités de combustion variant en fonction des types de projet (insert, poële en habitat individuel, chaudière pour l'habitat collectif ou les collectivités, chaufferie industrielle, unité de cogénération, etc.) et destinés à produire de la chaleur et/ou de l'électricité.

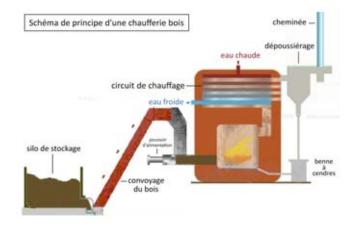


Illustration I: Schéma de principe d'une chaufferie bois

2. État des lieux en Alsace

2.1. Études

Plusieurs études, dont la liste se trouve dans les cahiers techniques ENR joints, ont été déjà réalisées pour la filière bois-énergie en Alsace sur les dix dernières années, en particulier pour estimer et suivre la ressource en bois-énergie disponible.

2.2. Ressources

Avec une forêt qui couvre 38 % de la surface régionale, soit près de 316450 hectares (source: Inventaire Forestier National -IFN-1999-2002), l'Alsace est la 5e région forestière en France en terme de taux de boisement et représente 2 % de la surface forestière nationale (source: IFN).

Son volume sur pied est d'environ 78 millions de m^3 (source: IFN 1999-2002), ce qui correspond à 4 % du volume total de la forêt française.

La forêt alsacienne est productive: son volume à l'hectare est de 245 m³/ha (source: IFN 1999-2002) contre 161 m³/ha au niveau national (source: IFN 2008) et sa production brute annuelle biologique (augmentation en un an du volume de bois sur pied) est de 10,2 m³/ha/an (source: IFN 1999-2002) contre 6,9 m³/ha/an au niveau national (source: IFN 2008).

La propriété des forêts alsaciennes est atypique, puisque 75 % des forêts sont publiques (24 % de forêts domaniales ·État- et 51 % de forêts appartenant à 658 communes forestières · source: Association des Maires des communes Forestières · AMCF-, soit plus des deux tiers des communes alsaciennes) et les 25 % restants appartiennent à plus de 85000 propriétaires privés, dont plus de 91 % ont moins de 1 hectare de forêt et représentent un peu plus de 26 % de la surface forestière privée (source: Centre Régionaux de la Propriété Forestière ·CRPF- Lorraine-Alsace). Cette proportion de la part de forêt publique par rapport à la forêt privée est inversée au niveau national.

Ainsi, la forêt alsacienne est majoritairement gérée par l'Office National des Forêts (ONF), qui intervient en forêts domaniales et communales. Cela implique que la gestion et l'exploitation des bois sont relativement optimisées en Alsace et qu'il n'existe donc que peu de marges de manœuvre en terme de mobilisation supplémentaire, contrairement à d'autres régions françaises. Cette mobilisation supplémentaire se trouve principalement en forêt privée.

Enfin, avec près des ¾ de ses surfaces forestières certifiées par le label de gestion durable Plan European Forest Certification (PEFC), l'Alsace est la première région forestière française dans ce domaine, garantissant ainsi une bonne gestion de son patrimoine forestier (source: PEFC Alsace 31 mars 2010). La récolte en Alsace est de 1,4 million de m³ (source: Entretien Annuel de Branches 2009).

Illustration II: Carte des forêts Alsaciennes par type

2.3. Installations et projets

Le détail des projets et les coefficients de conversion pour arriver au « ktep » figurent dans les cahiers techniques joints.

Destination	Consommation (ktep/an)
Particulier (bois de chauffage)	218,19
Bois en bûche d'origine forestière	167,54
Chaufferies individuelles (granulés en vrac)	2,93
Autres bois	47,72
Chaufferies collectives et industrielles (plaquettes)	40,32
Chaufferies collectives (granulés en vrac)	1,37
TOTAL	259,88

Tableau 1: Synthèse des consommations des produits bois à destination de l'énergie (2009)

Le bois bûche représente donc la part la plus importante de la consommation alsacienne, soit 75%.

La consommation, ci dessus présentée, correspond à la consommation des installations sur le territoire indépendamment de la provenance des matières.

Combustibles bois	Production
Combustibles bols	(ktep/an)
Bois en bûche d'origine forestière	167,54
Part issue des professionnels du bois de chauffage	13,6
Plaquettes forestières	10,56
Produits connexes de scierie	22,27
Plaquettes de scierie	3,37
Copeaux-Sciures	5,34
Écorces	12,64
Purges de grumes, dosses, délignures, etc.	0,92
Produits connexes	2,71
de seconde transformation	2,7 1
Copeaux-Sciures	1,84
Autres bois propres	0,51
Autres bois souillés	0,36
Granulés	0
Déchets industriels Banals	11,28
Broyats de bois propres	3,22
Broyats de bois souillés	6,51
Autres produits bois	1,55
TOTAL	214,36

Tableau 2: Synthèse des productions des produits bois à destination de l'énergie (2009)

La consommation annuelle de bois-énergie en Alsace est estimée à 259,88 ktep tandis que la production régionale est de 214,36 ktep, en considérant uniquement le bois-énergie produit sur le territoire Alsacien. La seule production alsacienne n'est donc pas suffisante pour faire fonctionner l'ensemble des installations, sauf pour le bois bûche qui ne fait pas l'objet d'importation provenant d'autres régions (production = consommation).

Bilan de la consommation prévisionnelle en bois énergie pour les projets en cours de montage ou programmés en Alsace

Pour les projets en cours de montage ou programmés en Alsace (projets de la Commission de Régulation de l'Énergie -CRE- 3 et 4, projets fond chaleur dont Bois Chaleur Industrie Agriculture Tertiaire -BCIAT- et projets du programme Energivie), les ressources nécessaires seraient d'environ 475000 tB/an soit 114 ktep dont 330000 tB/an à prélever en Alsace soit environ 79 ktep.

3. Cadre réglementaire

3.1 Mesures de protection

L'Alsace est concernée par un ensemble de mesures de protection à caractères réglementaires assez conséquent:

86800 hectares de forêts sont inscrits à l'inventaire Natura 2000, Zones Spéciales de Conservations (ZSC) et Zones de Protections Spéciales (ZPS),

- 7500 hectares de forêts sont classés comme forêt de protection à but écologique, notamment le long du Rhin,
- 2100 hectares sont protégés au titre des Réserves Naturelles Nationales (RNN) où aucune exploitation n'est possible,
- 2 100 hectares de forêts sont classés en Réserves Naturelles Régionales (RNR).

L'ONF s'est en outre fixé un objectif de 3 % des forêts domaniales en îlots de vieillissement et de sénescence (certaines de ces surfaces sont pour parties intégrées aux précédentes).

Enfin, la surface des Réserves Biologiques Intégrales (RBI) est de 1709 ha (source: PEFC). Dans ces milieux, la mobilisation du bois est soumise à des contraintes plus élevées et les niveaux de récolte ne sont pas les mêmes que dans les autres forêts.

3.2 Émissions de particules

Le plan particules du Ministère de l'Écologie, de l'Énergie, du Développement Durable et de la Mer (MEEDDM) a prévu de limiter les émissions de particules issues du bois énergie.

3.3 Tarif d'achat de l'électricité produite à partir de biomasse

L'arrêté tarifaire du 27 janvier 2011 permet d'obtenir un tarif d'achat de l'électricité produite à partir de biomasse.

Deux éléments s'additionnent pour définir ce tarif:

- un tarif de base à 4,34 c€/kWh,
- une prime comprise entre 7,71 c€/kWh et 12,53 c€/kWh attribuée selon des critères de puissance, de ressources utilisées et d'efficacité énergétique. Le niveau de la prime est calculé en fonction de cette dernière.

Cela ne concerne cependant qu'un nombre très restreint d'acteurs puisque, pour bénéficier de ce tarif, la puissance électrique minimale de l'installation doit être au moins de 5 MW. Ce seuil est abaissé à 1 MW pour les entreprises de sciage et rabotage du bois dont l'énergie thermique est exclusivement valorisée pour le séchage et autre traitement thermique de la production.

3.4 Code de l'Environnement

Les installations de combustion de bois sont soumises au code de l'environnement.

3.5 Dispositions particulières

Des aides financières peuvent être apportées en fonction du type de projet aussi bien au niveau national (crédit d'impôt, appel à projets de la commission de régulation de l'énergie ou de l'ADEME) que régional (subventions des collectivités locales principalement). Le détail des dispositifs existants est disponible dans les cahiers techniques.

4. Avantages/Inconvénients

4.1. Environnemental

Le bois énergie présente un bilan CO, neutre. En effet, on considère que le CO, absorbé lors de la croissance de l'arbre est restitué dans l'atmosphère lors de sa combustion.

Cette technique permet également la valorisation d'une ressource renouvelable souvent de proximité et l'utilisation de certains produits qui ne trouvent pas de débouchés par ailleurs. Cela permet d'ailleurs de pratiquer certaines opérations sylvicoles qui à terme sont favorables à la production de bois d'œuvre.

Le bois énergie permet aux communes forestières de se gérer en direct et d'être plus indépendantes énergétiquement. De plus c'est une énergie qui comme l'hydraulique peut être stockée: cela permet une régulation de l'énergie et l'adaptation aux besoins par le stock de la matière combustible.

D'un point de vue environnemental, il est nécessaire d'appréhender la problématique de manière globale. Même si, à première vue, il paraît plus intéressant de favoriser le développement de l'utilisation du bois comme source d'énergie, et si cela s'opère au détriment de certains acteurs, une analyse plus complète permet de nuancer cette vision. En effet, une valorisation matière du bois en tant que matériau au travers de la construction, présente plusieurs avantages:

- stockage de carbone,
- utilisation d'un matériau renouvelable
- utilisation d'un matériau faiblement consommateur d'énergie pour sa production et sa mise en œuvre (en comparaison du métal et du béton largement répandus en France),

développement d'habitats constructifs de type "maison basse consommation" car d'un point de vue rapport qualité-prix-technique, le bois est un des matériaux de prédilection pour ces solutions.

Ainsi, l'émergence d'une forte demande de bâtiments économes en énergie, associée à un souhait de développer l'utilisation de matériaux renouvelables possédant un faible impact environnemental, vont probablement entraîner une demande importante de constructions en bois. Or, cette demande ne pourra être satisfaite, que si l'offre, notamment en panneau, est suffisante en quantité et est compétitive en terme de prix (pour mémoire, l'ossature bois s'avère le système constructif en bois le plus répandu, est composée en grande partie à base de panneaux).

À l'heure actuelle, ce problème de conflit d'usage est accentué par le fait que les prix moyens du bois d'industrie, du bois de palette, du hêtre tout usage confondu, sont très proches du prix moyen du bois énergie. Ainsi, le passage d'un usage à un autre peut se faire assez facilement.

La sensibilité physique et chimique des sols (tassement et fertilité) est également à signaler en raison de l'exportation des minéraux compris dans les rémanents forestiers en dehors de la forêt (problème de la fertilité des sols). Concernant ce dernier point, il est de bonnes pratiques de laisser au moins en forêt les branches inférieures à 7 cm de diamètre pour la reconstitution du sol. La Direction territoriale de l'ONF a déjà pris depuis plusieurs années des dispositions en ce sens. Par ailleurs, la prise en compte de la problématique des sols et donc des exportations minérales, notamment sur sols acides, réduit également les possibilités de récolte par une nécessité de retour de la minéralité.

La combustion du bois peut également constituer une source importante de polluants atmosphériques, notamment en ce qui concerne les particules fines et les Hydrocarbures Aromatiques Polycycliques (HAP). Il apparaît donc nécessaire de développer l'utilisation du bois énergie tout en veillant à limiter les émissions de polluants atmosphériques.

4.2. Économique

L'exploitation du bois est liée:

- au coût d'exploitabilité (pente, accessibilité, etc.),
- à la décision du propriétaire de mettre sur le marché ses bois. Même si certains volumes sont potentiellement disponibles, dans la pratique, à cause du morcellement de la forêt privée, ils sont difficilement mobilisables.

L'utilisation de bois ronds à destination de l'énergie peut se faire au détriment des bois à destination de l'industrie dans un premier temps, mais également au détriment de la palette dans un second temps. Il existe donc une possibilité de réorientation des débouchés des bois en fonction du marché. De même, pour la plaquette de scierie et les sciures, des conflits d'usage peuvent apparaître en fonction des prix pratiqués entre une valorisation matière ou énergie.

D'un point de vue économique, les produits forestiers ont toutefois un coût supérieur aux produits connexes de scierie. Ainsi, les produits connexes de la première transformation présenteront toujours un fort attrait et intérêt pour les exploitants d'installation consommant de la biomasse ligneuse.

4.3. Social

L'aspect négatif de la déforestation est présent dans les esprits des gens, même si ce n'est pas du tout le cas en Alsace et en France en général (importance des labels de gestion durable: PEFC, etc.).

D'un point de vue social, dans le cadre d'une démarche de filière, il est nécessaire de maintenir l'ensemble des activités de transformation du bois, notamment par une incitation forte à l'utilisation des produits forestiers qui ne peuvent être valorisés qu'en énergie et qui permettent de créer de l'activité et de la richesse supplémentaire, tout en maintenant l'activité et l'emploi des industries. En effet, en termes d'emplois, une industrie lourde représente au minimum une centaine d'emplois directs, alors qu'une co-génération ne va représenter au plus qu'une dizaine d'emplois directs à consommation de bois équivalente.

Le secteur bois énergie couvre les activités telles que la production et le commerce de combustibles bois, la fabrication d'appareils de chauffage au bois, le commerce d'appareils de chauffage au bois, ou le ramonage. Il regroupe environ 100 établissements en Alsace soit 730 emplois.

Le bois énergie dégage un taux de marge qui représente environ le quart de sa valeur ajoutée, ce qui est relativement plus élevé que dans les autres secteurs. À signaler que 44 % des emplois du bois énergie sont situés dans la zone d'emploi de Molsheim - Schirmeck. Ce secteur, dynamique en Alsace, est porté par le développement des énergies renouvelables, et notamment du bois qu'il soit sous forme de bûches, de granulés (pellets) ou de plaquettes

5. Potentiel de développement

Des études au niveau national sur la disponibilité supplémentaire en forêt ont été réalisées avec des résultats déclinés par région. Ces études sont critiquées et remises en cause par les professionnels de la filière qui estiment que les volumes annoncés sont surévalués. En effet, certains des aspects suivants ne sont pas pris en compte ou le sont que partiellement:

- forêts classées en espace protégé,
- sensibilité physique (tassement) et chimique (retour de la minéralité) des sols,
- non-récolte des bois < à 7 cm,
- organisation foncière de la propriété forestière privée,
- volonté ou non du propriétaire de mettre sur le marché ses bois,
- pertes d'exploitation pour les bois ronds de plus de 7 cm comprises entre 20 et 30 % en Alsace, etc.

Une étude spécifique à l'Alsace montre en effet des volumes disponibles nettement plus faibles. Celle-ci a intégré des critères technico-économiques mais également la volonté du propriétaire de mettre sur le marché ses bois puisque les informations proviennent de ceux-ci.

La disponibilité supplémentaire en Bois Industrie - Bois Énergie (BIBE) a ainsi été estimée, suite à la concertation des membres de la filière forêt-bois alsacienne en 2010, à 118000 tB/an. L'ONF annonce également une disponibilité supplémentaire conjoncturelle pour l'Alsace, sur quelques années, de 100000 m³/an (lisière, bord de route, etc.) soit 90000 TB/an.

Le gisement supplémentaire sur l'Alsace pour les bois ayant un usage potentiel en bois énergie ou en bois d'industrie est donc à l'heure actuelle de 208000 TB/an avec le conjoncturel soit environ 50 ktep.

Au vu des chiffres présentés précédemment et des projets en cours de montage ou programmés en Alsace (79 ktep), la ressource alsacienne en Biomasse-bois est déjà fortement mobilisée.

Biomasse déchets

Selon la définition des directives européennes, la biomasse est « la fraction dégradable des produits, déchets et résidus provenant de l'agriculture, de la sylviculture et de ses industries connexes, ainsi que la fraction biodégradable des déchets non dangereux d'origine industrielle ou issus des collectes municipales ».

Le volet étudié ci après est dédié à la biomasse issue de la fraction biodégradable de ces derniers déchets. Cette fraction participe à environ 6 % dans le « mix énergies renouvelables » de la France en 2010.

1. Présentation de la filière

Une hiérarchie des modes de traitement des déchets a été définie par l'Union européenne dans ses directives. La priorité va à la diminution de la production, puis à la valorisation par recyclage ou compostage, à la valorisation énergétique et enfin à la mise en décharge réservée aux déchets ultimes.

Le Grenelle de l'environnement a repris ces orientations avec des objectifs chiffrés:

- diminution du volume des déchets ménagers et assimilés de 7 % par habitant d'ici 2015;
- valorisation matière et organique de 35 % en 2012 et 45 % en 2015 pour les déchets ménagers et 75 % dès 2012 pour les déchets des entreprises et les emballages;
- réduction de 15 % de la quantité de déchets destinés à l'enfouissement ou à l'incinération d'ici 2012, de manière à réduire les nuisances sanitaires et environnementales induites.

On distingue trois principales catégories de déchets:

- · Les déchets dangereux, essentiellement d'origine industrielle.
- Les déchets non dangereux qui couvrent plusieurs souscatégories de déchets:
 - Les déchets ménagers et assimilés, qui sont gérés dans le cadre du service public de gestion des déchets,
 - Les déchets banals des entreprises, qui sont gérés directement sous la responsabilité des entreprises productrices,
 - Les boues de stations d'épuration,
 - Les déchets agricoles et forestiers.
- Les déchets inertes.

Dans le présent volet, seuls sont traités les déchets non dangereux (DND) à l'exclusion des déchets agricoles et sylvicoles qui sont traités respectivement dans les parties biomasse agricole et biomasse bois.

La valorisation du potentiel énergétique des déchets rentre dans le bilan des énergies renouvelables depuis la directive européenne 2001/77/CE qui a considéré que la biomasse inclut la fraction biodégradable des déchets industriels et municipaux.

Les principaux procédés de production énergétique à partir des déchets sont les suivants:

- l'incinération: consiste en une combustion des déchets qui permet de produire de l'énergie thermique et/ou électrique (cogénération). Bien que les directives européennes demandent que l'élimination soit utilisée en dernier recours, l'incinération a été considérée comme un procédé pouvant bénéficier du statut de valorisation. L'arrêté ministériel du 8 novembre 2007 relatif aux garanties d'origine de l'électricité produite à partir de sources d'énergie renouvelables ou par cogénération, a dans son article 2, précisé que: « la production d'énergie renouvelable à partir d'une usine d'incinération d'ordures ménagères est égale à 50 % de l'ensemble de la production d'électricité produite par l'usine »;
- la production de combustibles solides de récupération (CSR): après un tri des déchets visant à obtenir un pouvoir calorifique homogène et à extraire les substances indésirables (PVC notamment), les produits obtenus peuvent être valorisés dans des installations industrielles spécifiques (cimenteries, papeteries, fours à chaux...) ou dans des usines d'incinération adaptées;
- la méthanisation: produit à partir de déchets organiques, le biogaz est ensuite injecté dans un réseau ou brûlé pour fournir de l'énergie (voir volet traitant du biogaz);

2. État des lieux en Alsace

2.1. Études

Différentes études ayant trait à la valorisation énergétique des déchets ont été menées dans le cadre de la révision des plans départementaux d'élimination des déchets ménagers et assimilés portés par les conseils généraux. Aussi, ces derniers disposent d'observatoires statistiques sur la gestion de ces déchets.

2.2. Ressources

2.2.1. L'incinération des déchets issus des collectes municipales

La production annuelle de déchets ménagers collectés par les municipalités en Alsace est de l'ordre d'un million de tonnes (60 % pour le Bas-Rhin et 40 % pour le Haut-Rhin). Parmi les modes de gestion, l'incinération concerne environ 60 % de ces déchets.

L'Alsace compte quatre unités d'incinération d'ordures ménagères (UIOM) qui traitent environ 0,6 million de tonnes de déchets par an. Les capacités des quatre unités sont les suivantes:

Unités	Capacité maximale	Énergie produite		
	d'incinération en t/an	Type	Production en MWh/an	
Strasbourg (67)	250000	thermique	288000	
Strasbourg (67)	250000	électrique	70000	
Schweighouse	76000	thermique	64000	
sur Moder (67)	76000	électrique	15600	
Colmar (68)	78000	thermique	122000	
Sausheim (68)	175000	électrique	65400	
Total	579000		625000	

Tableau 1 : Énergie produite par les UIOM alsaciennes

Ces quatre unités produisent de l'énergie thermique et/ou électrique.

La production d'énergie de ces quatre unités est de l'ordre de 625000 MWh/an soit environ 55 ktep, ce qui en appliquant la règle de comptage pour une usine d'incinération de déchets, correspond à une production d'énergie renouvelable de l'ordre de 27 ktep par an.

2.2.2. Les gaz de décharges

Quatre principaux centres de stockage des déchets non dangereux (CSDND) existent en Alsace. Trois dans le Bas-Rhin et un dans le Haut-Rhin.

Le centre de Retzwiller dans le Haut-Rhin a mis en place un système de captage du biogaz issu de la décharge. Le gaz est ensuite dirigé vers un groupe turboalternateur. La production d'électricité ainsi obtenue est de l'ordre de 10000 MWh par an soit l'équivalent de 0,86 ktep par an.

2.2.3. L'incinération d'autres déchets organiques

D'autres déchets organiques peuvent être également incinérés. La production d'énergie à partir de ces déchets est de l'ordre de quelques ktep.

La production d'énergie à partir des déchets considérés ci dessus est ainsi estimée à 32 ktep en 2009 pour l'Alsace

3. Cadre réglementaire

3.1. Code de l'environnement

Les incinérateurs, les installations de stockage de déchets ménagers et assimilés, les installations de stockage de déchets non dangereux (ISDND) sont soumis à la réglementation relative aux installations classées pour la protection de l'environnement (ICPE).

3.2. Tarif d'achat de l'électricité produite à partir des déchets ménagers

L'arrêté tarifaire du 2 octobre 2001 permet d'obtenir un tarif d'achat de l'électricité à partir de l'incinération de déchets.

Deux éléments s'additionnent pour définir ce tarif:

- un tarif de base de 4,5 à 5 c€/ kWh;
- une prime à l'efficacité énergétique comprise entre 0 et 0,3 c€/ kWh.

4. Avantages/Inconvénients

4.1. Environnemental

La production d'énergie à partir de déchets se substitue pour l'essentiel à des ressources fossiles et contribue ainsi à diminuer les émissions de gaz à effet de serre.

Les usines d'incinération émettent cependant des polluants à l'atmosphère. Ceux-ci doivent être traités dans des équipements de dépollution performants dont les limites d'émission sont fixées par les textes réglementaires en vigueur.

4.2. Économique

Cette filière participe au développement de l'économie locale par la mise en place de nouvelles activités et la création d'emplois: activités logistiques, transformation et exploitation d'installations de production d'énergie.

La faisabilité économique des projets de récupération d'énergie se heurte cependant à divers freins et dépend des aides ou avantages apportés par la puissance publique (subventions ou tarifs de rachat par exemple).

4.3. Social

L'incinération jouit d'une mauvaise image de marque, malgré les progrès réalisés en matière de traitement de polluants comme les dioxines et les oxydes d'azote. L'acceptabilité locale de nouveaux projets est donc très sensible.

La construction d'unités de valorisation énergétique, de quelque nature qu'elle soit risque donc de se heurter à une forte opposition locale.

5. Potentiel de développement

5.1. Performance énergétique des installations d'incinération

Plus de la moitié des déchets ménagers produits en Alsace est traitée par incinération. Sans augmenter les quantités de déchets incinérés, l'optimisation technique de la production d'énergie des quatre unités d'incinération existantes en Alsace est à mieux appréhender.

Dans le Haut-Rhin, la performance énergétique de l'UIOM de Sausheim est en retrait par rapport aux autres unités existantes en Alsace. Le Syndicat Intercommunal de Traitement des Ordures Ménagères de Colmar et Environs, maître d'ouvrage de l'UIOM de Colmar a lancé une étude pour le remplacement de cet équipement par une Unité de Valorisation Énergétique (UVE) des déchets. La valorisation énergétique sera faite par cogénération et une extension du réseau de chauffage actuel est prévue. La production annuelle d'énergie serait alors comprise entre 120000 MWh et 135000 MWh.

Dans le Bas-Rhin, un projet de modernisation de l'UIOM de Strasbourg est en cours, permettant une amélioration de la valorisation énergétique combinant méthanisation de la matière organique et production de chaleur.

5.2. Combustibles solides de récupération

Les nouveaux potentiels susceptibles d'être mobilisés sont les déchets actuellement mis en décharge, qui sont composés essentiellement de déchets banals des entreprises. On estime cette quantité à environ 360000 tonnes par an dont 174000 tonnes pour le Haut-Rhin et 186000 tonnes pour le Bas-Rhin.

Une étude interdépartementale conduite par les deux Conseils Généraux a permis de montrer que la piste la plus réaliste pour valoriser ces déchets était la fabrication de Combustibles Solides de Récupération (CSR), telle qu'elle est pratiquée notamment à Ludres en Lorraine (54).

La production annuelle d'énergie électrique et thermique à partir de ces combustibles pourrait être comprise entre 500000 et 1000 000 MWh en fonction du type d'installation mise en œuvre.

Enfin, une partie des déchets ménagers, essentiellement des déchets encombrants, est encore mise en décharge. Par exemple dans le Haut-Rhin, environ 44000 tonnes, enfouies pourraient être valorisées notamment au travers de la fabrication de CSR.

Les débouchés pour les CSR restent cependant actuellement rares du fait des réglementations applicables et de la difficulté de susciter de nouveaux projets industriels pouvant les accueillir.

5.3. Bilan

On peut estimer que la performance énergétique des unités d'incinération existantes pourrait être améliorée et ainsi permettre une production annuelle d'énergie de l'ordre de 700000 MWh soit 60 ktep et 30 ktep en comptage énergie renouvelable.

Par ailleurs, la fabrication de CSR et leur incinération permettrait de produire au moins 500000 MWh d'énergie soit 43 ktep et 21 ktep en comptage énergie renouvelable.

Au final, la production d'énergie renouvelable à partir des déchets pourrait atteindre 50 ktep environ à 2020 et également à 2050 pour rester conforme aux objectifs du Grenelle énoncés en introduction (réduction du volume des déchets et des quantités destinés à l'incinération).

Biomasse agricole et agrocarburants

Le volet étudié ci après est dédié à la biomasse issu de la filière agricole (telles que les matières organiques comme la paille, les résidus de récoltes et les matières animales) et aux agrocarburants

La biomasse agricole représente environ 1 % et les agrocarburants 10 % du mix énergies renouvelables de la France.

1. Présentation de la filière

La filière agriculture-énergie peut s'appuyer sur différents produits de la filière agricole:

- la paille (issues des céréales) et les menues pailles (débris de paille, enveloppes qui entourent les graines, petits grains, débris de tiges et graines d'adventices);
- les rafles et spathes de maïs;
- le foin;
- les cultures bioénergies (céréales plantes entières ou miscanthus).

Ces différents produits peuvent être utilisés dans des unités de combustion ou pour la production d'agrocarburants qui désignent des carburants constitués de dérivés industriels obtenus après transformation de produits d'origine végétale ou animale. Plus concrètement le préfixe « agro » est utilisé pour tous les carburants issus de cultures agricoles, de déchets (bois, huiles usagées...), d'algues, de graisses animales, de micro-organismes...

La biomasse agricole à destination de l'énergie constitue un gisement quasiment inexploité à ce jour. Seules les rafles de maïs, sarments de vignes ou quelque tonnes de céréales secondaires sont utilisées marginalement dans le cadre d'installations individuelles. Elle est par contre déjà utilisée pour la production d'agrocarburants.

La biomasse agricole n'est pas forcément disponible immédiatement et en quantité suffisante. Il convient donc, dans un premier temps, de connaître précisément quelles matières pourront être mobilisées et dans quels délais.

2. État des lieux en Alsace

2.1. Études

Il existe une seule étude d'évaluation de la ressource en biomasse agricole, jointe dans les cahiers techniques ENR. Elle a été réalisée au niveau du pôle d'excellence rural « Alsace Nord » par la Chambre d'Agriculture du Bas Rhin en 2008.

2.2. Ressources

Le territoire Alsacien compte 40 % de surface agricole utilisée (SAU), soit 337749 hectares (ha). La surface toujours en herbe occupe près de 40 % de la SAU alsacienne et les cultures céréalières plus de la moitié, pour les trois quarts en maïs et le reste essentiellement en blé. Le vignoble alsacien représente 4,6 % des surfaces cultivées et les cultures industrielles (houblon, tabac, betteraves industrielles) contribuent à la diversification de l'agriculture régionale, notamment dans le Bas-Rhin.

Les superficies cultivées (source INSEE 2007) sont les suivantes:

- Terres arables (céréales, oléagineux, jachères): 238264 ha;
- Cultures fruitières: 1200 ha;
- Vignes: 15650 ha;
- Surfaces toujours en herbe des exploitations: 81 245 ha.

L'agriculture alsacienne se caractérise par la diversité de ses productions. Chaque année, l'Alsace fournit 4 % de la production nationale de maïs et de blé, et 16 % de celle de tabac. Elle occupe le premier rang des régions pour la production de houblon et de choux à choucroute.

En 2007, l'arboriculture alsacienne a fourni 43 % de la production nationale de quetsches, fruit caractéristique de la région. L'Alsace produit également chaque année 3 % de la production nationale de fraises ainsi que 7 % de celle d'asperges. L'élevage n'y est pas très développé, mais presque toutes les productions animales y sont présentes. La région produit respectivement 0,9 % et 0,5 % de la production nationale de viande bovine et porcine. Elle fournit en moyenne 1,3 % de la production laitière nationale et 1,9 % de celle d'œufs de consommation.

2.3. Installations et projets

Combustion

Il n'y a pas de projet en fonctionnement à ce jour en Alsace (sauf quelques initiatives individuelles avec des installations de petite taille) mais des projets sont en cours d'expérimentation ou à l'étude notamment pour exploiter les rafles de maïs.

La production pour la combustion de biomasse agricole en 2009 est donc de 0 ktep.

Agrocarburants

La société Roquette à Beinheim qui exploite une amidonnerie assure une production de bioéthanol à partir de blé provenant du Grand Est

Le papetier UPM Stracel projette d'implanter une unité de production de biodiesel sur son site de Strasbourg. Ce procédé de fabrication de biocarburant de seconde génération s'appuiera par contre sur la biomasse - bois.

La production d'agrocarburants en 2009 est de 23 ktep.

3. Cadre réglementaire

3.1 Émissions de particules

Tout comme la biomasse bois, il conviendra d'être être vigilant quant aux émissions suite à la combustion de biomasse agricole, et notamment celles de poussière et de particules. Cela devra également être analysé au niveau des unités de production d'agrocarburants ou lors de l'utilisation de ces derniers.

3.2 Tarif d'achat de l'électricité produite à partir de biomasse

L'arrêté tarifaire du 27 janvier 2011 permet d'obtenir un tarif d'achat de l'électricité produite à partir de biomasse agricole.

Deux éléments s'additionnent pour définir ce tarif:

- un tarif de base à 4,34 c€/kWh,
- une prime comprise entre 7,71 c€/kWh et 12,53 c€/kWh attribuée selon des critères de puissance, de ressources utilisées et d'efficacité énergétique. Le niveau de la prime est calculé en fonction de cette dernière.

3.3 Code de l'Environnement

Les installations de combustion de biomasse agricole et de production de biocarburants sont soumises au code de l'environnement.

3.4 Dispositions particulières

Des aides financières peuvent éventuellement être apportées en fonction du type de projet aussi bien au niveau national (crédit d'impôt, appel à projets de la commission de régulation de l'énergie ou de l'ADEME) que régional (subventions des collectivités locales principalement).

4. Avantages/Inconvénients

4.1. Environnemental

Tout comme la biomasse bois, la biomasse agricole constitue une ressource renouvelable de proximité et présente des produits qui peuvent ou non trouver des débouchés par ailleurs.

Les pailles par exemple jouent un rôle important dans le maintien du contenu en matière organique des sols, notamment dans certaines régions où les terres sont appauvries par des systèmes d'exploitation trop intensifs. La mobilisation de ce type de ressources doit donc être mesurée en fonction des conditions et exigences du milieu.

La menue paille, quant à elle, est actuellement rejetée sur le champ par la moissonneuse. Ce produit pourrait utilisable en alimentation, litière et énergie. Récupérée, elle permettrait également de réduire considérablement les repousses au champ après récolte.

Les cultures bioénergies, à développer, pourraient présenter un gisement non négligeable de biomasse agricole mobilisable. Ces cultures permettent également la valorisation de terres dite marginales, gels, friches ou autres terres interdisant la production de cultures alimentaires. Plusieurs espèces de ces nouvelles cultures énergétiques dédiées ont été sélectionnées pour leur forte productivité en biomasse et leurs faibles exigences relatives en intrants (économie de traitements phytosanitaires notamment). Certaines précautions seront tout de même à observer par rapport à ces nouvelles cultures: types de sol à mobiliser, rendement, invasion des sols, réversibilité...

Une vigilance doit également être accordée à la question des émissions de polluants atmosphériques aussi bien pour la combustion de biomasse agricole que pour la production et l'utilisation des agrocarburants.

4.2. Économique

Les ressources à mobiliser sont susceptibles d'impacter l'outil de production de denrées agroalimentaires. Il faut donc veiller à ne pas créer de concurrence entre production alimentaire et énergétique. La paille, par exemple, peut servir à la production de fraises pour éviter tout contact entre le fruit et le sol tandis que les herbes peuvent servir à l'alimentation des ruminants.

La densité énergétique de la biomasse agricole est généralement faible et son coût de transport sur des distances trop importantes rendrait nul son bilan énergétique.

4.3. Social

Les nouvelles valorisations des ressources agricoles peuvent contribuer au développement et à la diversification des activités agricoles et offrir de nouvelles opportunités à des territoires ruraux actuellement délaissés ou menacés de l'être.

L'implantation d'unités de production d'énergie peut avoir des conséquences positives sur l'emploi local tant en terme de consolidation qu'en terme de création.

5. Potentiel de développement

L'étude effectuée en 2008 a permis uniquement une estimation du potentiel en biomasse agricole au niveau de l'Alsace du Nord:

- la quantité de pailles a été évaluée à 5250 tonnes et celle de menues pailles à 2400 tonnes.
- les rafles de maïs mobilisables avec un dispositif de type « récupérateur de rafles » correspondraient à un total de 22000 tonnes.
- a priori il n'y pas de possibilité de valorisation du foin dans la mesure où le département du Bas Rhin a un déficit de surfaces en herbes. Certaines pourraient cependant, ponctuellement, trouver un débouché énergétique.
- la surface potentielle qui pourrait être affectée aux cultures bioénergies au niveau de l'Alsace du Nord est de 1 137 ha.

Cette étude pourrait être complétée pour obtenir une évaluation sur la totalité de la région.

Sur ces bases, la production estimée est de 5 ktep pour la biomasse agricole et 30 ktep pour les agrocarburants en 2020.

Géothermie

La géothermie est l'exploitation de la chaleur provenant du soussol (roches et aquifères). L'utilisation des ressources géothermales se décompose en deux grandes familles: la production d'électricité et/ou la production de chaleur. En fonction de la ressource en termes de température et de débit, de la technique utilisée et des besoins, les applications sont multiples. Le critère qui sert de guide pour bien qualifier la filière est la température du milieu dans lequel on prélève la chaleur.

La géothermie représentait, en 2010, une contribution de moins de 1 % dans le bouquet des énergies renouvelables en France.

1. Présentation de la filière

La géothermie peut se diviser comme suit:

- La géothermie haute énergie: elle concerne les fluides qui atteignent des températures supérieures à 150 °C. La ressource se présente soit sous forme d'eau surchauffée, soit sous forme de vapeur sèche ou humide. En Alsace, elle est généralement localisée à des profondeurs importantes (1500 à 5000 m) et dans des zones au gradient géothermal anormalement élevé, révélateur de zones faillées actives. De par les puissances thermiques atteintes et les investissements à réaliser, cette ressource est réservée aux grands consommateurs de vapeur d'eau ou à la production d'électricité.
- La géothermie moyenne énergie: elle se présente sous forme d'eau chaude ou de vapeur humide à une température comprise entre 90 °C et 150 °C. Elle se situe dans les zones propices à la géothermie haute énergie mais à des profondeurs inférieures à 1000 m. On la trouve également dans les bassins sédimentaires à des profondeurs allant de 2000 à 4000 m. Cette technique est utilisée pour assurer la production d'électricité, via un fluide intermédiaire, et la distribution de chaleur en chauffage urbain.
- La géothermie basse énergie: elle consiste en l'extraction d'une eau à moins de 90 °C et jusqu'à 30 °C dans des gisements situés en général entre 1500 et 2500 m de profondeur. L'essentiel des réservoirs exploités se trouve dans les couches aquifères des bassins sédimentaires comme ceux présents par exemple dans le Bassin Aquitain et dans la Région Île de France. Le niveau de chaleur est insuffisant pour produire de l'électricité mais convient parfaitement pour le chauffage d'habitations et certaines applications industrielles.

■ La géothermie très basse énergie: concerne l'exploitation des aquifères peu profonds et l'exploitation de l'énergie naturellement présente dans le sous-sol à quelques dizaines, voire quelques centaines de mètres. La géothermie très basse énergie ne permet l'utilisation de la chaleur par simple échange que dans des cas d'applications spécifiques et sous certaines conditions comme le chauffage de serre, de bassins de piscicultures, éventuellement de piscines, voire de refroidissement en free-cooling. Par contre, pour le chauffage d'habitations, elle nécessite la mise en œuvre de pompes à chaleur (PAC) qui, sur le principe du cycle thermodynamique, élèvent l'énergie basse température apportée par la géothermie à un niveau suffisant. Cette opération requiert de l'énergie électrique et l'utilisation d'un fluide frigorigène dont le changement d'état (vapeur ou liquide) permet de transférer les calories captées dans le sous-sol vers les logements. Ainsi, une PAC géothermique qui assure 100 % des besoins de chauffage d'un logement consomme en moyenne 30 % d'énergie électrique, les 70 % restants étant puisés dans le milieu naturel. À noter que ce système est réversible et qu'il peut éventuellement servir à la production de froid.

Nota: une PAC fonctionne avec une faible consommation d'énergie électrique au regard de l'énergie thermique restituée: pour 1 kWh d'énergie électrique consommée, ce sont 2 à 4 kWh d'énergie thermique qui sont restitués au bâtiment.

Soit 1 à 3 kWh d'énergie qui sont récupérés, transférés et utilisés pour le chauffage ou parfois pour la production d'eau chaude. Une PAC est donc une forme de chauffage utilisant l'électricité. Plus le rapport entre l'électricité consommée et la chaleur restituée est important, plus son coefficient de performance (COP) est élevé. C'est le COP qui intéresse le consommateur car il prend en compte le fonctionnement réel de la PAC en intégrant les périodes où son fonctionnement n'est pas optimal.

Actuellement à travers le crédit d'impôts développement durable, l'État soutient l'installation de pompes à chaleur avec un COP supérieur à 3,4.

La géothermie très basse énergie peut se subdiviser en deux parties:

■ Géothermie PAC sur aquifère: ces aquifères peu profonds, d'une température inférieure à 30 °C, sont largement répandus sur l'ensemble du territoire français. Il s'agit soit de nappes alluviales qui accompagnent les cours d'eau, soit d'aquifères présents à différentes profondeurs. L'eau de la nappe est amenée par pompage à la pompe à chaleur puis réinjectée dans celle-ci après prélèvement des calories.

■ Géothermie PAC sur champ de sondes verticales et sur capteurs horizontaux: En France, la température moyenne au niveau du sol est en général de 10 à 14 °C et au fur et à mesure que l'on s'enfonce dans le sous-sol, celle-ci augmente en moyenne de 3 °C tous les 100 m (gradient géothermal). La chaleur emmagasinée dans le sol est accessible en tout point du territoire. Les techniques de capture de cette énergie sont adaptées en fonction des besoins thermiques et des types de terrains rencontrés. Le système est composé de sondes géothermiques verticales, de 30 à 150 mètres de profondeur et parfois plus, ou de capteurs horizontaux à faible profondeur, de un à quelques mètres. Un fluide circule dans les sondes, permettant de prélever les calories du sous-sol pour les amener à la pompe à chaleur.

Le concept de géothermie très basse énergie recouvre des applications qui vont du chauffage de maisons individuelles jusqu'au chauffage de petits réseaux de chaleur. Ce type de géothermie se montre particulièrement adapté au chauffage de logements collectifs ou de locaux du secteur tertiaire (hôpitaux, administration, centres commerciaux...) ou à la production de froid (tertiaire, industriel) Il existe d'autres pompes à chaleur dites aérothermiques dont la source chaude est l'air. Elles ne sont pas étudiées dans cette partie. Cette technique est utilisée depuis longtemps en production de froid et de chaleur (climatiseur, chauffage) dans les secteurs tertiaire et industriel (groupes froids en agroalimentaire). Plus récemment elles se sont développées dans le secteur résidentiel. Le climat alsacien n'est pas le plus adapté pour les équipements prélevant leur source chaude sur l'air extérieur. Certaines solutions techniques utilisant l'air dit « extrait », extrait d'un circuit de ventilation, bénéficient de bonnes performances.

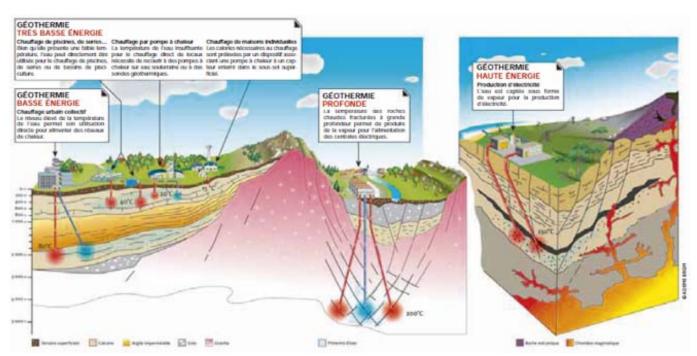


Illustration I: Schéma de principe pour les différents types de géothermie, source ADFMF

2. État des lieux en Alsace

2.1. Études

Plusieurs études, dont la liste se trouve dans les cahiers techniques ENR joints, ont déjà été réalisées pour estimer le potentiel Alsacien. Actuellement, l'un des volets du projet européen INTER-REG « GEORG » a pour objectif une mise à jour transfrontalière des informations disponibles pour caractériser les potentialités géothermiques profondes du Fossé Rhénan. Cette mise à jour débouchera sur des modélisations à différentes échelles sur certaines zones.

2.2. Ressource

2.2.1. La géothermie haute, moyenne et basse énergie

Dans le contexte tectonique et géologique particulier de l'Alsace du Nord (Outre Forêt), seul le captage d'un aquifère, naturel ou artificiel (Soultz-sous-Forêts) présent en profondeur dans une zone faillée peut permettre l'exploitation industrielle d'une ressource géothermale (température et débit suffisants) économiquement viable. En effet, les formations tectonisées jouent le rôle de drains dans lesquels les fluides thermo-minéraux peuvent circuler abondamment. Une bonne circulation de ces eaux géothermales est donc essentielle pour permettre leur remontée, via des boucles convectives au sein du réseau de failles. La recherche de ressources géothermiques « haute énergie » économiquement exploitables pour une application industrielle impose donc l'implantation des puits de façon à atteindre en profondeur un contexte tectonique favorable.

En Alsace, notamment l'ensemble du soubassement de la plaine, contiendraient des potentialités géothermales liées à des aquifères profonds qui restent à caractériser.

2.2.2. La géothermie très basse énergie

Géothermie PAC sur aquifère

L'Alsace est particulièrement favorisée par la présence de la nappe alluviale rhénane qui est l'une des plus importantes réserves en eau souterraine d'Europe. La quantité d'eau stockée, pour sa seule partie alsacienne, est estimée à environ 35 milliards de m³ d'eau. Sa température varie peu au fil des saisons, entre 8 et 12 °C, gage d'une efficience élevée même en hiver, dans le cas de son exploitation à travers des pompes à chaleur.

Trois critères peuvent être retenus pour qualifier le potentiel géothermique de très basse température lié à l'utilisation de PAC eau/

- la productivité d'aquifère;
- la profondeur d'accès à la ressource;
- la température;

Ces critères sont loin d'être déterminés pour l'ensemble des ressources en Alsace. Néanmoins, il est possible d'exprimer les tendances générales de la potentialité sur la base des grands découpages en zone géologique de l'Alsace.

Illustration II: Carte des différentes zones de potentiel géothermique PAC sur aquifère sur le territoire alsacien

De par l'accessibilité de sa ressource et par les débits de pompage élevés dans les alluvions, la Plaine d'Alsace avec la nappe alluviale rhénane (en bleu clair sur la carte) se dégage comme le potentiel majeur pour l'exploitation géothermique sur aquifère. Les formations pliocènes qui affleurent dans le Nord sont incluses dans cette entité d'ordre régional bien que leurs potentialités soient plus aléatoires que la nappe alluviale stricto sensu. L'Alsace Bossue comprend les séries sédimentaires structurellement liées au système du bassin de Paris. À ce titre le potentiel géothermique sur aquifère est lié à deux systèmes aquifères distincts dont les potentialités exactes restent à déterminer. Les champs de fracture en bordure de la Plaine d'Alsace constituent des zones géologiquement et hydrogéologiquement complexes aux potentialités variables. Ces zones fracturées demandent également des applications géothermiques bien encadrées en raison des risques liés aux aquifères captifs. Les Vosges cristallines sont globalement peu propices à la géothermie sur aquifère, hormis peutêtre sur les nappes alluviales d'accompagnement des principales rivières Vosgiennes ou bien encore dans les formations gréseuses du Trias qui surplombent localement le socle cristallin dans sa partie Nord. Le Sundgau regroupe plusieurs situations géologiques et hydrogéologiques contrastées (Aquifères des cailloutis du Sundgau, Horst de Mulhouse, Jura Alsacien) qui demandent des approches détaillées pour en définir les potentiels particuliers. Les formations oligocènes essentiellement marneuses sont peu propices au développement de géothermie sur aquifère.

Le BRGM a édité en juin 1985 une cartographie détaillée des potentialités et des contraintes de géothermie basse température en Alsace. Il s'agit d'un jeu de cartes avec notices réalisé pour chaque département (cartes « AQUAPAC »).

Géothermie PAC sur champ de sondes verticales et sur capteurs horizontaux

Le sous-sol alsacien présente globalement les mêmes caractéristiques thermiques (peu de variation de température jusqu'à 100/150 m) que celui du reste de la métropole avec une diversité naturelle en matière de taux d'humidité et de conduction thermique des matériaux le composant. Cependant, une incertitude existant localement au niveau des propriétés thermiques réelles du sous-sol, il est fortement conseillé de réaliser un test de son potentiel thermique, notamment lorsqu'il s'agit de projets de grande ampleur mettant en œuvre un champ de plusieurs dizaines de sondes verticales.

De la même manière que pour les PAC sur aquifères, les applications doivent être bien encadrées en raison des risques liés aux aquifères captifs ou à la spécificité du terrain.

2.3. Installations et projets

2.3.1. La géothermie haute, moyenne et basse énergie

Deux installations sont implantées en Alsace:

- le projet de géothermie de Soultz-sous-Forêts (Bas-Rhin), géré par le Groupement européen d'intérêt économique (GEIE) Exploitation minière de la chaleur, est un programme de recherche qui a nécessité 16 années d'études. Ce programme consiste à démontrer la faisabilité de l'utilisation de la chaleur des roches fracturées. Le 13 décembre 2007, ce projet pilote est entré dans sa phase industrielle avec la pose d'une turbine qui lui permet de produire de l'électricité. Il pourra éventuellement également alimenter des réseaux de chaleur. La puissance électrique nette produite devrait atteindre 1 MW.
- la source des Helions II: cette installation a alimenté en chaleur le bâtiment de la communauté de communes Sauer Pechelbronn à Merkwiller Pechelbronn. En 2009, des travaux d'aménagement de la source thermale ont été entrepris afin d'éviter les rejets d'eaux salées dans la nature et ainsi de pérenniser son utilisation sous sa forme actuelle. La puissance attendue devrait se situer autour de 100 kW thermiques.

La carte ci-dessous présente les positions géographiques des projets:

- en cours: l'usine Roquette à partir du site de Rittershoffen,
- au stade de l'étude de faisabilité: les villes de Wissembourg, d'Illkirch-Graffenstaden, de Cernay, de Rixheim et du parc de loisirs d'Ungersheim

Illustration III: Cartographie des projets à haute énergie

2.3.2. La géothermie très basse énergie

Les PAC nécessitent de l'énergie électrique pour fonctionner. Les calculs, pour estimer la production alsacienne, ont intégré les besoins couverts et l'énergie électrique consommée par les PAC. La différence entre le besoin et la consommation constitue l'apport énergétique du sous-sol, considéré comme la production d'énergie renouvelable.

Géothermie PAC sur aquifère

C'est la technique la plus largement utilisée en Alsace pour la géothermie à très basse énergie, pour des raisons naturelles favorables (nappe alluviale) et une relative simplicité de mise en œuvre.

Aucun recensement exhaustif, à l'échelle de la région, n'a été entrepris concernant le suivi du nombre d'installations.

Une étude de recensement à l'échelle de la Communauté Urbaine de Strasbourg (CUS) a déjà été réalisée et offre un éclairage particulier sur la présence d'installations géothermiques dans une zone d'agglomération dense. Il manque cependant des informations concernant les installations de grosses puissances. Elles représentent une part déterminante dans le bilan régional.

En 2009, l'estimation de l'énergie totale soutirée du sous-sol alsacien au travers des PAC sur aquifère est d'environ **127812 MWh**.

Géothermie PAC sur champ de sondes verticales

Ces pompes à chaleur sont généralement installées dans les constructions neuves. Il s'agit d'une technique récente en France et aussi en Alsace, alors que d'autres pays comme la Suisse et l'Allemagne l'utilisent depuis très longtemps. Cette méthode présente des résultats très positifs si un minimum de précautions sont prises lors de sa mise en œuvre.

En 2009, l'estimation de l'énergie totale soutirée du sous-sol alsacien au travers des PAC sur sondes géothermiques verticales est d'environ **5378 MWh**. De 2002 à 2009, l'essentiel des PAC sur sondes géothermiques verticales ont été installées chez des particuliers. Bien que la nappe phréatique d'Alsace constitue le territoire privilégié pour le développement de PAC, on s'aperçoit qu'une quantité non négligeable de sondes y ont été également installées. Ces installations, malgré leur nombre, couvrent une part relativement modeste du besoin thermique régional.

Géothermie PAC sur capteurs horizontaux

Cette méthode est surtout utilisée aujourd'hui dans l'habitat individuel neuf.

En 2009, l'estimation de l'énergie totale soutirée du sous-sol alsacien au travers des PAC sur capteurs horizontaux est d'environ **5709 MWh**.

D'après les données à disposition, on peut estimer que la géothermie a assuré en 2009 une production d'énergie renouvelable de 138899 MWh environ équivalente à 12 ktep.

Ce chiffre de production d'énergie renouvelable obtenu en énergie finale et à moduler en fonction du rendement de production et distribution du système électrique français qui est intégré dans le calcul de l'énergie primaire.

La base de données Banque de données du Sous-Sol (BSS) permet de cartographier les forages à vocation géothermique (basse température) qui ont fait l'objet d'une déclaration. Il s'agit ici d'une représentation à minima, car de nombreux ouvrages n'ont vraisemblablement pas été déclarés.

Les cartes ci-dessous donnent un aperçu de l'évolution des ouvrages répertoriés jusqu'en 2008.

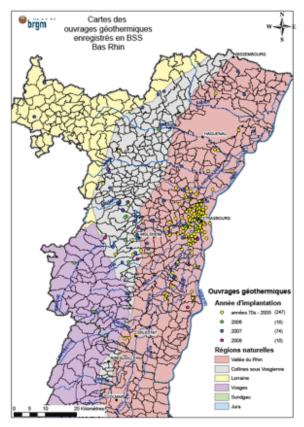


Illustration IV: Carte des ouvrages géothermiques enregistrés en BSS Bas Rhin

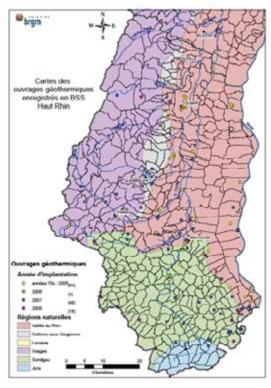


Illustration V: Carte des ouvrages géothermiques enregistrés en BSS Haut Rhin

3. Cadre réglementaire

3.1 Code minier et code de l'environnement

La réglementation qui s'applique au forage est encadrée par le code minier et le code de l'environnement.

Le code minier implique:

- la déclaration de tout forage supérieur à 10 m de profondeur;
- une autorisation pour tout ouvrage supérieur à 100 m de profondeur.

Le code de l'environnement implique le dépôt à minima d'une déclaration, voire une autorisation au titre de l'article R214-1 pour les rubriques:

Sondage, forage, y compris les essais de pompage, création de puits ou d'ouvrage souterrain, non destiné à un usage domestique, exécuté en vue de la recherche ou de la surveillance d'eaux souterraines ou en vue d'effectuer un prélèvement temporaire ou permanent dans les eaux souterraines, y compris dans les nappes d'accompagnement de cours d'eau;

- Prélèvements permanents ou temporaires issus d'un forage, puits ou ouvrage souterrain dans un système aquifère, à l'exclusion de nappes d'accompagnement de cours d'eau, par pompage, drainage, dérivation ou tout autre procédé;
- Réinjection dans une même nappe des eaux prélevées pour la géothermie, l'exhaure des mines et carrières ou lors des travaux de génie civil;
- Travaux de recherche et d'exploitation de gîtes géothermiques.

3.2 Tarif d'achat de l'électricité produite par le biais de la géothermie

L'arrêté tarifaire du 23 juillet 2010 permet d'obtenir un tarif d'achat de l'électricité produite à partir de la géothermie.

- un tarif de base à 20 c€/ kWh;
- une prime à l'efficacité énergétique comprise entre 0 et 8 c€/ kWh.

3.3 Dispositions particulières

Des aides financières peuvent être apportées aux différents types de projets de géothermie, au niveau national (appel à projets Bois Chaleur Industrie Agriculture Tertiaire, fonds chaleur, crédit d'impôt) ou au niveau régional (subvention des collectivités locales ou des distributeurs d'énergie dans le cadre du dispositif des certificats d'économie d'énergie).

Des couvertures concernant les risques de forage existent pour la géothermie et sont gérées par différents organismes en fonction du type de projet

4. Avantages/Inconvénients

4.1. La géothermie haute, moyenne et basse énergie

Avantages

- L'Alsace est une des 3 régions favorables en France,
- Grosses puissances thermiques disponibles,
- Implication d'entreprises locales pour le développement,
- ▶ Pas d'émissions directes de gaz à effet de serre sur l'installation.

Inconvénients

- ▶ Potentiel restreint aux zones ayant un sous-sol rendu localement perméable grâce aux zones fracturées créées par les mouvements tectoniques,
- ► Risques minier, sismique, chimique,
- Risque de mise en relation d'aquifère par forages mal suivis,
- ► Fluides géothermaux fortement minéralisés, entraînant des risques de dépôts et de corrosion,
- Filière en cours de développement,
- ▶ Délais de réalisation important,
- ▶ Investissements élevés.

4.2. La géothermie très basse énergie

• Géothermie PAC sur aquifère

Avantages

- ► Technologie éprouvée,
- ► Retours d'expérience disponibles,
- Fort potentiel sur la région.

Inconvénients

- ▶ Problèmes possibles d'entartrage, de floculation ou de corrosion du circuit hydraulique lié à la qualité de l'eau souterraine.
- ► Risque de conflit d'usage (agriculture, captage AEP...),
- ▶ Utilisation de fluides frigorigènes.
- Géothermie PAC sur champ de sondes verticales

Avantages

- Réalisable sur quasiment tous les terrains (ne nécessite pas d'aquifère),
- ► Conflit d'usage limité, emprise au sol limitée,
- ► Technologie éprouvée pour le particulier

Inconvénients

- Nécessite des longueurs importantes de forage, et donc un coût élevé,
- ▶ Risque de mise en relation d'aquifère par forages mal suivis,
- ► Filière en cours de développement pour les projets de puissances importantes,
- Utilisation de fluides frigorigènes.

• Géothermie PAC sur capteurs horizontaux

Avantages

- À puissance équivalente, l'installation de capteurs horizontaux est moins chère que l'installation de capteurs verticaux ou de forage sur aquifère,
- Réalisable sur tous les terrains (ne nécessite pas d'aquifère),
- Technologie éprouvée,

Inconvénients

- L'emprise au sol est bien plus élevée que pour les sondes verticales.
- ► Technique réservée essentiellement à l'habitat rural,
- Limite l'usage du terrain équipé,
- ▶ Utilisation de fluides frigorigènes.

5. Potentiel de développement

5.1. La géothermie haute, moyenne et basse énergie

La réussite des opérations de Soultz-sous-Forêts et de Rittershoffen (projet de l'usine Roquette) déterminera à moyen terme l'avenir de cette filière. Ainsi, concernant la production d'électricité d'origine géothermique, une projection de trois nouvelles centrales de 3 MW net chacune en 2020 et huit centrales de puissance équivalente en 2050 paraît réaliste. Ces centrales seront optimisées de manière à pouvoir produire en cogénération (électricité et chaleur).

Concernant la chaleur industrielle, la problématique se situe au niveau des consommateurs potentiels d'importance qui restent à identifier ou à attirer au voisinage de centrales géothermiques qui pourraient voir le jour à l'endroit où les sous-sols sont favorables, pour en exploiter le maximum de l'énergie produite. À côté de cela, des réseaux de chaleur alimentés par la géothermie sont au stade d'étude de faisabilité et sont susceptibles de se développer en Alsace, comme par exemple l'étude menée pour le compte de la ville d'Illkirch-Graffenstaden et destinée à recenser des zones à fort potentiel de consommation d'énergie raccordables à de tels réseaux.

5.2. La géothermie très basse énergie

Géothermie PAC sur aquifère

L'observatoire de surveillance de la nappe du Rhin sur la CUS a constaté des variations anormales de températures dans certaines zones qui proviendraient des pompes à chaleurs exploitant cette nappe. Dans l'avenir, les conclusions de cet observatoire risquent de freiner le développement des opérations sur nappes afin de préserver celles-ci.

L'utilisation de la géothermie en Alsace connaît un développement croissant depuis quelques années. On observe ainsi une demande d'information grandissante des acteurs dans ce domaine (entreprises de forage, installateurs de système de récupération de chaleur, maître d'ouvrage tel que décideurs publics, industriels, particuliers).

Géothermie PAC sur champ de sondes verticales

Cette technique est relativement récente en France mais le potentiel est réel et de nombreuses installations devraient pouvoir se réaliser, stimulées notamment par le fond chaleur.

Géothermie PAC sur capteurs horizontaux

Le marché est confiné au marché des maisons individuelles. En Alsace, ce marché semble s'essouffler au profit des sondes verticales moins gourmandes en surface de terrain.

Sur ces bases, qui intègrent la capacité de la ressource moyennant des contraintes à observer en particulier sur aquifères (distance des installations, rejet dans la nappe, aquifère captif...), un potentiel a été estimé à environ 46 ktep pour 2020 et 85 ktep pour 2050.

Solaire thermique

L'énergie provenant du soleil peut contribuer, soit à la production d'eau chaude sanitaire et/ou chauffage (solaire thermique), soit à la production d'électricité (solaire photovoltaïque).

L'étude ci-après est dédiée au solaire thermique. Une autre fiche est consacrée au solaire photovoltaïque.

La production solaire thermique représente en 2010 moins de 1 % du mix des énergies renouvelables en France.

1. Présentation de la filière

L'énergie solaire thermique peut contribuer à la production d'eau chaude sanitaire et/ou au chauffage à l'aide de capteurs solaires. La chaleur produite dans les capteurs est transportée par l'intermédiaire d'un fluide caloporteur jusqu'au stockage d'eau où l'on récupère, par l'intermédiaire d'un échangeur, l'énergie produite.

Il existe trois types d'installations solaires capables de produire de l'eau chaude sanitaire et/ou du chauffage sur le marché:

- Les chauffe-eau solaire individuels (CESI) qui sont destinés à satisfaire les besoins annuels en eau chaude sanitaire d'une famille selon un taux de couverture compris entre 50 et 70 %. Ce taux de couverture correspond au ratio entre la production solaire et les besoins en eau chaude. En moyenne, il faut compter 3 à 5,5 m² de capteurs et un ballon de 100 à 250 litres pour une famille composée de 3 à 4 personnes en Alsace (zone 1) équipée d'un CESI.
- Les systèmes solaires combinés individuels (SSCI) qui permettent de couvrir 20 à 40 % des besoins annuels en chauffage et eau chaude sanitaire, selon la région et la taille de l'installation. Une source d'énergie d'appoint est donc nécessaire dans ce cas. Le SSCI s'avère toutefois plus complexe car il doit répondre à des exigences différentes pour la production d'eau chaude et le chauffage, notamment en ce qui concerne les besoins en température et la durée de sollicitation. D'une manière générale, la surface des capteurs mise en œuvre dans un système solaire combiné varie, selon la localisation et la taille de la maison, de 7 à 20 m². Les solutions favorisant l'aspect esthétique, les contraintes liées à l'architecture seront favorisées.
- Les chauffe-eau solaire collectifs (CESC) peuvent être utilisés dans plusieurs cas de figures. Le tableau ci-dessous récapitule les usages et les rations de consommation moyenne d'eau chaude à 60 °C.

Habitat	30 litres par jour et par personne		
Équipements sportifs	20 litres par jour et par personne		
Restauration	5 litres par repas		
Cuisine de réchauffage	2 litres par repas		
Maisons de retraite	35 litres par jour et par personne		
Hôtellerie	35 litres par nuitée et par personne. Estimation faite à partir de la fréquentation et non à partir du nombre de chambre, modulée en fonc- tion du niveau de prestation.		

Actuellement, ce sont les bailleurs sociaux en Alsace qui montrent l'exemple en intégrant des CESC dans leurs projets, neuf ou réhabilitation.

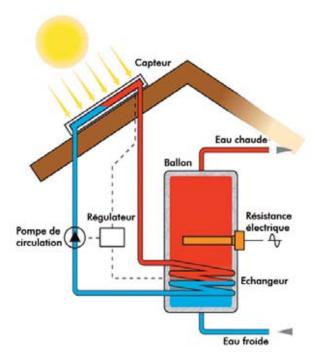


Illustration I: Schéma de principe d'une installation solaire thermique

2. État des lieux en Alsace

2.1. Études

Plusieurs études, dont la liste se trouve dans les cahiers techniques ENR joints, ont été réalisées en Alsace concernant le solaire thermique, particulièrement pour faire des états des lieux successifs des installations et définir le potentiel alsacien.

2.2. Ressources

L'énergie solaire reçue est inégalement répartie sur la surface du globe. En moyenne, le rayonnement solaire reçu en France est de 1400 kWh/m²/an avec la différence d'ensoleillement est importante entre le nord (1100 kWh/m²/an) et le sud du territoire (1700 kWh/m²/an).

Illustration II: Ensoleillement en France métropolitaine en kWh/m²/jour (Source TEC-SOI)

L'Alsace, avec ses $1\,600$ heures d'ensoleillement par an, reçoit 35 à $50\,\%$ de rayonnement solaire en moins que dans le Midi. Une surface de capteurs plus grande est donc nécessaire dans le nord pour obtenir la même production que dans le sud.

2.3. Installations et projets

2.3.1. Les installations solaires individuelles

	CESI	SSCI	CESI + SSCI	Évolution
Avant 2000	50	13	63	
2001	319	30	349	454 %
2002	550	42	592	70 %
2003	897	38	935	58%
2004	913	55	968	4%
2005	1222	19	1 241	28%
2006	2148	129	2277	83%
2007	2106	274	2380	5%
2008	1311	380	1 691	-29%
2009	1067	423	1 490	-12%
Total	10583	1403	11986	

Tableau 1 : Nombre d'installations individuelles instalées par année et évolution en Alsace, source : investissements soutenus par le Conseil Régional et l'ADEME

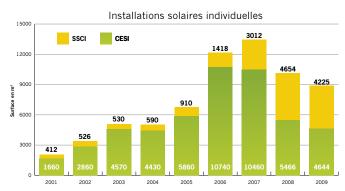


Illustration III: Surfaces annuelles de capteurs installés (CESI et SSCI), source: investissements soutenus par le Conseil Régional et l'ADEME

2.3.2. Les installations solaires collectives

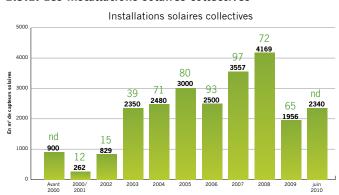


Illustration III: Nombre d'installations collectives et surfaces de capteurs correspondantes, source: investissements soutenus par le Conseil Régional et l'ADEME

2.3.3. Production solaire thermique

La production d'énergie thermique (eau chaude et chauffage) est estimée à partir des ratios suivants:

- 350 kWh/m². an de capteurs pour les CESI et les SSCI;
- 450 kWh/m². an de capteurs pour les CESC.

En 2009, on estime ainsi la production d'énergie thermique à 33356 MWh/an en Alsace équivalente à 2,87 ktep.

Le niveau d'ensoleillement moyen de l'Alsace n'est pas un frein au développement du solaire thermique. Plusieurs régions ayant les mêmes caractéristiques (Allemagne, Suisse, Pays-Bas) ont déjà des références en la matière.

La politique incitative menée par les pouvoirs publics dans la région a permis à l'Alsace de se trouver parmi les régions françaises les plus avancées en termes de surface de capteurs installée par habitant (4 m²/1000 habitants en France contre 49 m²/1000 habitants en Alsace).

3. Cadre réglementaire

3.1. La Réglementation Thermique 2012 (RT 2012)

L'eau chaude sanitaire peut représenter jusqu'à 25 % des consommations énergétiques dans un bâtiment, voire devenir le premier poste de consommation dans un logement BBC.

Il apparaît d'autant plus important d'agir sur ce poste afin d'atteindre les performances énergétiques annoncées dans la RT 2012, à savoir une consommation d'énergie primaire de 50 kWh/m²/an, modulable en fonction des régions

Le solaire thermique peut alors contribuer à l'atteinte de ces objectifs en tant que chaleur totalement renouvelable. Les professionnels envisagent donc un fort développement de la filière d'ici à 2020 pour répondre aux objectifs des futures réglementations thermiques envisagées pour les bâtiments à énergie positive (BEPOS).

3.2. La Réglementation Eau Chaude Sanitaire

Quatre arrêtés sont actuellement en vigueur en ce qui concerne l'eau chaude sanitaire:

- Arrêté du 1er février 2010 relatif à la surveillance des légionelles dans les installations de production, de stockage et de distribution d'eau chaude sanitaire
- Arrêté du 13 janvier 2010 relatif à l'agrément de la demande de titre V relative à la production d'eau chaude sanitaire indirecte, avec stockage, avec ou sans appoint, par une pompe à chaleur à absorption à chauffage direct au gaz dans la réglementation thermique 2005
- Arrêté du 29 juillet 2009 relatif à l'agrément de la demande de titre V relative à la prise en compte des appareils électriques individuels de production d'eau chaude sanitaire thermodynamique dans la réglementation thermique 2005
- Arrêté du 30 novembre 2005 modifiant l'arrêté du 23 juin 1978 relatif aux installations fixes destinées au chauffage et à l'alimentation en eau chaude sanitaire des bâtiments d'habitation, des locaux de travail ou des locaux recevant du public

Par ailleurs, pour un bâtiment existant, une déclaration de travaux est obligatoire à partir du moment ou l'installation de capteurs modifie l'aspect extérieur du bâtiment. Lorsque les travaux se feront dans le périmètre d'un site classé, l'accord de l'Architecte des Bâtiments de France sera nécessaire. Il est recommandé aux porteurs de projet de se rapprocher du Service Territorial de l'Architecture et du Patrimoine dès la mise en forme du projet.

En cas de construction du bâtiment, la demande de permis de construire doit inclure le chauffe-eau solaire prévu (articles L. 4121·1 et L. 421·6 du Code de l'Urbanisme).

3.3. Dispositions particulières

Des aides financières peuvent être apportées en fonction du type de projet aussi bien au niveau national (crédit d'impôt, TVA 5,5 %, éco prêt à taux zéro, fonds chaleur, ANAH*) que régional (subventions des collectivités locales ou des distributeurs d'énergie dans le cadre du dispositif des certificats d'économie d'énergie). Le détail des dispositifs existants est disponible dans les cahiers techniques.

4. Avantages/Inconvénients

4.1. Environnemental

Le soleil est une énergie propre, inépuisable et gratuite. Ainsi l'utilisation de capteurs solaires thermiques dans un objectif de production d'eau chaude sanitaire et/ou de chauffage est particulièrement intéressante d'un point de vue environnemental puisque cela contribue de manière durable à la réduction des émissions de gaz à effet de serre.

De par leur intégration architecturale dans les toitures, les capteurs ont un impact visuel limité. En moyenne 4 à 5 m² de capteurs suffisent pour produire l'eau chaude sanitaire nécessaire à un foyer de quatre personnes. La pose de panneaux solaires est aussi possible en site protégé, à condition de ne pas avoir un impact visuel trop important et d'avoir un avis favorable de l'architecte des bâtiments de France.

Les capteurs solaires thermiques sont principalement constitués de verre et de métaux, leur recyclage est donc techniquement tout à fait réalisable et les filières existent déjà pour ces capteurs.

4.2. Économique

Le solaire thermique aide à réaliser des économies sur les charges d'énergie quelle que soit la situation géographique de l'installation, mais l'équipement et sa mise en œuvre restent chers, bien que de nombreuses aides soient dispensées pour les rendre plus attractifs.

Le solaire thermique connaît actuellement une crise conjoncturelle liée à de multiples facteurs (crise économique, filière française en pleine structuration, recul des prix des énergies fossiles, concurrence d'autres énergies renouvelables...).

Le dimensionnement des installations présente un vrai enjeu et doit correspondre aux besoins réels en eau chaude sanitaire. La tendance est aujourd'hui au surdimensionnement des installations souvent préjudiciable à leur productivité. Il est également souvent fait mention de la complexification des installations tandis que leur simplification permettrait d'augmenter leur fiabilité et de diminuer les coûts de matériel et de main-d'œuvre.

Enfin, l'utilisation de l'énergie solaire doit tenir compte de l'ensoleillement comme des besoins en chaleur des usagers. Les capteurs produisent plus en été, les usagers consomment plus d'eau chaude en hiver. Les équipements les plus rentables ont des besoins réguliers et répartis tout au long de l'année.

4.3. Social

ENERPLAN a évalué la contribution de la filière à la création d'emploi en France à 48000 emplois pour 2020. Ces emplois se répartissent sur divers secteurs:

- étude/ingénierie;
- conseil/accompagnement;
- réalisation/installation;
- maintenance/exploitation;
- production industrielle/fabricants;
- distribution/vente/marketing maîtrise d'ouvrage.

La filière doit continuer à se structurer et à améliorer les compétences de ses différents intervenants.

Aucune estimation du nombre d'emplois créés n'est connue en Alsace.

Les consommateurs ont des garanties qualité produit du fait des certifications qualité des installateurs (Qualisol, Qualibat, Solar Keymark...).

Enfin cette forme d'énergie renouvelable bénéficie d'une image positive chez les français.

5. Potentiel de développement

Plusieurs études ont déjà estimé le potentiel de développement de la filière solaire thermique en Alsace.

Les chiffres retenus pour le SRCAE sont les derniers en date, proposés en 2009, par le bureau d'études AERE qui a estimé les productions d'énergie thermique issues du solaire selon un scénario d'atteinte du Facteur 4.

Elles atteignent 24 ktep en 2020 et 96 ktep en 2050

Solaire photovoltaïque

L'énergie provenant du soleil peut contribuer, soit à la production d'eau chaude sanitaire et/ou chauffage (solaire thermique), soit à la production d'électricité (solaire photovoltaïque).

Le volet étudié ci après est dédié au solaire photovoltaïque. Une autre fiche est consacrée au solaire thermique.

La production solaire photovoltaïque représente en 2010 moins de 1 % du mix énergies renouvelables de la France.

1. Présentation de la filière

L'énergie solaire photovoltaïque provient de la conversion de la lumière du soleil en électricité au sein de matériaux semi-conducteurs comme le silicium ou recouverts d'une mince couche métallique.

Un système photovoltaïque (ou générateur photovoltaïque) est composé de modules photovoltaïques, eux-mêmes composés de cellules photovoltaïques connectées entre elles, qui permettent de produire de l'électricité disponible sous forme d'électricité directe ou stockée à l'aide de batteries ou à injecter dans le réseau. Les cellules les plus répandues sont issues de lingots de silicium cristallin, découpés en fines tranches. Les matériaux photosensibles, comme le silicium, ont la propriété de libérer leurs électrons sous l'influence d'une énergie extérieure. C'est l'effet photovoltaïque. L'énergie est apportée par les photons (composants de la lumière) qui heurtent les électrons et les libèrent, induisant un courant

électrique. Ce courant continu de micropuissance calculé en watt crête (Wc) peut être transformé en courant alternatif grâce à un onduleur.

Parmi les systèmes photovoltaïques nous pouvons distinguer deux catégories:

Les sites raccordés au réseau:

- installations sur toiture: les panneaux photovoltaïques sont positionnés sur la toiture d'un bâtiment ou sur une structure et le système produit de l'électricité qui est ensuite injectée sur le réseau;
- centrales au sol: les panneaux sont posés sur des structures porteuses à même le sol et l'installation est raccordée au réseau pour injection de l'électricité produite.

Les sites autonomes:

- Ce sont des systèmes photovoltaïques intégrés en toiture ou posés/accrochés sur une surface quelconque servant à alimenter un lieu raccordé ou non au réseau (chalet de haute montagne par exemple pour un site isolé ou maison individuelle souhaitant faire de l'autoconsommation de l'énergie produite bien que raccordée au réseau). Ce type d'installation nécessite l'utilisation de batteries et de régulateurs/chargeurs.
- Pour information, nous pouvons signaler que le photovoltaïque est aussi utilisé pour les satellites artificiels, les appareils portables (calculatrices, montres...) ou encore d'autres applications professionnelles (bornes de secours autoroutières, horodateurs de stationnement...).

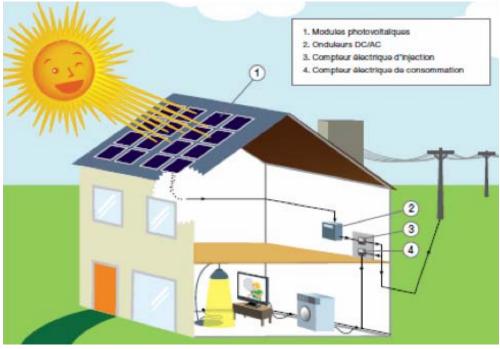


Illustration I: Schéma de principe d'une installation photovoltaïque, source: European Photovoltaic Industry Association - EPIA-

2. État des lieux en Alsace

2.1. Études

Il n'existe pas à ce jour d'étude en Alsace faisant un état des lieux précis, tant au niveau des installations en fonctionnement que du potentiel, sur la filière photovoltaïque.

2.2. Ressources

L'énergie solaire reçue est inégalement répartie sur la surface du globe. En moyenne, le rayonnement solaire reçu en France est de 1400 kWh/m²/an mais la différence d'ensoleillement est importante entre le nord (1100 kWh/m²/an) et le sud du territoire (1700 kWh/m²/an).

Illustration II: Ensoleillement en France métropolitaine en kWh/m²/jour, Source TEC-SOL

L'Alsace, avec ses 1600 heures d'ensoleillement par an, reçoit 35 à 50 % de rayonnement solaire en moins que dans le Midi. Une surface de capteurs plus grande est donc nécessaire dans le nord pour obtenir la même production que dans le sud.

2.3. Installations et projets

La puissance raccordée cumulée pour la région Alsace est de 14289,33 kWc soit 14,3 MWc pour 850 installations environ fin 2009.

La production estimée en 2009, en prenant un équivalent fonctionnement pleine puissance moyen de 950 heures, pour la puissance considérée ci dessus est de 13500 MWh soit 1,2 ktep.

Les 850 installations, exclusivement reliées au réseau, peuvent être classées en plusieurs familles:

- les installations concernant le secteur résidentiel, exclusivement intégrées en toiture avec la technologie cristalline, représentent en nombre la majorité des installations et ont des puissances comprises entre 2 et 3 kWc;
- les installations concernant les secteurs agricole et industriel ou encore les collectivités locales, pour la majorité intégrées en toiture avec la technologie cristalline et dans de plus rares cas avec des cellules amorphes sur toit plat ou très faible pente, ont des puissances comprises entre quelques dizaines et plusieurs centaines de kWc.

 Ces installations, beaucoup moins nombreuses que celles dans le secteur résidentiel, représentent le poids le plus important en termes de puissance installée;
- les installations au sol (plusieurs MWc) sont pour l'instant inexistantes en Alsace. La seule qui peut y être assimilée, bien qu'installée sur de grands hangars agricoles monopentes, est celle de Hanau Energies à Weinbourg pour une puissance de 4,4 MWc.

	2002	2003	2004	2005	2006	2007	2008	2009	Cumul
Puissance installée Bas-Rhin	3	3,66	46,84	24,04	138,08	104,71	1071,74	10277,03	11669,1
Nombre d'installations Bas-Rhin	1	2	3	4	4	13	136	310	473
Puissance installée Haut-Rhin	0	0	17,86	43,16	5,97	145,03	549,96	1858,25	2620,23
Nombre d'installations Haut-Rhin	0	0	6	5	2	34	114	213	374
Puissance installée Alsace	3	3,66	64,7	67,2	144,05	249,74	1621,7	12135,28	14289,33
Nombre d'installations Alsace	1	2	9	9	6	47	250	523	847

Illustration III: Puissance raccordée en kWc au réseau en région Alsace au 31/12/2009, source: chiffres EDF et ES Énergies

Pour donner un ordre de grandeur par rapport aux surfaces nécessaires à l'installation de panneaux photovoltaïques, nous considérerons que 1 kWc représente 8 à 10 mètres carré en toiture et que 1 MWc représente 1 à 3 hectares pour les centrales au sol.

3. Cadre réglementaire

3.1. Droit de l'urbanisme et de l'environnement

Une déclaration de travaux ou un permis de construire sont nécessaires en fonction du type de projet à réaliser.

Pour les centrales au sol dépassant les 250 kWc. Un décret de novembre 2009 impose désormais d'obtenir un permis de construire avec enquête publique et étude d'impact (démarches relatives au code de l'environnement).

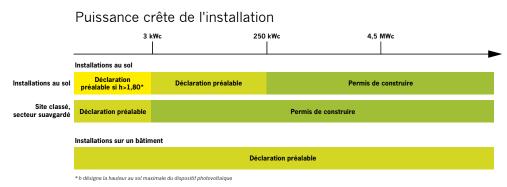


Illustration IV: Démarches administratives relatives au droit de l'urbanisme

3.2. Droit électrique

Suivant sa puissance, une installation photovoltaïque est soumise à autorisation d'exploiter ou à déclaration préalable au titre électrique.

Illustration V: Démarches administratives relatives au droit électrique

Pour les centrales d'une puissance supérieure à 250 kWc, l'obtention d'un certificat ouvrant droit à obligation d'achat auprès de l'administration est également nécessaire.

Enfin une demande de raccordement au réseau doit être effectuée auprès du gestionnaire de réseau local et un contrat d'achat doit être conclu entre le producteur et le distributeur local pour pouvoir se faire acheter l'électricité produite.

L'obligation d'achat de l'électricité photovoltaïque permet aux producteurs de conclure un contrat de 20 ans avec leur distributeur durant lequel ce dernier achète l'électricité photovoltaïque produite à un prix fixe. Ce prix est fonction du type d'installation et du type de matériel installé.

Type d'installation		Tarifs en vigueur pour les installations dont la demande complète de raccordement a été envoyée :			
		avant le 1er juillet 2011	entre le 1er juillet 2011 et le 30 septembre 2011	entre le 1 ^{er} octobre 2011 et le 31 décembre 2011	
			46,00 c€/kWh	42,55 c€/kWh	40,63 c€/kWh
Résidentiel	Intégration au bâti	[9-36kW]	40,60 c€/kWh	37,23 c€/kWh	35,55 c€/kWh
Residentiel	1 12 12 1 12 12 12 12 12	[0-36kW]	30,35 c€/kWh	27,46 c€/kWh	24,85 c€/kWh
	Intégration simplifiée au bâti	[36-100kW]	28,85 c€/kWh	26,09 c€/kWh	23,61 c€/kWh
	Intégration au bâti	[0-9kW]	40,60 c€/kWh	36,74 c€/kWh	33,25 c€/kWh
Enseignement ou		[9-36kW]	40,60 c€/kWh	36,74 c€/kWh	33,25 c€/kWh
santé	1 1/ 11 1 10/	[0-36kW]	30,35 c€/kWh	27,46 c€/kWh	24,85 c€/kWh
	Intégration simplifiée au bâti	[36-100kW]	28,85 c€/kWh	26,09 c€/kWh	23,61 c€/kWh
	Intégration au bâti	[0-9kW]	35,20 c€/kWh	31,85 c€/kWh	28,82 c€/kWh
Autres bâtiments	Intégration simplifiée au bâti	[0-36kW]	30,35 c€/kWh	27,46 c€/kWh	24,85 c€/kWh
		[36-100kW]	28,85 c€/kWh	26,09 c€/kWh	23,61 c€/kWh
Tout type d'installation [0-12MW]		[0-12MW]	12,00 c€/kWh	11,68 c€/kWh	11,38 c€/kWh

Illustration VI: Tableau indicatif des tarifs d'achat photovoltaïques en vigueur en 2011

3.3. Dispositions particulières

Des aides financières peuvent être apportées en fonction du type de projet aussi bien au niveau national (crédit d'impôt, TVA 5,5 %, éco prêt à taux zéro, appel à projets de la commission de régulation de l'énergie) que régional (subventions des collectivités locales principalement).

4. Avantages/Inconvénients

4.1. Environnemental

Le photovoltaïque est exploitable partout dans la mesure où il exploite les rayonnements du soleil. L'énergie solaire gratuite et inépuisable.

Il n'occasionne pas d'émission de gaz à effet de serre, ni de déchet, ni de nuisance ou impact sur l'environnement (mouvement, bruit, odeur, émission quelconque) pendant son fonctionnement.

Les caractéristiques physiques des matériaux photovoltaïques ne s'altèrent pas dans le temps, et la baisse de rendement des panneaux est lente et limitée.

Les panneaux photovoltaïques peuvent faire l'objet de nuisances visuelles. Sur le patrimoine bâti il peut notamment y avoir des restrictions dans des secteurs sauvegardés. Pour les centrales au sol, qui peuvent occuper des surfaces très importantes, des contraintes peuvent exister en fonction de la sensibilité des zones

concernées. Des problèmes de rayonnement/réverbération des installations ont également déjà pu être signalés.

Au niveau du recyclage, la filière s'organise autour de l'organisme PV Cycle pour organiser la gestion des panneaux photovoltaïques en fin de vie.

4.2. Économique

Le fonctionnement des installations est simple, ce qui implique que la maintenance et les réparations sont réduites.

D'une manière générale et comme les autres énergies renouvelables, le photovoltaïque est une alternative aux énergies fossiles et doit pouvoir contribuer à la sécurité d'approvisionnement et à l'indépendance énergétique.

Le prix d'une installation sans aide publique rend encore le coût du kilowattheure photovoltaïque élevé. Cependant, avec la baisse du prix des panneaux et le renchérissement du prix des énergies classiques, le photovoltaïque n'est plus très loin d'atteindre des niveaux de coût de production proches de celui de l'électricité classique.

Au niveau des rendements, ceux-ci peuvent être encore améliorés. De nouvelles technologies continueront à émerger dans le futur, comme le photovoltaïque organique.

Le fonctionnement des installations est intermittent, ce qui fait que les installations ne fonctionnent pas forcément lorsqu'on a le plus besoin. Le stockage de l'électricité dans des batteries pourrait pallier à ce problème mais cela reste encore très coûteux.

4.3. Social

Le secteur photovoltaïque peut être à l'origine de création d'emplois au niveau local.

Au niveau industriel, des investissements ont été réalisés. Pour exemple en Alsace: l'usine Alsapan (fabrication de meubles en kit) s'est reconvertie en milieu d'année 2009 et a laissé place à Voltec Solar à Dinsheim sur Brûche (Bas-Rhin).

Le photovoltaïque bénéficie d'une bonne acceptabilité sociale et permet l'alimentation de sites isolés.

5. Potentiel de développement

Les premières estimations, intégrant notamment les nouvelles conditions d'obligation d'achat, permettent d'envisager une puissance raccordée comprise entre 100 et 150 MWc d'ici 2020 équivalente à environ 10 ktep de production.

Biogaz

Le biogaz est un gaz inflammable au même titre que le gaz naturel. C'est un mélange de méthane et de gaz carbonique, produit à partir de matières organiques. Ces dernières libèrent le biogaz lors de leur décomposition selon un processus de fermentation dans ce que l'on appelle un digesteur ou méthaniseur. Le biogaz peut être valorisé pour produire de la chaleur ou de l'électricité, voire les deux simultanément avec des installations de cogénération. La loi Grenelle 2 a également instauré la possibilité de l'injecter, après épuration, dans le réseau gaz naturel.

En 2010, le biogaz représente 2,7 % du mix énergies renouvelables de la France.

1. Présentation de la filière

Le biogaz est le gaz produit par la fermentation de matières organiques végétales ou animales en l'absence d'oxygène (anaérobie). Cette fermentation qu'on appelle également méthanisation se produit naturellement dans les milieux naturels (gaz des marais) ou spontanément dans les décharges contenant des déchets organiques, mais on peut aussi la provoquer artificiellement dans des

digesteurs (pour traiter des boues d'épuration, des déchets organiques industriels ou agricoles)

Le biogaz est un mélange composé essentiellement de méthane (typiquement 50 à 70 %) et de gaz carbonique, avec des traces variables de vapeur d'eau, d'azote ou encore de soufre.

L'énergie issue du biogaz provient uniquement du méthane: le biogaz est ainsi la forme renouvelable de l'énergie fossile très courante qu'est le gaz naturel, qui lui contient essentiellement du méthane mais aussi du butane, du propane et d'autres éléments. On peut aussi utiliser le terme biométhane.

Les substrats pouvant faire l'objet d'un traitement par digestion anaérobie sont essentiellement:

- les déchets des industries agroalimentaires;
- les déchets ménagers et assimilés déchets verts;
- les eaux usées urbaines;
- les effluents d'élevage;

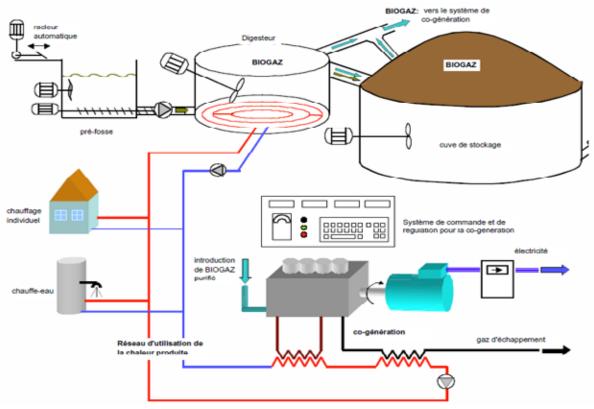


Illustration I: Schéma d'une installation de production et valorisation du biogaz

La technique de méthanisation est une technique relativement bien maîtrisée, en particulier en Allemagne ou en Autriche, mais certaines contraintes techniques sont à prendre tout de même en compte comme:

- le pouvoir méthanogène variable des différents substrats;
- la nécessité d'espaces de stockage des déchets servant de substrat à la méthanisation;
- la nécessité éventuelle de prévoir une phase de compostage pour traiter les déchets ligneux plus difficilement dégradables et pour finaliser la maturation de la matière organique;
- la variation de la qualité et de la quantité du biogaz produit.

2. État des lieux en Alsace

2.1. Études

Une étude intitulée « Le biogaz en Alsace: potentiel, étude économique », qui figure dans les cahiers techniques ENR joints, a été réalisée en 2004 à l'initiative de l'ADEME et du Conseil régional. L'étude a évalué le potentiel régional en production de biogaz toutes filières confondues, avec un approfondissement sur la filière agricole, puis a cherché à déterminer les conditions de viabilité technico-économique d'un projet dit « à la ferme ».

2.2. Ressource

L'étude citée ci-dessus a fait l'inventaire des différentes filières de production de biogaz en Alsace:

Industries agroalimentaires:

Considérant que chaque effluent d'unité agroalimentaire possède des spécificités propres l'étude n'a pas chiffré les potentialités alsaciennes.

Il est intéressant de connaître l'existence d'une telle industrie à proximité d'un site de production de biogaz issu d'une autre filière afin de récupérer d'éventuels produits organiques à ajouter en entrée du système de production.

Stations d'épuration:

La méthanisation est utilisée pour traiter les eaux usées urbaines et une station d'épuration est caractérisée par le volume d'eaux usées qu'elle est en mesure de traiter. Cette capacité est exprimée en équivalent-habitants (EH), sachant qu'un EH représente en moyenne 18 kg de matière sèche/an (MS/an), soit environ 370 kg/an de boue.

Le retour d'expérience sur ces installations montre que 60 % de l'énergie produite est valorisée sous forme de chaleur et/ou d'électricité, et utilisée en premier lieu pour le chauffage (chaleur) et le brassage des digesteurs (moteurs électriques). Le biogaz non valorisé est brûlé en torchère de façon à ne pas rejeter de méthane dans l'atmosphère (impact sur l'effet de serre réduit).

En cumulant le potentiel théorique de toutes les stations d'épuration alsaciennes, l'étude conclut à une production annuelle potentielle de méthane (CH4) de :

- 6.6 millions de m³/an pour le Bas-Rhin
- 3.3 millions de m³/an pour le Haut-Rhin

Il est à noter que les trois stations de Strasbourg, Colmar et Mulhouse représentent à elles seules la moitié de ce potentiel.

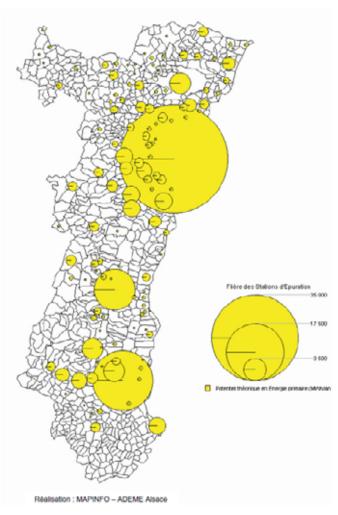


Illustration II: Production théorique en énergie des stations d'épuration Alsacienne, source: rapport sur le biogaz en Alsace Michel MAURER

Déchets ménagers et assimilés – déchets verts:

Les ordures ménagères constituent une source importante de substrats de fermentation anaérobie: une personne produit en moyenne 1 kg d'ordure/jour, soit 360 kg/an, dont 2/3 correspondent à une fraction biodégradable, constituée de matière putrescible et de papier-carton. La valorisation de cette fraction organique par méthanisation suppose un tri préalable des ordures.

Le traitement des déchets peut être réalisé par plusieurs moyens: les centres d'enfouissement techniques (CET), les réacteurs industriels et les usines d'incinération. Ces deux derniers sont traités dans la partie déchets du volet énergies renouvelables.

Les centres d'enfouissement techniques sont des sortes d'immenses digesteurs où l'on peut favoriser le dégagement gazeux en installant un système de récupération de biogaz.

En Alsace, les déchets ménagers et assimilés issus des collectes des collectivités sont après tri, pour la plupart envoyés en usines d'incinération (Strasbourg, Schweighouse sur Moder dans le Bas-Rhin, Colmar et Sausheim pour le Haut-Rhin) ou encore vers des CET ou déchetteries. La séparation des bio-déchets n'est pas réalisée à ce jour. La chaleur produite par incinération permet de produire de l'énergie dans chaque usine d'incinération et la récupération des bio-déchets en amont perturberait cette production.

Une estimation du potentiel théorique des bio-déchets en Alsace a cependant été faite conduisant à une production en méthane d'environ 15 millions de m³/an.

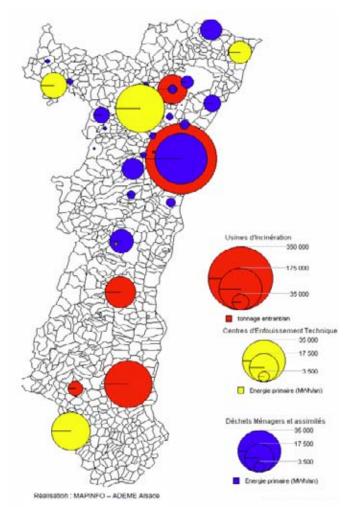


Illustration III: Potentiel des déchets ménagers en Alsace, source: rapport sur le biogaz en Alsace Michel MAURER

Effluents agricoles:

L'élevage de trois espèces (bovins, porcins et volailles) émet chaque année en France près de 300 millions de tonnes de déchets, soit huit fois plus que la population humaine. Ces élevages permettent la production de plusieurs types de déchets: lisier, fumier et fientes.

D'autres effluents d'origine agricole, riches en matière organique, peuvent également être utilisés pour la méthanisation. Il s'agit essentiellement d'ensilage de maïs, au fort pouvoir méthanogène, de pailles de céréales, de cultures énergétiques telles que celle du colza ou de chutes issues du traitement et du tri des légumes.

Trois filières agricoles liées à l'élevage ont été retenues:

- filière bovine: le potentiel théorique tient compte de la production de lisier et de fumier. Ce calcul conduit à une fourchette de 11.9 à 36.1 millions de m³ de CH₄ pour le Bas-Rhin et 6.4 à 19.3 millions de m³ pour le Haut-Rhin.
- filière porcine: 4.5 millions de m³ de CH₄ pour le Bas-Rhin et 930000 m³ de CH₄ pour le Haut-Rhin.
- filière volaille: un chiffre de 5.5 millions de m³ de CH₄ pour la région Alsace est annoncé.

Au total, la filière agricole représenterait une potentialité de 29,2 à 66,3 millions de m³ par an de CH, pour l'Alsace.

2.3. Installations et projets

2.3.1. Industries agroalimentaires

Plusieurs installations industrielles (brasseries, amidonneries, papeterie, chimie, etc.) produisent du biogaz à partir d'effluents organiques. Dans le Bas-Rhin, on peut citer par exemple Kronenbourg à Obernai ou Roquette à Beinheim. Pour le Haut Rhin, Syral à Marckolsheim ou encore Rhodia à Chalampé.

2.3.2. Stations d'épuration

La station d'épuration de la Communauté Urbaine de Strasbourg a été réhabilitée et mise aux normes internationales. L'installation permet de traiter annuellement quelque 23 000 t de boues primaires et biologiques et possède une unité de cogénération.

2.3.3. Déchets ménagers

Les CET sont au nombre de quatre en Alsace et brûlent leur méthane en torchère. Seul celui de Retzwiller (Haut-Rhin) valorise le biogaz par production d'électricité seule, une production de chaleur n'étant pas facilement utilisable sur place.

2.3.4. Effluents agricoles

Il n'y aurait pas de projet en fonctionnement à ce jour en Alsace en 2010.

Plusieurs projets, retenus dans le cadre d'appels à projets du ministère de l'agriculture et de la pêche (MAP), sont en cours de réalisation:

Projets dans le Bas-Rhin:

- GAEC de la Marjolaine à Littenheim pour 530000 m³/ an de méthane
- Lycée Agricole à Obernai pour 318000 m³/ an de méthane
- EARL Fritsch à Friessenheim pour 355000 m³/ an de méthane
- GAEC Wangenberg à Wasselonne pour 127 000 m³/ an de méthane
- SAS Himmar Énergie à? pour 543000 m³/ an de méthane

Projets dans le Haut-Rhin:

 SAS Agrivalor à Ribeauvillé 1,25 Mwe pour 2523000 m³/ an de méthane

Aucun de ses projets n'étant en fonctionnement, il s'agit du prévisionnel de production renseigné sur la base des appels à candidature instruits par les services de l'État.

Tous les projets sont en cogénération, sauf le GAEC du Wangenberg qui est en injection directe (projet qui passera peut-être en cogénération, l'étude initiale étant actuellement en cours de révision).

Soit pour ces six projets une production de 4396000 m³/ an de méthane, équivalent selon les estimations faites pour chacun des projets à une production d'énergie d'environ 33000 MWh/ an d'énergie valorisée répartie à part égale entre chaleur et électricité.

Plusieurs autres projets avaient été évoqués, au stade amont, mais n'ont jamais été réalisés.

La production de biogaz en Alsace en 2009 est de 3 ktep, exclusivement issue des industries agro alimentaires.

3. Cadre réglementaire

3.1 Réglementation ICPE

Les installations de méthanisation et de combustion de biogaz sont soumises à la réglementation installations classées pour la protection de l'environnement (ICPE) suite à la récente création de rubriques spécifiques en 2009 et 2010.

3.2 Tarif d'achat de l'électricité produite à partir de biomasse

L'arrêté tarifaire du 19 mai 2011 permet d'obtenir un tarif d'achat de l'électricité produite à partir du biogaz.

Deux éléments s'additionnent pour définir ce tarif:

- un tarif de base compris entre 8,1 et 9,7 c€/ kWh;
- une prime à l'efficacité énergétique comprise entre 0 et 4 c€/ kWh.

3.3 Injection dans le réseau

La loi Grenelle 2 a instauré la possibilité d'injection de biogaz dans le réseau de gaz naturel. Les conditions réglementaires sur ce volet sont encore à préciser, notamment en ce qui concerne le raccordement et le tarif d'achat du biogaz produit.

3.4 Dispositions particulières

Des aides financières peuvent être apportées en fonction du type de projet aussi au niveau national (appels à projets) que régional (subventions des collectivités locales).

4. Avantages/Inconvénients

4.1. Environnemental

En apportant une réponse énergétique et écologique au problème du traitement des déchets organiques, la méthanisation est une activité de dépollution. Elle constitue une alternative à l'enfouissement ou au rejet de ces déchets, ainsi qu'à la consommation des énergies fossiles.

D'autre part, l'ensemble des déchets organiques, lors de leur décomposition, produisent naturellement d'énormes quantités de méthane et de gaz carbonique. Ces gaz gagnent les hautes couches atmosphériques et contribuent à l'augmentation de l'effet de serre. Le fait de récupérer ce biogaz et de le brûler, permet de diviser l'impact sur le réchauffement climatique des gaz libérés dans l'atmosphère. Les effets néfastes des gaz émis par les déchets organiques sont ainsi amoindris et les caractéristiques intéressantes de la partie des déchets organiques sont préservées après la digestion anaérobie.

4.2. Économique

Le coût de l'investissement et le manque de connaissance du grand public concernant les techniques de valorisation des déchets organiques, représentent les principaux obstacles à la mise en place d'une installation productrice de biogaz.

Il existe également d'autres freins au développement, notamment le manque de références françaises et la complexité concernant le montage des projets (permis de construire, raccordement au réseau, procédure installations classées).

4.3. Social

Au niveau local, la méthanisation représente un complément d'activité pour les agriculteurs, qui peuvent valoriser économiquement et énergétiquement les déchets agricoles de source végétale ou animale.

Elle peut également favoriser l'émergence de filières de recyclage au niveau des territoires et être créatrice d'emplois.

5. Potentiel de développement

Industries agroalimentaires:

Aucune étude précise n'a aujourd'hui été réalisée sur ce secteur. La filière des industries agroalimentaires représente potentiellement une source de matière organique intéressante.

Stations d'épuration:

D'après l'étude de 2004, seuls les sites qui ont une capacité totale de traitement de plus de 30000 EH (Equivalent Habitant) sont intéressants pour l'éventuelle adjonction d'un système de valorisation de biogaz. Les chiffres actuels conduiraient à dire que le seuil est passé à 55000 EH.

Pour le Bas-Rhin, il existe six sites avec une capacité en EH supérieure à 30000. Seul le site de Strasbourg dépasse les 55000 EH.

Pour le Haut-Rhin, on dénombre cinq sites qui ont une capacité en EH supérieure à 55000 EH.

L'ensemble de ces sites dépassant les 55000 EH pourraient permettre une production d'énergie de 64750 MWh/an.

Déchets ménagers et assimilés - déchets verts:

La source essentielle de bio-déchet à valoriser sous forme de biogaz se trouve dans les déchets résiduels de collecte des ordures ménagères, qui sont aujourd'hui envoyés en usine d'incinération et en CET. Il faut se pencher sur ces flux de bio-déchets en Alsace pour estimer le volume de biogaz à valoriser.

Un potentiel de biogaz à partir de bio-déchets issus de la collecte sélective des déchets a été chiffré pour la région en 2002 qui représenterait environ 145000 MWh/an d'énergie produite.

Les déchets résiduels issus des collectes ne sont cependant pas facilement exploitables. Il faudrait en effet organiser un tri supplémentaire pour séparer la fraction fermentescible du reste de déchets collectés. D'autre part, ces déchets ont déjà une place dans le circuit de traitement des déchets en Alsace, vers les usines d'incinération par exemple, et il n'est par conséquent pas évident de les soustraire pour en faire du biogaz.

Par ailleurs il serait intéressant de connaître le potentiel alsacien en déchet vert car le mélange déchet vert/déjections animales permet d'augmenter le rendement de la méthanisation.

Effluents agricoles:

La filière agricole représenterait la plus intéressante des sources en matière organique pour la production de biogaz en Alsace. Elle pourrait assurer, selon l'étude de 2004, une production énergétique comprise entre 240800 MWh et 590800 MWh/an.

Sur ces bases, le potentiel de production est estimé à 12 ktep en 2020 et 40 ktep en 2050 pour la filière biogaz en Alsace. Une nouvelle étude prospective, permettant d'affiner ces chiffres, sera lancée au début de l'année 2012.

Synthèse

Ce tableau a été élaboré dans le cadre de l'atelier « énergies renouvelables »

Filière de production	Production 2009 (ktep)	Potentiel réaliste 2020 (ktep)	Effort à mener d'ici 2020	Potentiel estimé 2050 (ktep)	Effort à mener d'ici 2050
Hydroélectricité*	650	660	10	690	40
dont grande hydroélectricité	647,5	656,5	9	685	37,5
dont petite hydroélectricité	2,5	3,5	1	5	2,5
Biomasse bois**	214	266	52	300	86
Biomasse déchets	32	50	18	50	18
Biomasse agricole	0	5	5	20	20
Agrocarburants	23	30	7	50	27
Géothermie	12	46	34	85	73
dont géothermie profonde	0	20	20	37	37
dont géothermie de surface***	12	26	14	48	36
Solaire thermique	3	24	21	96	93
Solaire photovoltaïque	1	10	9	50	49
Biogaz	3	12	9	40	37
Éolien	0	20	20	60	60
Total	938	1123	185	1441	503
Production d'ENR/consomma- tion finale d'énergie actualisée sur l'année considérée****	17,5 %	26,2 %		53,7 %	

^{*}production moyenne entre 2006 et 2009 car la variation annuelle des débits peut être à l'origine de variation significative de la production

Illustration I: Tableau récapitulatif de l'état des lieux de la production ENR en 2009 et des potentiels estimés à 2020 et 2050 en Alsace.

Des chiffres sont proposés pour 2020 et 2050 soit lorsqu'une étude prospective a déjà été effectuée, soit par une première estimation dans l'attente d'études plus fines.

Une nouvelle étude prospective lancée dans le cadre de la CREA en décembre 2011, et faisant suite aux travaux du SRCAE, permettra d'affiner tous les chiffres concernant les potentiels à 2020 et 2050.

^{**}objectif 2020 déjà atteint en 2011 avec les projets en cours de montage et programmés et concerne uniquement la production provenant du bois Alsacien

 $^{^{***}} les \ chiffres \ pour \ les \ pompes \ \grave{a} \ chaleur \ a\acute{e}rothermiques \ ne \ sont \ pas \ pris \ en \ compte \ car \ non \ disponibles$

^{****} pourcentage calculé sur la base d'une consommation finale actualisée sur l'année considérée (5 364 ktep en 2009, 5 364 ktep diminué de 20 % en 2020, 5 364 ktep diminué de 50 % en 2050)

Le schéma régional de raccordement au réseau des énergies renouvelables.

En lien avec la partie énergies renouvelables du SRCAE, le gestionnaire du réseau public de transport (RTE) élabore, en accord avec les gestionnaires des réseaux publics de distribution et après avis des autorités organisatrices de la distribution concernées dans leur domaine de compétence, un schéma régional de raccordement au réseau des énergies renouvelables, qu'il soumet à l'approbation du préfet de région dans un délai de six mois à compter de l'établissement du SRCAE.

Ce schéma définit:

- les ouvrages à créer ou à renforcer pour atteindre les objectifs fixés par le SRCAE,
- un périmètre de mutualisation des postes du réseau public de transport, des postes de transformation entre les réseaux publics de distribution et le réseau public de transport et des liaisons de raccordement de ces postes au réseau public de transport,
- leurs capacités d'accueil de production permettant d'atteindre les objectifs définis par le SRCAE,
- Il évalue le coût prévisionnel d'établissement des capacités d'accueil nouvelles nécessaires.

Schéma régional Climat Air Énergie Alsace

Orientations

Principes d'élaboration des orientations

Le schéma régional alsacien porte, aux horizons 2020 et 2050, sur cinq axes stratégiques reprenant les grandes lignes du décret n° 2011-678 du 16 juin 2011 :

- Axe 1: Réduire les émissions de gaz à effet de serre et maîtriser la demande énergétique
- Axe 2: Adapter les territoires et les activités socio-économiques aux effets du changement climatique
- Axe 3: Prévenir et réduire la pollution atmosphérique
- Axe 4: Développer la production d'énergie renouvelable

Axe 5: Favoriser les synergies du territoire en matière de climat-air-énergie

Ces axes sont déclinés en une série de fiches d'orientations ou d'objectifs établies en lien avec l'état des lieux présenté dans la première partie du schéma et tenant compte des spécificités régionales. Ces orientations interdépendantes ont pour vocation de permettre d'atteindre des objectifs régionaux ambitieux mais réalistes en matière de réduction des émissions de gaz à effet de serre, d'adaptation au changement climatique, de qualité de l'air et de développement des énergies renouvelables. Afin d'assurer une meilleure lisibilité des orientations et leur appropriation par les acteurs territoriaux, le nombre de fiches a été volontairement limité dans le but de mettre en avant les priorités

Chaque fiche est construite de manière à rappeler, en quelques points essentiels, le contexte et les enjeux locaux. Elles fixent les objectifs visés aux horizons 2020 et 2050, la démarche envisagée pour atteindre ces objectifs ainsi que les indicateurs de suivi.

De plus, chacune des fiches est accompagnée d'une proposition de liste d'actions opérationnelles non exhaustives permettant d'offrir aux acteurs locaux des premières pistes concrètes de réflexion et de travail.

Il est important de souligner que l'atteinte des objectifs régionaux est liée à la mise en œuvre de mesures régionales, mais également nationales voire européennes. L'impact de chacune des orientations peut ainsi être difficile à apprécier car elle ne dépend pas du seul territoire alsacien. Des estimations chiffrées ont été effectuées de manière à aboutir à une première formalisation des ambitions. Ces projections sont basées sur l'étude AERE réalisée en 2008 en tenant compte des projections démographiques de l'INSEE. D'autres données telles que l'évolution du coût de l'énergie ou l'impact de nouvelles installations industrielles n'ont pas été prises en compte, faute d'éléments fiables.

Chaque axe stratégique est détaillé par la suite de manière à rappeler le contexte et présenter les objectifs et orientations associés

Axe 1: Réduire les émissions de gaz à effet de serre et maîtriser la demande énergétique

La réduction des émissions de gaz à effet de serre est, dans la plupart du temps, liée la maîtrise de la consommation énergétique.

Situation actuelle:

LES ÉMISSIONS DE GAZ À EFFET DE SERRE: elles s'élèvent à environ 16 millions de tonnes en équivalent CO2 (soit 8,8 tonnes/ an par alsacien pour une moyenne nationale de 8,2). L'illustration suivante présente les principales sources d'émission en Alsace par secteur en 2007.

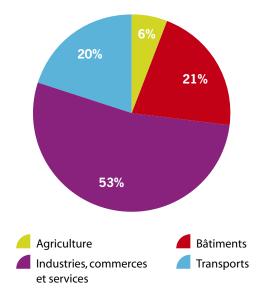


Illustration I: Sources d'émissions de GES par secteur en Alsace en 2007

Objectif de réduction des émissions de gaz à effet de serre:

L'objectif national dit « facteur 4 » doit permettre une diminution des émissions de 75 % entre 1990 et 2050. Or, entre 1990 et 2000, grâce aux efforts entrepris par l'industrie chimique, les émissions alsaciennes ont déjà baissé d'environ 50 %. Un scénario dit « facteur 4 volontariste » partant de l'année 2003, a été retenu pour l'Alsace, avec un premier palier visant 15 % de réduction d'ici à 2020.

Sur cette base, l'évolution des émissions serait la suivante:

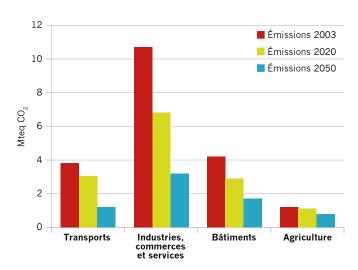


Illustration II: Perspectives d'évolution des émissions de GES en Alsace à 2020 et 2050

LA CONSOMMATION ÉNERGÉTIQUE FINALE: elle est en légère baisse ces dernières années, due essentiellement à la réduction dans le secteur industriel. En 2009, elle a été de 5400 milliers de tep (soit 2,9 tep par alsacien pour une moyenne nationale de 2,6). L'illustration suivante présente la répartition de la consommation par secteur.

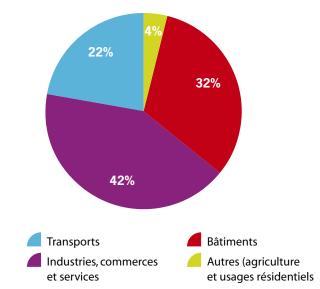


Illustration III: Répartition de la consommation énergétique finale par secteur d'activité en 2009

Objectif de maîtrise de l'énergie:

L'objectif est de réduire de 20 % la consommation énergétique finale entre 2003 et 2020. À l'horizon 2050, l'Alsace cible sur une diminution de 50 %.

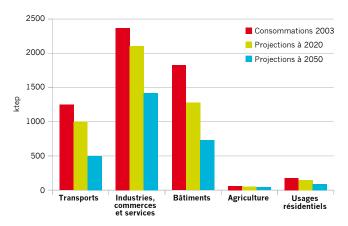


Illustration IV: Perspectives d'évolution de la consommation énergétique finale

À partir de ces constats, les fiches d'orientations suivantes ont été élaborées:

- GES 1: Généraliser la rénovation énergétique du parc bâti résidentiel existant en tendant vers la basse consommation
- GES 2: Rechercher une performance énergétique ambitieuse dans le bâti résidentiel neuf
- GES 3: Développer la performance et généraliser la rénovation optimale du parc tertiaire en tendant vers la basse consommation
- GES 4: Maîtriser les émissions de gaz à effet de serre et améliorer l'efficacité énergétique des entreprises
- GES 5: Limiter les pertes sur les réseaux de transport d'énergie
- GES 6: Maîtriser les émissions de gaz à effet de serre et améliorer l'efficacité énergétique de l'agriculture régionale
- TR 1: Rationaliser le transport routier de marchandises et de voyageurs
- TR 2: Optimiser le système de transport et son usage pour les marchandises et les voyageurs

Axe 2: Adapter les territoires et les activités socioéconomiques aux effets du changement climatique

Situation actuelle:

L'observation des enregistrements des températures depuis 1950 aux stations météorologiques de Strasbourg-Entzheim et de Bâle-Mulhouse, montre une hausse du nombre de jours annuels où la température dépasse 25 °C, de l'ordre de 15 à 20 jours. À l'inverse, pour cette période, le nombre de jours annuels de gel est en recul de 15 à 20 jours. En termes de précipitations, la tendance sur les 60 dernières années, est moins nette.

Selon les scénarios climatiques nationaux existants, élaborés sur la base de plusieurs hypothèses d'émissions de gaz à effet de serre, la température moyenne augmentera d'environ 2 à 3 °C d'ici la fin du XXIº siècle, avec un premier palier à l'horizon 2030-2050, compris entre + 0,5 et 1,5 °C. Malgré leurs incertitudes, ces scénarios montrent une tendance à la diminution des précipitations au printemps et en été de l'ordre de 10 %. Une augmentation des phénomènes extrêmes comme les jours de canicule, est également annoncée.

Ces évolutions climatiques pressenties ont permis d'identifier certaines vulnérabilités de l'Alsace qui portent principalement sur:

- l'exposition des populations à la survenance de phénomènes extrêmes impactant la santé humaine. On peut citer: les évènements de chaleur en milieu urbain en général accompagnés par une pollution de l'air par l'ozone ou la présence d'allergènes respiratoires nouveaux comme les pollens,
- les variations dans la disponibilité locale de la ressource en eau (besoins en eau potable), sur la qualité de l'eau (activités de loisirs ou de baignade, prolifération d'algues...) et l'augmentation des phénomènes de coulées d'eaux boueuses,
- le développement des activités industrielles, la navigabilité (incidences sur le trafic fluvial) ou la production d'électricité,
- l'évolution de l'enneigement en montagne et ses conséquences sur l'activité touristique hivernale des stations de montagne,
- les conséquences sur l'agriculture, la viticulture et la gestion forestière.

Objectif:

De nombreuses inconnues subsistent encore dans les projections climatiques existantes. L'amélioration des connaissances à l'échelle du territoire alsacien, est donc nécessaire pour mieux en mesurer sa vulnérabilité et ses mutations. Néanmoins, l'adaptation au changement climatique doit s'intégrer, dès à présent dans les choix stratégiques comme politique d'anticipation.

La fiche d'orientations concernant cette thématique, est la suivante:

ADAP 1: Anticiper les effets du changement climatique sur les activités humaines et la santé

Axe 3: Prévenir et réduire la pollution atmosphérique

Concernant la qualité de l'air, l'objet principal du schéma régional est de veiller à ne pas dépasser les seuils réglementaires de concentration de polluants dans l'air ambiant. La problématique spécifique aux effets sur la santé, de l'air intérieur et de la combinaison air intérieur/air ambiant, est traitée dans le Plan Régional Santé Environnement (PRSE)

Situation actuelle:

L'Alsace est encore confrontée à des dépassements des valeurs limites mesurées dans l'environnement pour les particules et les oxydes d'azote principalement autour des grands axes routiers et dans les agglomérations.

En 2007, les émissions de particules PM10 (diamètre inférieur à 10 μ m) s'élèvent à 9400 tonnes. Les émissions de PM 2,5 (diamètre inférieur à 2,5 μ m) sont d'environ 5700 tonnes. Pour les PM10, les secteurs du résidentiel/tertiaire avec la combustion du bois et de l'agriculture sont les principaux émetteurs (30 % environ chacun) suivi par le transport (20 %).

En 2007, les émissions d'oxydes d'azote s'élèvent à 39000 tonnes. Les transports sont responsables de plus de 50 % de ces émissions devant le résidentiel et l'industrie (20 % chacun).

En ce qui concerne les autres polluants, deux problématiques subsistent:

- les niveaux d'ozone: même si des améliorations ont été enregistrées, des épisodes ponctuels de pollution surviennent encore, se traduisant par des dépassements des seuils de recommandation pour la population,
- la présence de mercure: le suivi du mercure engagé dans l'air ambiant de la vallée de Thann montre des teneurs notables dans l'atmosphère.

Bien que la réduction des émissions de polluants à l'atmosphère ne puisse être directement corrélée avec l'évolution de la qualité de l'air, cette diminution est un préalable indispensable à l'atteinte des objectifs réglementaires.

Objectif:

La priorité est, dans les zones identifiées comme sensibles, le respect des valeurs limites réglementaires pour les PM10: $50 \, \mu g/m3$ à ne pas dépasser 35 jours dans l'année et pour les oxydes d'azote: $40 \, \mu g/m3$ en moyenne annuelle. Cette priorité passe par une réduction globale ou ciblée des émissions de ces polluants.

Les deux orientations suivantes relatives à l'air ont été construites de manière transversale en intégrant les secteurs d'activité les plus concernés par les émissions polluantes:

- AIR 1: Réduire prioritairement les émissions régionales de particules et d'oxydes d'azote
- AIR 2: Prévenir l'exposition à la pollution atmosphérique due à l'ozone, aux métaux lourds, aux pesticides...

Axe 4: Développer la production d'énergies renouvelables

Situation actuelle:

En 2009, la production d'énergies renouvelables représente environ 17 % dans la consommation d'énergie finale (12 % au niveau national). Pour mémoire, la directive européenne a fixé pour la France 23 % d'énergies renouvelables dans la consommation d'énergie finale d'ici à 2020.

Les installations hydroélectriques situées sur le Rhin et la biomasse issue des forêts alsaciennes représentent à elles seules plus de 90 % de cette production.

Objectif:

L'analyse prospective des différentes filières de production d'énergies renouvelables permet d'envisager un développement supplémentaire mais maîtrisé de ces énergies en préservant notamment les spécificités environnementales et paysagères de la région.

Le tableau ci-dessous présente la production de chaque filière pour l'année 2009 avec un potentiel de développement envisagé à l'horizon 2020 illustré d'éléments techniques (nombre d'installations, ressources à mobiliser...).

Filière de production	Production 2009 (ktep)	Potentiel de production 2020 (ktep)	Éléments techniques
Hydroélectricité*	650	660	Optimisation de l'aménagement du Rhin et développement de petites centrales (estimées à une dizaine d'installations) sur les autres cours d'eau
Biomasse bois**	214	266	Le potentiel estimé ne prend en compte que la production à partir de bois alsacien et devrait permettre d'approvisionner les projets en cours de montage ou programmés (CRE, BCIA, CPER).
Biomasse déchets	32	50	Optimiser la valorisation énergétique des quatre unités d'incinération des déchets tout en réduisant leur production à la source
Biomasse agricole	0	5	Utiliser la biomasse agricole pour la production d'énergie. Un gisement d'environ 100000 t de sous produits de l'agriculture pourrait être disponible.
Agrocarburants	23	30	Le site de Roquette, et potentiellement celui de Stracel, assureront cette production en tenant compte uniquement des matières premières alsaciennes (blé et bois).
Géothermie profonde	0	20	Trois nouvelles centrales de puissance unitaire de 3 MW projetées.
Géothermie de surface	12	26	
Solaire thermique	3	24	Progression d'une surface de 89000 m² actuellement à 770000 m²
Solaire Photovoltaïque	1	10	Progression d'une surface de 150000 m² actuellement à 1500000 m²
Biogaz	3	12	Mobilisation des sous produits de l'agriculture et des boues d'épuration.
Éolien	0	20	50 éoliennes de 2 MW
Total	938	1123	
Production d'EnR sur la consommation finale actualisée sur l'année considérée****	17,4 %	26 %	

^{*} production moyenne entre 2006 et 2009 tenant compte de la variation annuelle des débits

^{**} objectif 2020 déjà atteint en 2011 (avec les projets en cours de montage et programmés).

^{***} les chiffres pour les pompes à chaleur aérothermiques ne sont pas pris en compte (données non disponibles)

^{****} pourcentage calculé sur la base d'une consommation finale actualisée sur l'année considérée (5 400 ktep en 2009, 5 400 ktep moins 20 % en 2020)

Chacune des filières fait l'objet d'une fiche spécifique qui fixe des objectifs quantitatifs et qualitatifs pour 2020 et 2050 et propose des pistes d'action pour les atteindre:

- **ENR 1:** Moderniser la production d'hydroélectricité en cohérence avec la restauration des milieux aquatiques
- ENR 2: Optimiser la gestion de la filière biomasse-bois à destination de la production d'énergie
- ENR 3: Valoriser l'énergie provenant de l'incinération de la fraction résiduelle de la biomasse des déchets
- **ENR 4:** Développer de nouvelles perspectives dans la filière biomasse agricole pour la production d'énergie et d'agrocarburants
- **ENR 5:** Exploiter les potentialités géothermiques profondes du sous-sol pour la production d'électricité et de chaleur
- ENR 6: Exploiter les potentialités géothermiques peu profondes de très basse température nécessitant une pompe à chaleur pour la production de chaleur
- ENR 7: Accélérer le développement de l'énergie solaire thermique destinée à la production de chaleur
- ENR 8: Poursuivre le développement de l'énergie solaire photovoltaïque, destinée à la production d'électricité
- ENR 9: Valoriser les matières organiques disponibles sous forme de biogaz
- ENR 10: Planifier un développement harmonieux de l'énergie éolienne prenant compte les différents enjeux du territoire.

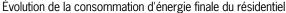
Axe 5: favoriser les synergies du territoire en matière de climat-air-énergie

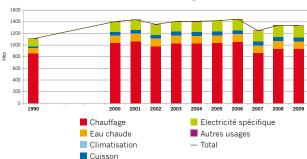
Cette partie aborde des recommandations transversales autour de trois thèmes: l'animation et le suivi du schéma, la sensibilisation des acteurs et la déclinaison territoriale.

Le schéma constitue une feuille de route régionale pour les dix prochaines années qui nécessite la mise en place d'outils d'animation, de suivi et d'évaluation. Des indicateurs associés à chaque orientation serviront de points de repère et permettront de mesurer les évolutions des chiffres clefs en fonction des efforts consentis et des actions entreprises. Ces indicateurs devront régulièrement être mis à jour, intégrés et rapportés dans les différents observatoires actuellement en place dans les domaines de l'air, de l'énergie et du climat.

Par ailleurs, l'appropriation du schéma régional par les citoyens et les acteurs économiques, avec le soutien des acteurs publics, est une des conditions de réussite nécessaire. L'évolution des comportements de consommation en matière d'achat, d'usage dans les bâtiments économes en énergie ou de déplacement constitue un levier essentiel pour améliorer les performances de l'Alsace dans la lutte contre les émissions de gaz à effet de serre.

Enfin, le schéma doit servir de guide aux acteurs régionaux pour leur planification territoriale, via les Plans Climats Énergie Territoriaux par exemple. Ces actions doivent permettre de favoriser les synergies et veiller à un développement harmonieux des territoires.


Trois orientations permettant de reprendre ces grands principes ont été définies:


- TRANS 1: Évaluer la mise en œuvre du SRCAE au travers d'un suivi et d'une gouvernance appropriés
- TRANS 2: Sensibiliser les citoyens et favoriser leur appropriation des enjeux climat-air-énergie
- TRANS 3: Développer une approche transversale des enjeux d'énergie, d'air et d'adaptation dans la planification de l'aménagement et de l'urbanisme

L'ensemble des fiches est proposé dans les pages suivantes.

Généraliser la rénovation énergétique du parc bâti résidentiel existant en tendant vers la basse consommation

Contexte/enjeux locaux

- Le parc bâti est le deuxième secteur consommateur d'énergie en Alsace (~25% de l'énergie finale totale) suivant une tendance croissante et représente environ 12% des émissions de GES. L'augmentation amorcée du prix des énergies fossiles fait déjà du logement le cadre de la précarité énergétique. La qualité de l'air intérieur apparaît également comme un enjeu sociétal, en corolaire de l'efficacité énergétique du parc bâti.
- Le parc existant comprend 752000 logements. En fonction de sa structuration, les gisements suivants peuvent être identifiés:
 - le bâti ante-74 (60% du parc, 70% de sa consommation d'énergie et 62% de ses émissions)
 - les copropriétés (27% du parc, 20% de sa consommation et 23% de ses émissions)
 - le parc locatif social (12% du parc, 10% de sa consommation et 10% de ses émissions)
 - les parcs bâtis de la CUS, de la M2A et de la CAC, qui concentrent les 3 gisements précités
 - le poste chauffage (70% des consommations) lié à l'isolation le poste eau chaude sanitaire (10% des consommations).

Objectifs visés

- L'atteinte des objectifs nationaux (-38 % de consommation énergétique primaire en 2020) et la réduction des impacts sociaux passent par la rénovation de masse du parc existant alsacien.
- Un rythme de rénovation énergétique de l'ordre de 19000 logements/an d'ici à 2050 est nécessaire, avec:
 - comme objectif: le niveau basse consommation (BBC) de la rénovation (≤104 kWh/m²/an)
 - comme priorités: les gisements précités.
- L'efficacité énergétique des usages du bâti s'avère complémentaire et autant à développer que celle des installations et des systèmes.

Démarche

Afin d'amorcer une dynamique régionale et d'obtenir rapidement un effet levier, quatre axes stratégiques sont retenus:

- L'information et la sensibilisation des maîtres d'œuvre et d'ouvrage doivent être réalisées le plus en amont possible et rendues plus lisibles en s'appuyant sur les programmes publics existants. L'amélioration de la formation initiale et continue, ainsi que le développement de la labellisation, doivent compléter cette démarche.
- 2. Le passage à l'acte de la rénovation doit être activement favorisé. et ce d'autant plus que le programme Energivie a démontré au travers de ses appels à projet que la rénovation BBC s'avère techniquement possible. L'absence de leviers financiers suffisants pour les particuliers est actuellement un frein à la rénovation thermique. Des réponses concertées entre les collectivités, le secteur économique et la société civile doivent être apportées à cette problématique. Les politiques publiques doivent être orientées vers les gisements prioritaires précités, tout en s'articulant avec les enjeux de précarité énergétique et patrimoniaux en Alsace.
- 3. Le contrôle du respect de la réglementation en la matière, celui de la labellisation, mais également le retour d'expérience de l'évaluation des réalisations techniques et des investissements publics, doivent encadrer la démarche afin de l'inscrire dans un processus vertueux.
- 4. Une évaluation pérenne et régulière des objectifs poursuivis et des économies énergétiques réalisées doit être effectuée de manière à recentrer les efforts de rénovation sur les gisements principaux et prioritaires d'économies d'énergie et d'émissions de gaz à effet de serre identifiés en Alsace.

- · « Diagnostic énergétique: état des productions et consommations d'énergie en région Alsace et émissions de gaz à effet de serre associées »
- · Nombre d'entreprises qualifiées et de bâtiments labellisés
- · Autres indicateurs: Certificats d'Économie d'Énergie Plans Départementaux de l'Habitat · Convention d'objectifs bâtiment durable

Généraliser la rénovation énergétique du parc bâti résidentiel existant en tendant vers la basse consommation

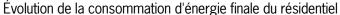
Pistes de réflexion à mettre en œuvre en région

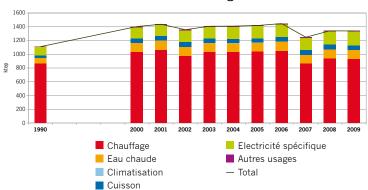
ACTIONS	COMMENTAIRES
Sensibilise	er et former
 Développer la formation initiale et continue des professionnels du bâtiment et de l'immobilier. Améliorer la qualité de l'offre. 	 En parallèle à l'amélioration de la formation initiale et continue, la qualité de l'offre professionnelle doit être valorisée, avec des sigles de qualité reconnus: la qualification des entreprises (sur le modèle « Reconnu Grenelle environnement ») et la labelli- sation des bâtiments doivent être claires pour les usagers et contrôlées par la suite.
	 L'information doit être dispensée en amont et en aval d'un projet de rénovation pour en permettre la bonne réalisation, puis le bon usage. Elle pourrait se structurer autour du site web du programme Energivie.
 Structurer l'accès à l'information en la simplifiant et en l'a sur toutes les parties prenantes d'un projet de construct allant de la conception à l'usage sobre du bâti et concern les maîtrises d'ouvrage et d'œuvre, les bailleurs, syndics propriétaires et les locataires 	 Diverses pistes peuvent être développées, comme la diffusion, lors du retrait des formulaires de permis de construire ou de déclaration de travaux, d'informations sur la réglementation, sur les aides financières et sur les bons usages du bâti. Les devis de rénovation pourraient proposer un chiffrage systématique d'un scénario BBC. L'information territorialisée sur les aides directes (programme Energivie, collectivités, État) et indirectes (collectivités, État)
	doit être structurée, par le biais d'un portail web actualisable. • La rédaction d'un contrat-type doit engager toutes les parties

et donner délégation de responsabilité au maître d'œuvre afin

• L'information sur les usages (chauffage, aération) en annexe de

d'atteindre un objectif énergétique concerté.


bail serait aussi une voie à creuser.



ACTIONS	COMMENTAIRES	
Accompagner la réalisation		
 Inscrire les enjeux de la rénovation énergétique du bâti dans les documents d'urbanisme 	• L'orientation « aménagement et urbanisme » identifie les textes réglementaires sur lesquels s'appuyer et introduit les liens entre efficacité énergétique du bâti, densité urbaine et mobilité.	
 Favoriser la mise en place d'un marché régional de la rénovation de masse du bâti (offre d'ingénierie globale financière et technique) 	• Pour pallier l'absence de leviers financiers suffisants, un tel marché régional est à créer en se référant à l'existant ou aux expérimentations déjà menées. (ex: aides directes des appels à projets du Programme Energivie, des collectivités locales; aides indirectes comme l'exonération possible de taxe foncière pour la rénovation des logements à "haut niveau de performance énergétique" prévue aux articles 1383-O-B, 1383-O-B bis du Code Général des Impôts; Programmes d'intérêt général consacrés à la rénovation; structures tiers-porteuses, fond de garantie et d'investissement public et/ou privé dédié à la rénovation, certificats d'économie d'énergie, contrats de performance énergétique).	
Contrôler	et évaluer	
• Vérifier l'application de la réglementation	 Le Code de la Construction et de l'Habitation prévoit dans ses articles articles L111-9 et L111-21, L152-1 à L152-10, les règles de contrôle susceptibles d'être mises en œuvre (Décret n° 2011-544 du 18 mai 2011). Ce même code prévoit dans ses articles R111-20 à R111-20-5, la réalisation de différents documents par le maître d'ouvrage attestant la prise en compte de la réglementation, notamment pour des parties nouvelles de bâti soumises à permis de construire ou déclaration préalable. L'article L134-4-1 complété par l'article 24-4 modifiant la loi n° 65-557 du 10 juillet 1965 fixant le statut des copropriétés des immeubles bâtis, instaure la réalisation d'audits obligatoires à mener par les copropriétés de plus de 50 lots d'ici 2020. 	
 Évaluer le résultat des aides publiques 	 Toute aide directe doit subordonner son attribution à des cri- tères d'éco-socio-conditionalité et fera l'objet d'une évaluation régulière (retour d'analyse vers un observatoire). Un référentiel commun listant les critères d'attribution et d'évaluation sera adopté et appliqué. 	
Anticiper e	t améliorer	
Tirer les enseignements et réorienter les stratégies	 L'observation de la dynamique du marché de la rénovation en Alsace, des résultats obtenus et les nouvelles solutions tech- niques doivent accompagner la démarche. Les études de mar- ché à l'échelle de l'usager peuvent être développées en com- plément. 	

Rechercher une performance énergétique ambitieuse dans le bâti résidentiel neuf

Contexte/enjeux locaux

- Le parc bâti est le deuxième secteur consommateur d'énergie en Alsace (~25% de l'énergie finale) suivant une tendance croissante. L'augmentation amorcée du prix des énergies fossiles fait déjà du logement le cadre de la précarité énergétique. La qualité de l'air intérieur apparaît également comme un enjeu sociétal, en corolaire de l'efficacité énergétique du parc bâti.
- Environ 9000 logements neufs sont construits chaque année en Alsace.
- Bien que ce chiffre ne représente annuellement qu'environ 1% du parc bâti existant, ces logements constitueront environ un tiers du parc bâti de 2050.

Objectifs visés

- Le parc bâti neuf a une incidence faible sur l'atteinte des objectifs nationaux de 2020 (-38 % de consommation énergétique primaire).
- La construction neuve devra respecter la réglementation thermique 2012 (RT 2012) qui fait de la basse consommation (50 kW/m2/an) la norme de la construction.
- Cependant, l'amélioration de la performance énergétique du bâti neuf doit être recherchée dès à présent pour atteindre l'objectif de la RT2020 à savoir la consommation positive du bâti.
- L'efficacité énergétique des usages du bâti s'avère complémentaire et autant à développer que celles des installations et des systèmes.

Démarche

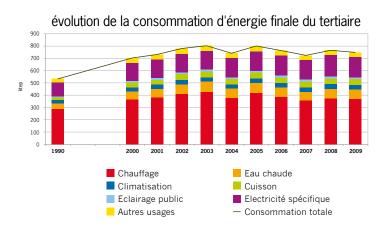
Afin de faire respecter la basse consommation dans la construction du bâti neuf et d'anticiper son dépassement, quatre axes stratégiques sont retenus:

- 1. L'information et la sensibilisation des maîtres d'œuvre et d'ouvrage doivent être réalisées le plus en amont possible et rendues plus lisibles en s'appuyant sur les programmes publics existants. L'amélioration de la formation initiale et continue, ainsi que le développement de la labellisation, doivent compléter cette démarche. L'adaptation des comportements au bâti à haute performance énergétique doit également être activement soutenue.
- 2. La construction à performance énergétique élevée doit être soutenue et favorisée afin de permettre la création des leviers financiers nécessaires à sa massification. Les enseignements de cette démarche serviront à la rénovation basse consommation.
- 3. Le contrôle du respect de la réglementation en la matière (RT 2012), celui de la labellisation, ainsi que le retour d'expérience de l'évaluation des réalisations techniques et des investissements publics, doivent encadrer la démarche afin de l'inscrire dans un processus vertueux.
- 4. Une évaluation pérenne et régulière de la dynamique de construction doit être effectuée de manière à recentrer les efforts d'adaptation de la filière et des usagers à la construction énergétiquement performante.

- « Diagnostic énergétique: état des productions et consommations d'énergie en région Alsace et émissions de gaz à effet de serre associées »
- · Attestations de prise en compte de la RT2012 (dépôt de permis de construire et achèvement des travaux)
- · Nombre d'entreprises qualifiées et de bâtiments labellisés
- · Autres indicateurs : Certificats d'Économie d'Énergie Plans Départementaux de l'Habitat · Convention d'objectifs bâtiment durable

Rechercher une performance énergétique ambitieuse dans le bâti résidentiel neuf

Pistes de réflexion à mettre en œuvre en région


ACTIONS	COMMENTAIRES	
Sensibilise	er et former	
 Développer la formation initiale et continue des professionnels du bâtiment et de l'immobilier. Améliorer la qualité de l'offre. 	En parallèle à l'amélioration de la formation initiale et continue, la qualité de l'offre professionnelle doit être valorisée, avec des sigles de qualité reconnus: la qualification des entreprises (sur le modèle « Reconnu Grenelle environnement ») et la labellisation des bâtiments doivent être claires pour les usagers et contrôlées par la suite.	
 Structurer l'accès à l'information en la simplifiant et en l'axant sur toutes les parties prenantes d'un projet de construction, allant de la conception à l'usage sobre du bâti et concernant les maîtrises d'ouvrage et d'œuvre, les bailleurs, syndics, les propriétaires et les locataires. 	 Les fiches « sensibiliser le citoyen » et « généraliser la rénovation énergétique du parc bâti résidentiel existant en tendant vers la basse consommation » proposent des actions en ce sens. 	

ACTIONS	COMMENTAIRES	
Accompagner la réalisation		
 Inscrire les enjeux de l'efficacité énergétique du bâti dans les documents d'urbanisme 	 La fiche d'orientation « aménagement et urbanisme » identifie les textes réglementaires sur lesquels s'appuyer et introduit les liens entre efficacité énergétique du bâti, densité urbaine et mobilité. 	
 Favoriser la recherche de viabilité technique et économique du bâtiment passif et positif. 	 Une offre d'ingénierie globale, financière et technique doit se constituer (certificats d'économie d'énergie, contrats de per- formance énergétique, structures tiers-porteuses, déplafonne- ment possible du loyer des logements aidés performants). 	
Contrôler	et évaluer	
Vérifier l'application de la réglementation	 Le Code de la Construction et de l'Habitation prévoit dans ses articles articles L111-9 et L111-21, L152-1 à L152-10., les règles de contrôle susceptibles d'être mises en œuvre (Décret n° 2011-544 du 18 mai 2011). Ce même code prévoit dans ses articles R111-20 à R111-20-5, la réalisation de différents documents par le maître d'ouvrage attestant la prise en compte de la réglementation au dépôt du permis de construire et à l'achèvement des travaux. 	
• Évaluer le résultat des aides publiques	 Toute aide directe doit subordonner son attribution à des cri- tères d'éco-socio-conditionalité et fera l'objet d'une évaluation régulière (retour d'analyse vers un observatoire). Un référentiel commun listant les critères d'attribution et d'évaluation sera adopté et appliqué. 	
Anticiper et améliorer		
Tirer les enseignements et réorienter les stratégies	 L'observation de la dynamique du marché de la rénovation en Alsace, des résultats obtenus et les nouvelles solutions techniques doivent accompagner la démarche. Les études de marché à l'échelle de l'usager peuvent être développées en complément. Les expériences d'ingénierie globale technique et financière sur le bâti neuf serviront à l'objectif de rénovation du parc bâti existant. 	

Développer la performance énergétique et généraliser la rénovation optimale du parc tertiaire en tendant vers la basse consommation

Contexte/enjeux locaux

- Le parc tertiaire est le 4° secteur consommateur d'énergie (~15% de l'énergie finale) avec une tendance croissante ces dernières années. Il se réparti entre:
 - parc tertiaire d'activités caractérisé par son hétérogénéité (8 branches selon la nomenclature CEREN). En fonction de cette structuration, les gisements suivants peuvent être identifiés:
 - les branches « bureaux » et « commerces » (~25% de la consommation)
 - les usages (bureautique, éclairage, ...~50% de la consommation) et la performance du bâti (chauffage et climatisation pour ~30%).
 - parc tertiaire public comprenant le patrimoine bâti de l'État, des collectivités et des opérateurs publics.
- Le parc tertiaire est caractérisé par le peu d'éléments précis disponibles, souvent agglomérés ou même indistincts de ceux du parc bâti résidentiel.

Objectifs visés

- La loi Grenelle 2 donne des obligations de réalisation de travaux d'amélioration de la performance énergétique dans les bâtiments existants à usage tertiaire d'ici à 2020 (Code de la Construction et de l'Habitat, article L111-10-3) tandis que la réglementation thermique 2012 va s'appliquer au bâti neuf tertiaire de manière progressive, en fonction des activités Un programme de rénovation énergétique des bâtiments de l'État et de ses établissements publics est engagé.
- L'atteinte des objectifs nationaux de réduction de la consommation énergétique passe par la rénovation de masse du parc tertiaire avec comme priorité les gisements précités.
- L'efficacité énergétique des usages du bâti s'avère complémentaire et autant à développer que celle des installations et des systèmes.

Démarche

Afin d'amorcer une dynamique régionale et d'obtenir rapidement un effet levier, quatre axes stratégiques sont retenus:

- L'information et la sensibilisation des maîtres d'œuvre et d'ouvrage doivent être réalisées le plus en amont possible et rendues plus lisibles en s'appuyant sur les programmes publics existants.
- 2. Le passage à l'acte de la rénovation doit être activement favorisé, et ce d'autant plus que le programme Energivie a démontré au travers de ses appels à projet que la rénovation BBC du parc tertiaire s'avère techniquement possible. L'appropriation de l'enjeu et des leviers financiers déjà existants (Certificats d'Économies d'Énergie...) par les acteurs du tertiaire d'activité en sont les conditions. La maîtrise de l'énergie dans le parc public doit être recherchée et servir de relais aux dynamiques territoriales.
- 3. Le contrôle du respect de la réglementation en la matière, celui de la labellisation, mais également le retour d'expérience de l'évaluation des réalisations techniques et des investissements publics, doivent encadrer la démarche afin de l'inscrire dans un processus vertueux.
- 4. Le diagnostic des gisements du tertiaire d'activités (pour l'instant fondé sur des facteurs d'émission) et public doit être amélioré et localisé. Une évaluation pérenne et régulière des objectifs poursuivis et des économies énergétiques réalisées doit être effectuée de manière à recentrer les efforts de rénovation sur les gisements principaux et prioritaires d'économies d'énergie et d'émissions de gaz à effet de serre identifiés.

- « Diagnostic énergétique : état des productions et consommations d'énergie en région Alsace et émissions de gaz à effet de serre associées »
- Attestation de prise en compte de la RT2012 (dépôt de permis de construire et achèvement des travaux)
- · Nombre d'entreprises qualifiées et de bâtiments labellisés
- · Autres indicateurs: Certificats d'Économie d'Énergie · Plans Départementaux de l'Habitat · Convention d'objectifs bâtiment durable

Développer la performance énergétique et généraliser la rénovation optimale du parc tertiaire en tendant vers la basse consommation

Pistes de réflexion à mettre en œuvre en région

ACTIONS	COMMENTAIRES	
Sensibiliser et former		
 Structurer l'accès à l'information en la simplifiant et en l'axant sur toutes les parties prenantes d'un projet de construction, allant de la conception à l'usage sobre du bâti et concernant les maîtrises d'ouvrage et d'œuvre, les bailleurs, syndics, les propriétaires et les locataires. 	 Les fiches « sensibiliser le citoyen » et « Généraliser la rénovation énergétique du parc bâti résidentiel existant en tendant vers la basse consommation » proposent des actions en ce sens. Les initiatives vers un comportement sobre de l'usager du bâti doivent être favorisées, avec une importance accordée à la maintenance et à l'exploitation. 	
Accompagner la réalisation		
 Inscrire les enjeux de la rénovation énergétique du bâti dans les documents d'urbanisme 	L'orientation « aménagement et urbanisme » identifie les textes réglementaires sur lesquels s'appuyer et introduit le lien entre efficacité énergétique du bâti, densité urbaine et mobilité.	
 Amorcer la rénovation du parc tertiaire public 	 La mise en place des Plans Climat Énergie Territoriaux doit intégrer des objectifs de rénovation du patrimoine des collectivités. au titre du bilan de leurs activités (décret du Décret n° 2011-829 du 11 juillet 2011, Art. 1). Une animation régionale doit être par ailleurs mise en place pour capitaliser l'expérience et promouvoir les outils et méthodes techniques et financiers nécessaire à la rénovation du parc public. 	
• Favoriser la mise en place d'un marché régional de la rénovation de masse du bâti tertiaire (offre d'ingénierie globale financière et technique)	 À cette fin, une offre d'ingénierie globale, financière et technique doit se constituer (certificats d'économie d'énergie, contrats de performance énergétique, structures tiers-porteuses) Une première étape pourrait être de mener des audits dans les branches les plus énergivores, permettant de distinguer la part correspondant au bâti (les 5 usages réglementaires) et celle des conditions d'usages particulières liées aux activités et aux processus. 	

ACTIONS	COMMENTAIRES	
Contrôler	et évaluer	
	 Le secteur tertiaire d'activité est soumis à des obligations de travaux d'amélioration de la performance énergétique (CCH, article L111-10-3). 	
 Vérifier l'application de la réglementation 	 Les constructions neuves sont quant à elles soumises au res- pect de la réglementation thermique 2012. 	
	 Les fiches rénovation énergétique du parc bâti résidentiel et bâti résidentiel neuf identifient les textes réglementaires sur lesquels s'appuyer pour un bâti à usage d'habitation et abritant une activité tertiaire. 	
• Évaluer le résultat des aides publiques	Toute aide directe doit subordonner son attribution à des critères d'éco-socio-conditionalité et fera l'objet d'une évaluation régulière (retour d'analyse vers un observatoire). Un référentiel commun listant les critères d'attribution et d'évaluation sera adopté et appliqué.	
Faire appliquer la réglementation		
Tirer les enseignements et réorienter les stratégies	 L'amélioration du diagnostic territorial et l'observation de la dynamique du marché de la rénovation du parc tertiaire en Alsace, les effets obtenus et les nouvelles solutions techniques doivent accompagner la démarche. 	

Maîtriser les émissions de gaz à effet de serre et améliorer l'efficacité énergétique des entreprises

Contexte/enjeux locaux

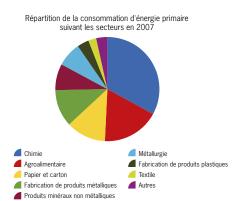
- L'industrie au sens propre est, en Alsace, le secteur le plus consommateur d'énergie (40 %) et le plus émetteur de gaz à effet de serre (50 %). Douze entreprises représentent à elles seules 60% des émissions de gaz à effet de serre de ce secteur. Le tertiaire est le secteur qui possède la croissance la plus soutenue de sa consommation d'énergie.
- Les émissions de gaz à effet de serre des entreprises de ces deux secteurs sont étroitement liées à la consommation d'énergie sauf pour des gaz spécifiques comme le protoxyde d'azote ou les gaz fluorés qui sont quant à eux intégrés aux procédés.

Objectifs visés

- L'amélioration de l'efficacité énergétique des procédés présents dans les entreprises en particulier au niveau des installations de combustion, doit conduire à une réduction des émissions de gaz à effet de serre de l'ordre de 15 %.
- Une diminution des émissions spécifiques de protoxyde d'azote du secteur de la chimie d'environ 25 %, pourrait être obtenue.
- La réduction de l'empreinte énergétique des produits manufacturés en Alsace comme la production de déchets ou la consommation énergétique liées à la fabrication, doit être mise en œuvre dès à présent.

Démarche

- Les économies d'énergie engagées depuis plusieurs années par les entreprises doivent être poursuivies.
- Plusieurs secteurs industriels présents en Alsace, fortement consommateurs d'énergie et a fortiori producteurs de gaz à effet de serre, sont principalement concernés: la chimie, l'agroalimentaire, la fabrication de papier/carton, les grandes chaufferies industrielles et collectives.
- L'application des exigences réglementaires servira de cadre de travail prioritaire. On peut citer par exemple l'obligation de réalisation de bilans d'émissions de gaz à effet de serre et de plans d'actions pour les personnes morales de droit privé ayant plus de 250 salariés ou de la mise en œuvre des meilleures techniques disponibles pour les plus grandes installations.
- D'autres axes de travail au travers de la sensibilisation, l'information, l'accompagnement à la réalisation de travaux d'économie d'énergie devront être développés en particulier afin de toucher les entreprises de plus petite taille.
- Enfin, la mise en œuvre dans les entreprises alsaciennes de nouvelles façons de concevoir produits ou services par une démarche d'éco-conception est à accélérer notamment dans le cadre des pôles de compétitivités régionaux.


- · Nombre d'entreprises certifiées ISO 50001 ou évaluées ISO 26000
- · Intensité énergétique du secteur industriel alsacien
- · Émissions des gaz à effet de serre des entreprises alsaciennes
- Autres indicateurs: Certificats d'économies d'énergie délivrés pour l'industrie et le tertiaire.

Évolution de la consommation d'énergie finale de l'industrie

Force motrice

Chaleur industrielle

Pistes de réflexion à mettre en œuvre en région

Autres usages industriels

Matière première

ACTIONS	COMMENTAIRES

Faire appliquer la réglementation

 Poursuivre la mise en œuvre la réglementation existante sur l'amélioration de l'efficacité énergétique et la réduction des gaz à effet de serre. Les priorités annuelles de l'inspection des installations classées devront intégrer cette nouvelle thématique en particulier par la mise en œuvre dans des délais acceptables des meilleures techniques disponibles.

Diagnostiquer

- Favoriser la réalisation de diagnostics énergétiques dans une majorité d'entreprises en portant la priorité sur les installations de combustion et de réfrigération.
- Une meilleure appropriation des outils de diagnostic par les entreprises, doit être organisée.
- De plus, la formation des professionnels à la réalisation de ces diagnostics par exemple dans le domaine de la réfrigération, doit accompagner la démarche.
- La possibilité d'agir sur ces installations par l'intermédiaire des entreprises de maintenance est à explorer.
- Initier une dynamique de réalisation de travaux d'économie d'énergie ou de mise en place de rupture technologique pour accroître l'efficacité énergétique des entreprises.
- Le coût des travaux d'économie d'énergie diagnostiqués freine souvent fortement leur réalisation par les entreprises. Un accompagnement technique ou financier est souvent nécessaire.

Anticiper et améliorer

- Accompagner les entreprises dans l'écoconception des produits
- Les pôles de compétitivité, les clusters... régionaux doivent servir d'accompagnement des entreprises alsaciennes dans l'appropriation d'une nouvelle façon de concevoir les produits et services.
- Promouvoir le Système de Management énergétique tel que ISO 50001 ou la responsabilité sociétale de l'entreprise telle que ISO 26000
- Ce système permettrait d'intégrer la consommation énergétique dans le système de management de l'entreprise au même titre que la norme ISO 14001.
- Favoriser la mutualisation au sein des zones d'activités existantes
- La mutualisation permettrait de mettre en place des outils qui seules les entreprises de taille importantes peuvent envisager tels que des plans de déplacement...

Limiter les pertes sur les réseaux de transport d'énergie

Contexte/enjeux locaux

- Le transport et la distribution d'électricité sur les réseaux induisent des pertes électriques, énergie dissipée sous forme de chaleur. Elles représentent entre 5 à 10% en distribution et 3% en transport du courant injecté, ce qui représente pour le courant circulant en Alsace, environ 7% de la consommation annuelle régionale.
- Les pointes de consommation d'électricité sont en croissance constante en Alsace comme ailleurs. Pour assurer la sécurité de l'approvisionnement, elles nécessitent des interconnexions avec des installations de production parfois lointaines d'où des transports.
- Les collectivités territoriales sont parfois des autorités concédantes de la distribution de gaz et d'électricité. Cette thématique devra être un sujet des plans climat grenelliens.
- Les réseaux de chaleur mal entretenus sont également sources de pertes d'énergie. Elles sont estimées à 5% en Alsace (soit environ 3 ktep/an).

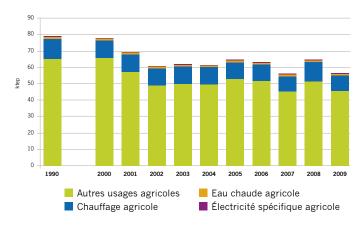
Objectifs visés

- Des méthodes de prévision permettent d'assurer une certaine maîtrise des pertes sur le réseau électrique en fonction des problématiques rencontrées.
- La gestion de la pointe électrique nécessite de développer de nouvelles approches de consommation et de nouvelles technologies.
- Le développement des réseaux de chaleur doit s'accompagner d'une garantie sur la performance énergétique et environnementale du réseau (pertes, régulation, qualité de l'air...).

Démarche

- La prévision de croissance de la pointe électrique ces prochaines années, le déploiement des infrastructures de recharge des véhicules électriques, le développement de nouveaux moyens de production d'électricité liés aux énergies renouvelables... vont nécessiter de réfléchir à la structuration future du réseau régional qui sera menée dans le cadre des travaux du Comité Régional de Concertation Électricité (CRCE) Alsace.
- Le développement des réseaux de chaleur initié par les collectivités doit permettre la poursuite de la mobilisation d'autres sources d'énergie que les énergies fossiles comme l'énergie de récupération provenant des déchets ou du biogaz. La production centralisée permet aussi d'installer des systèmes performants de traitement des polluants atmosphériques émis.
- Toutefois, toutes ces installations nécessitent des investissements initiaux importants qui doivent être intégrés dans les projets de développement du territoire.

- · Nombre de réseaux classés
- Évolution de la pointe de consommation électrique et comparaison par rapport à l'évolution nationale..


Pistes de réflexion à mettre en œuvre en région

ACTIONS	COMMENTAIRES	
Réseaux de chaleur		
 Sensibiliser les collectivités à la possibilité de classement des réseaux de chaleur rendant le raccordement obligatoire pour toute nouvelle installation de chauffage de P > 30 kW. 	• Les articles 5 et 7 de la loi n° 80-531 relative aux économies d'énergie et à l'utilisation de la chaleur explicitent cette disposition.	
• Établir une étude de faisabilité sur le potentiel de développe- ment en énergies renouvelables d'une zone.	• L'article L128-4 du code de l'urbanisme, prévoit qu'une opération d'aménagement soumise à étude d'impact, doit s'interroger sur l'opportunité de la création ou du raccordement à un réseau ayant recours aux énergies renouvelables et de récupération.	
 Optimiser la récupération d'énergie « fatale » en particulier celle provenant de l'incinération des déchets, pour les réseaux de chaleur. 	 La récupération de l'énergie provenant des déchets offre en Alsace encore des voies de progrès. 	
Réseau de transport et d	de distribution électrique	
Optimiser les dispositifs de limitation de consommation pen- dant les périodes de pointe.	L'article L341-4 du code de l'énergie prévoit que les gestionnaires des réseaux publics de transport et de distribution d'électricité proposent ces dispositifs.	
Sécuriser et moderniser les lignes électriques	Pour gérer la pointe électrique et amplifier l'effacement, des technologies nouvelles seront nécessaires en particulier dans le pilotage des équipements.	
Sensibiliser les utilisateurs à une consommation différente lors d'épisodes de pointe	Voir fiche d'orientation « sensibiliser le citoyen »	
Maîtriser les pertes lors du transport et de la distribution	Cette maîtrise passe par exemple par des actions dans l'optimisation du plan de tension à des niveaux élevés et à la limitation du transit sur les liaisons les plus génératrices de pertes.	
 Limiter les émissions de gaz à effet de serre liés au transport et à la distribution 	 Le SF6 (hexafluorure de soufre) à fort pouvoir réchauffant est utilisé pour l'isolation des disjoncteurs et des postes électri- ques. Le renforcement du programme de maintenance est à envisager. 	
Réseau de transports et de distribution de gaz		
Adapter le réseau afin de favoriser l'injection de biogaz	• La loi grenelle II et les décrets du 22 novembre 2011 permet- tent l'injection de biogaz dans le réseau de gaz naturel. Les conditions techniques doivent maintenant être favorisées.	

Maîtriser les émissions de gaz à effet de serre et améliorer l'efficacité énergétique de l'agriculture régionale

Évolution de la consommation d'énergie finale de l'agriculture

Contexte et enjeux locaux

 Le secteur agricole alsacien représente une part très faible de la consommation énergétique alsacienne (56 ktep/an soit 1 % de la consommation régionale). Il représente par ailleurs environ 9 % des émissions de gaz à effet de serre de la région (essentiellement du CH₄ et de N₂O).

Objectifs visés et résultats attendus

- L'amélioration de l'efficacité énergétique des exploitations ne peut conduire certes qu'à une réduction très réduite des émissions de gaz à effet de serre. Cette amélioration n'en constitue pas moins une priorité pour les politiques publiques pour répondre aux enjeux du changement climatique mais également comme contribution à l'indépendance énergétique et à la compétitivité des entreprises agricoles.
- L'évolution des pratiques dans les exploitations peut toutefois avoir un impact plus significatif sur les émissions de gaz à effet de serre pour lesquels le secteur a un impact plus notable.
- Le recours à la production proche des lieux de consommation et le développement de produits issus de l'agriculture biologique sont des axes qui peuvent également contribuer à la réduction des émissions de gaz à effet de serre du secteur.

- · Nombre d'initiatives valorisant les circuits courts
- · Émissions de gaz à effet de serre de l'agriculture alsacienne

Démarche

- Le secteur agricole peut contribuer à la réduction des consommations énergétiques régionales et des émissions de gaz à effet de serre. De même que dans d'autres secteurs, les premières actions à envisager consistent en l'amélioration des techniques (travail du sol, alimentation du bétail, usages d'intrants...) et des procédés (matériels et installations plus énergétiquement efficaces) dans les exploitations.
- Un développement des pratiques agricoles sobres et l'adaptation des espèces cultivées ou élevées permettraient dans un second temps de réduire la contribution du secteur.
- Enfin, les circuits courts devraient être développés.

Pistes de réflexion à mettre en œuvre en région

EXEMPLES D'ACTIONS	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, ETC.)	
Maîtriser les consommations énergétiques des exploitations		
 Favoriser la réalisation de diagnostics énergétiques dans une majorité d'exploitations. 		
 Initier une dynamique de réalisation de travaux d'économie d'énergie 	Ces travaux pourront porter sur les moteurs des outils de travail comme sur l'efficacité des bâtiments.	
Développer des pratiques sobres en carbone ou moins émettrices de GES		
 Réduire les apports azotés en lien avec les évolutions techniques et variétales 	Les évolutions pourront porter sur l'assolement. Une réflexion sur le changement de techniques de production notamment le travail du sol et les utilisations d'intrants est à mener	
Améliorer les pratiques relatives à l'élevage	Des modifications apportées à l'alimentation du bétail et à la gestion des effluents peuvent avoir des impacts importants sur les émissions de gaz à effet de serre.	
Développer l'agriculture biologique et raisonnée		
Développer les circuits courts		

Orientation Transports 1

Optimiser le système de transport et son usage pour les marchandises et les voyageurs

Contexte et enjeux locaux

- Le transport n'est jamais une fin en soit, il résulte des besoins de déplacements des personnes et des biens. Le système de transport désigne l'ensemble des moyens permettant de réaliser ce déplacement, aussi bien l'offre, le mode utilisé et leurs interfaces.
- L'Alsace bénéficie d'un système de transport déjà bien étoffé.
 Les réseaux ferroviaires et les lignes de bus maillent le territoire et la région dispose d'un réseau d'itinéraires cyclables relativement dense.
- Cependant, en Alsace comme ailleurs, la complexité des chaînes de déplacements est telle que le choix du mode le plus pertinent n'est pas optimal. D'autant plus que celui-ci peut changer au cours d'un même déplacement; à l'entrée d'une agglomération par exemple
- Pour le transport de voyageurs, il convient de privilégier les modes actifs. Viennent ensuite les transports collectifs pour les déplacements en milieu urbain dense ou pour l'interurbain, puis enfin la voiture en zone périurbaine peu dense.
- Pour les marchandises, l'organisation de la dernière étape, celle de la livraison finale au cœur de l'urbain est un problème récurrent. Alors que la moyenne et la longue distance permettent la massification des échanges (pertinence du ferroviaire et du fluvial), l'acheminement final nécessite une logique de point à point.

Objectifs visés et résultats attendus

- L'objectif est de mettre en cohérence l'usage de chaque mode de transport avec son domaine de pertinence.
- Pour cela, il est nécessaire de développer une réelle alternative à la route lorsque celle-ci n'est pas pertinente.
- Lorsque l'offre est suffisante, des actions incitatives doivent déclencher un phénomène de report modal, notamment au sein et entre les zones densément peuplées.
- Une attention toute particulière est à porter aux interfaces entre les modes de transports. Lorsque le mode de transport pertinent change, dû à l'entrée dans une zone dense par exemple, la mise en place de mesures facilitant le changement de mode utilisé optimise le choix fait par l'usager ou le transporteur.
- Le résultat attendu est que la majeure partie des déplacements soit réalisée en ayant recours au mode le plus efficace énergétiquement et environnementalement.

Démarche

• A – Optimiser l'usage du système

- 1.Inciter à l'usage des modes actifs pour les déplacement de courte distance
- 2. Amener l'usager et les entreprises à choisir le mode le plus efficace par une communication adéquate et des mesures incitatives

• B - Optimiser le système en lui même

- 1.Déterminer les solutions modales pertinentes pour chaque type de déplacements
- 2.Développer les réseaux de transports collectifs et de transport de marchandises non routier lorsque le manque d'offre est avéré
- 3. Favoriser le passage d'un mode à l'autre, notamment à l'entrée des villes

- Consommation énergétique des transports en Alsace rapportée à la population
- Intensité énergétique des transports en Alsace

Orientation Transports 1

Optimiser le système de transport et son usage pour les marchandises et les voyageurs

Pistes de réflexion à mettre en œuvre en région

IMPACT SUR LES ACTIVITÉS HUMAINES	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)
Inciter à l'utilisation du mode le plus pertinent	
 Développer et faire connaître les systèmes d'information mul- timodale 	• Le système d'information « Vialsace », mis en place en 2010, regroupe 10 réseaux de transport alsaciens et permet de calculer les solutions multimodales optimales pour un déplacement intra-régional
 Mettre en place une billetique commune au niveau régional, favorisant les déplacements de type: Train / bus ou tramway 	
 Rationaliser le transport routier lorsque celui-ci s'avère être le plus pertinent 	Voir fiche: Rationaliser le transport routier marchandises et voyageurs

IMPACT SUR LES ACTIVITÉS HUMAINES

COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)

Agir aux interfaces et à l'entrée des villes

- Il s'agit de permettre la réalisation de déplacements utilisant à la fois les transports collectifs interurbain et le vélo. Afin d'encourager cette intermodalité Train/vélo, l'identification des • Permettre l'intermodalité vélo / TC interurbain besoins de stationnement vélo de chaque gare peut être menée pour proposer si besoin des abris vélo fermés et sécurisés. Le transport direct du vélo dans le véhicule de transport interurbain hors des heures de pointes est également une piste • L'urbain est le lieu des transports en commun. Les parking relais représentent l'étape indispensable pour toute personne ne pouvant rejoindre une agglomération qu'en utilisant une • Continuer le développement des parking relais voiture particulière. Celle-ci est alors laissée à l'extérieur et les transport en commun assurent la dernière étape du transport. • L'enjeu est de raccourcir les distances parcourues pour la livraison finale. Le dernier kilomètre n'a pas toujours intérêt à • Implanter des centres logistiques à l'entrée des villes pour être livré par un véhicule léger. La massification des marchanensuite optimiser la dernière étape de livraison pour les mardises au niveau d'un centre logistique permet l'optimisation chandises en villes des tournées de livraison et donc de réduire les nuisances qui y sont liées. Développer une offre diversifiée et efficace • Le développement de la fréquentation du TER reste un objectif
- Développer le TER Alsacien

- Le développement de la fréquentation du TER reste un objectif constant, notamment par une évolution continue de l'offre, à laquelle s'ajoute l'électrification à long terme des voies et du matériel roulant, qui continue à améliorer l'empreinte écologique de ce mode.
- Fiabiliser les temps de parcours des transports en commun pour les rendre plus attrayants
- Cette action peut prendre la forme d'une priorité donnée au passage des transports en commun sur le trafic voitures et poids lourds, voir la réservation d'une voie dédiée. Les usagers sont beaucoup plus sensibles à la fiabilité du temps de parcours qu'au temps de parcours proprement dit.
- Poursuivre le développement des itinéraires cyclables
- L'Alsace dispose d'ores et déjà d'un réseau d'itinéraire cyclable dense, notamment par l'action menée par les deux départements qui réalisent entre 15 et 25 km de pistes nouvelles par an. Pourtant, ce mode est encore loin d'avoir atteint son plein potentiel. Le développement de ces itinéraires à partir des gares SNCF, préconisé par le CADR67, pour lier les lieux de vie et de travail constitue à ce titre une réponse pertinente.

Orientation Transports 2

Rationaliser le transport routier marchandises et voyageurs

Contexte et enjeux locaux

- Le transport routier, tant voyageurs que marchandises (dont les déchets), est le mode dominant en Alsace avec près de 60% des déplacements voyageurs et 90% des tonnages de marchandises transportés.
- En parallèle, il contribue à près de 50 % des émissions d'oxydes d'azote, 25 % des émissions de particules et 25 % des émissions de gaz à effet de serre en Alsace. Les concentrations mesurées dans l'environnement à proximité des axes à fort trafic dépassent le plus souvent les normes réglementaires.
- L'utilisation individuelle de la voiture pénalise fortement ce mode et est source de congestion, ce qui diminue d'autant plus son efficacité.
- Coté marchandises, la majeure partie des déplacements sont internes à l'Alsace et répondent donc à un besoin local. Le transport routier de marchandises est essentiel à l'irrigation des centres.
- Les caractéristiques de ce mode de transport: souplesse, trajet point à point, disponibilité 24h/24 le rendent parfois difficilement remplaçable. Cependant, son efficacité peut être améliorée.

Objectifs visés et résultats attendus

- La priorité est de limiter l'exposition des populations aux émissions issues du transport routier.
- L'objectif vise donc concrètement un abaissement des émissions le long des axes urbains à fort trafic.
- Cela passera par l'amélioration de l'organisation des déplacements et leur régulation.
- Notamment, l'approvisionnement des centres villes et l'élimination des déchets nécessitent la mise en place d'une logistique urbaine adaptée.
- Un changement dans les comportements conduisant à une utilisation différente des véhicules constitue également un objectif majeur.
- L'optimisation de l'usage des infrastructures et des véhicules afin de fiabiliser les temps de parcours et réduire les périodes de congestion pourrait se solder par un gain d'environ 7% d'émissions évitées le long des axes routiers.

Démarche

Les axes de travail suivants sont prépondérants pour mener à bien cette orientation:

- 1. L'identification précise des axes routiers au voisinage desquels des dépassements de seuils réglementaires existent, doit être réalisée prioritairement.
- 2. La mise en place d'alternatives à l'emprunt de ces axes et éventuellement de réduction d'accès, est à réfléchir tout en étant attentif aux reports de trafic qui pourraient pénaliser d'autres axes et contribuer à de nouveaux dépassements.
- 3. La fluidification du trafic reste un autre enjeu à maîtriser pour limiter les temps de congestion qui sont sources de pollutions importantes.
- 4. La modification des comportements de mobilité (covoiturage, auto-partage, éco-conduite...) est également un levier d'optimisation de l'usage de la voiture. La mise en place des conditions favorables à ces changements, reste à organiser.

- · Consommation énergétique des transports en Alsace
- Trafic routier sur les axes urbains importants

Orientation Transports 2

Rationaliser le transport routier marchandises et voyageurs

Pistes de réflexion à mettre en œuvre en région

IMPACT SUR LES ACTIVITÉS HUMAINES	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)
Abaisser le trafic sur les axes polluants	
 Identifier les axes polluants et leur impact 	• Les modèles existants permettent actuellement d'appréhender assez finement les zones touchées en fonction du trafic, de la topographie de la voie ou de la climatologie.
 Mettre en place des itinéraires alternatifs pertinents pour reporter une partie du trafic des axes sensibles 	• La mise en place d'un contournement routier ou l'utilisation d'un itinéraire secondaire contribue à amoindrir le trafic le long des axes forts fréquentés et limite les fortes concentrations de polluants locaux. De telles mesures doivent s'accompagner de restrictions sur l'itinéraire initial pour ne pas créer de capacité supplémentaire.
 Permettre la présence de plusieurs modes de transport sur une même infrastructure en partageant l'espace disponible 	• En milieu urbain, les zones partagées favorisent l'usage des modes actifs sans contraindre l'usage de la voiture. Le long des grands axes, la réservation d'une voie de circulation pour d'autres modes ou pour les covoitureurs contribue à créer un réel choix modal. L'article L. 2213-2 du code général des collectivités permet de réserver l'accès de certaines voies à diverses catégories d'usagers ou de véhicules.

IMPACT SUR LES ACTIVITÉS HUMAINES

COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)

Optimiser l'usage des infrastructures routières

- Mettre en place des outils de gestion dynamique de trafic sur le réseau structurant alsacien
- La gestion dynamique de trafic permet de contrôler les flux circulant le long d'un axe en temps réel grâce à deux leviers:
 - Informer l'usager en temps réel sur le meilleur itinéraire à choisir grâce à une surveillance du réseau et à des moyens de communication efficaces (panneaux à message variable, internet embarqué.)
 - Agir directement sur les flux, en modifiant les vitesses, l'accès à l'infrastructure ou le nombre de voies ouvertes à la circulation en fonction des conditions de circulation.
- Harmoniser les vitesses de façon cohérente pour réduire les phases d'accélération / décélération et ainsi réduire les émissions
- La DIR Est a mené une expérience de ce type sur l'A31 en 2010 aboutissant à une réduction de 3 % des émissions de CO2 et de 7,5% du nombre d'accidents.
- Conduire l'élaboration de plans locaux de stationnement
- Le stationnement est une prérogative forte du Maire. Tout en conservant l'accessibilité des espaces urbains, la mise en place d'un plan de stationnement est un levier fort permettant un meilleur usage de l'espace public et des voiries en répercutant par exemple le coût de leur occupation sur ses bénéficiaires.

Utiliser différemment les véhicules

- Développer le covoiturage et communiquer sur les plateformes dédiées à cette pratique
- Les conseils généraux des deux départements alsaciens ont mis en place une plateforme de covoiturage à l'échelle départementale. Le recours au covoiturage diminue grandement les émissions de polluants par personne.
- Contribuer à la visibilité des services d'auto-partage pour favoriser la prise de conscience de l'intérêt de ce service
- L'autopartage est un service de gestion de flotte de véhicules qui permet leur utilisation successivement par plusieurs personnes.
 Le système dispose d'une souplesse proche de la voiture particulière. Une voiture particulière ne roule en moyenne qu'une heure par jour et entraîne de nombreux coûts pour la collectivité, tant en terme de consommation d'espace que de pollution.

Orientation Adaptation 1

Anticiper les effets du changement climatique sur les activités humaines et la santé

Contexte et enjeux locaux

- Le réchauffement du climat est devenu une réalité, comme le montre l'observation des hausses des températures moyennes mondiales de l'air. Pour l'Alsace, les hausses constatées sont de l'ordre de + 2 °C depuis 50 ans.
- Une étude de régionalisation portant sur les effets potentiels des changements climatiques montre:
 - l'élévation de la température moyenne à l'horizon 2030 comprise entre 2 et 5 °C, avec des épisodes de chaleur plus fréquents,
 - la diminution du nombre de jours de gel,
 - un régime pluviométrique modifié risquant d'accentuer les écarts entre les saisons et conduisant à une modification des régimes d'alimentation des nappes souterraines et des cours d'eau,
 - des évolutions sur la faune et la flore.

Objectifs visés et résultats attendus

- L'impact des changements climatiques est local et dépend des caractéristiques environnementales et socioéconomiques du territoire considéré. D'où l'importance de travailler très en amont à l'identification des spécificités et des vulnérabilités des territoires et des acteurs concernés pour aboutir à la construction d'une politique d'adaptation à une échelle opportune.
- Bien que les impacts potentiels du changement climatique soient aujourd'hui difficiles à évaluer et sachant que l'évolution des connaissances dans ce domaine nécessitera une remise en question régulière des hypothèses de travail, deux axes ont été privilégiés pour l'instant en Alsace: l'impact sur les activités humaines et l'impact sur la santé.

Démarche

- Face au changement climatique, la démarche est avant tout de privilégier une stratégie de mesures dite « sans regret ». Cette stratégie doit permettre de poser les bases d'une politique d'adaptation qui ne pénalise pas les différents secteurs en cas d'évolution des prévisions climatiques.
- Ces mesures devront donc apporter un bénéfice (ou a minima, ne pas causer d'inconvénient) quelques soient les effets futurs du changement climatique. Dans certains domaines, cette stratégie s'attachera à palier aux évolutions négatives mais dans d'autres, devra tirer profit des opportunités qui pourraient s'offrir. Le Plan National d'Adaptation au Changement Climatique a inventorié 202 recommandations dans 13 domaines qui doivent permettre d'identifier les actions locales à construire.
- Des décisions concrètes peuvent être prises dès aujourd'hui dans certains domaines comme l'urbanisation. Dans d'autres, l'amélioration des connaissances sur la base d'observatoires spécifiques, reste essentielle.
- Plus qu'une remise en question complète, il s'agit d'intégrer dès à présent ces éléments dans les prises de décision.

Indicateurs de suivi et d'évaluation de l'objectif:

· Nombre d'observatoires et d'indicateurs permettant le suivi des effets liés au changement climatique.

Orientation Adaptation 1

Anticiper les effets du changement climatique sur les activités humaines et la santé

Pistes de réflexion à mettre en œuvre en région

IMPACT SUR LES ACTIVITÉS HUMAINES	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)
 Surveiller la disponibilité de l'accès à la ressource en eau ainsi que sa qualité en particulier dans les zones les plus éloignées de la nappe d'Alsace et dans les vallées des Vosges. 	 L'accès à l'eau pourrait devenir plus problématique sous l'action conjuguée de l'augmentation de la température, de plus faibles précipitations en été et de la hausse de la demande. La qualité des eaux est également un paramètre à surveiller car avec des débits plus faibles pour les cours d'eau et des étiages plus sévères, la capacité à diluer les effluents issus des activités humaines ira en diminuant et les impacts sur les écosystèmes en s'aggravant.
 Suivre l'évolution des débits des cours d'eau et notamment celui du Rhin qui est un vecteur régional essentiel en terme de ressource énergétique, d'échanges commerciaux, d'alimenta- tion de la nappe phréatique et de réserve de biodiversité. 	 Bien qu'aujourd'hui, les hypothèses faites pour le Rhin ne conduisent pas à des modifications majeures du débit moyen, le profil annuel du débit pourrait évoluer. Ces modifications de régime devront être intégrées par les différents acteurs concernés dans les décisions à prendre en matière de produc- tion d'énergie, de navigabilité ou d'alimentation en eau.
 Surveiller et anticiper les changements dans les filières de l'agriculture et de la forêt. 	 L'évolution future du couvert forestier aura des impacts sur la filière bois (construction et énergie) mais également sur le puits de carbone qu'est actuellement la forêt alsacienne. Le Plan Régional de l'Agriculture Durable intégrera la problématique du changement climatique et proposera les grandes orientations de la politique agricole, agroalimentaire et agroindustrielle de la région.
 Réfléchir à l'évolution des pratiques touristiques pour les adapter à la nouvelle donne climatique 	 L'augmentation des températures est un facteur climatique qui influera fortement sur les activités des stations de sport d'hiver. D'un autre côté, les activités liées à la baignade seront plus mobilisées.

IMPACT SUR LA SANTÉ HUMAINE

COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)

- Protéger les populations lors des épisodes de chaleur
- Les grandes agglomérations sont et seront de plus en plus soumises aux phénomènes d'îlots de chaleur. Ces phénomènes sont à l'origine de conséquences graves d'un point de vue sanitaire. De plus, des taux d'ozone importants peuvent se combiner et soumettre les populations les plus fragiles à des conditions extrêmes. Des réponses peuvent être la réintroduction d'eau et de végétation dans le milieu urbain (en relation avec les trames verte et bleue), une adaptation des matériaux de construction utilisés minimisant les impacts de la chaleur, la végétalisation des toits.
- Anticiper les effets de l'augmentation des précipitations hivernales sur les inondations et les phénomènes pluvieux extrêmes
- Le régime des pluies étant amené à être modifié par exemple par des précipitations hivernales plus intenses, les risques d'inondation seront accrus et aggravés par l'engorgement des réseaux d'assainissement des eaux.

AMÉLIORATION DES CONNAISSANCES

- Suivre l'évolution d'indicateurs pertinents pour mieux percevoir et anticiper les changements dus au climat au travers également de la réalisation d'études.
- La mise en place d'observatoires adaptés sur des indicateurs comme par exemple l'évolution des espèces floristiques et faunistiques ou les débits du Rhin permettra de corroborer ou d'adapter régulièrement les hypothèses faites.
- Les réactions de certains milieux naturels face aux impacts du changement climatique n'ont pas encore été étudiées, la poursuite de recherches dans ce sens est à développer.

Orientation Air 1

Réduire prioritairement les émissions régionales de particules et d'oxydes d'azote

Contexte et enjeux locaux

- Les trois grandes villes alsaciennes sont confrontées occasionnellement ou de façon permanente à des non-respects de normes européennes de qualité de l'air pour les particules et le dioxyde d'azote.
- Environ 150000 personnes en Alsace, sont soumises chaque année à des dépassements de ces normes. Cette population se situe dans les zones dites « sensibles », notamment, le long des axes routiers à fort trafic.
- Ces deux polluants sont essentiellement issus de la combustion.
 Le lien entre pollution atmosphérique et maîtrise de l'énergie est donc évident. En revanche, les impacts sont localisés et amènent à différencier les constats et les actions en fonction du territoire et de la présence ou non d'enjeux.
- Il faut noter également une part non négligeable de la contribution du secteur agricole aux concentrations de particules durant certaines périodes de l'année bien précises (préparation des sols au printemps par exemple).

Objectifs visés et résultats attendus

- Pour les particules, la priorité se porte sur la réduction de la pollution de fond. En plus du respect des normes concernant les PM10, une réduction de 30% des valeurs mesurées dans l'air pour les PM2,5, est attendue à l'horizon 2015.
- Cette réduction devra permettre de respecter, pour les PM10, le nombre maximal de 35 jours par an dépassant 50 μg/m³ en valeur moyenne journalière dans les agglomérations alsaciennes.
- Concernant le dioxyde d'azote, la baisse des émissions devra également permettre de respecter la limite réglementaire de 40 µg/m³ en moyenne annuelle

Démarche

- La baisse des valeurs de dioxyde d'azote mesurées dans l'environnement, le long des principaux axes routiers et dans les centres urbains, doit être prioritairement axée sur des actions dans le domaine des transports routiers avec en second lieu, le résidentiel/tertiaire (chauffage), l'agriculture (utilisation de produits azotés) et l'industrie (procédés et combustion).
- La stratégie de lutte contre la pollution de fond en particules du fait du caractère diffus nécessite une déclinaison au plus près des territoires et du lieu d'émission. Les principaux secteurs d'activité facteurs d'émissions en particules identifiés en Alsace sont dans l'ordre: le transport (véhicules), le résidentiel-tertiaire (chauffage au bois), l'industrie (procédés de fabrication) et l'agriculture (aérosols).
- Les actions menées pour le développement des économies d'énergie ou l'amélioration des transports collectifs se renforcent donc par leur synergie dans les deux domaines.

- Concentration moyenne annuelle de NO₂ sur la région et dans les grandes agglomérations
- Concentration moyenne annuelle de PM10 sur la région et dans les grandes agglomérations
- · Respect des 35 jours où la concentration moyenne journalière en PM10 dépasse 50µg/m³

Orientation Air 1

Réduire prioritairement les émissions régionales de particules et d'oxydes d'azote

Pistes de réflexion à mettre en œuvre en région

COMMENTAIRE EXEMPLES D'ACTIONS (OPÉRATEUR, RÉGLEMENTATION, etc.) **Sensibilisation** • Faire prendre conscience de l'enjeu sanitaire lié à la qualité de • L'information sur les enjeux liés à la qualité de l'air doit être l'air, en particulier dans les zones sensibles plus largement dispensée auprès de tous les publics. Secteur des transports Expérimenter des zones d'actions prioritaires pour l'air (ZAPA) L'article L228-3 du CE permet aux collectivités d'expérimenter autour et dans les agglomérations où sont ou risquent d'être ce type de zone. La faisabilité et l'efficacité seront fonction du constatés des dépassements des normes de qualité de l'air. périmètre de la zone retenue et des véhicules interdits. • En plus du développement de l'auto-partage, du covoiturage, des transports en commun sur des voies réservées, la mise • Organiser la mobilité (favoriser le transport en commun, favorien place de zones de trafic limité peut aussi être une piste de ser l'usage des modes doux, rationaliser les déplacements...) réflexion (interdiction du trafic des non résidents sur une zone délimitée et sur des plages horaires variables). • L'article L223-1 du CE permet la mise en place de mesures Réguler la mobilité lors des pics et épisodes de pollution d'urgence en cas de pics de pollution. • En dehors de l'accélération du renouvellement des flottes captives de véhicules, l'incitation dans les appels d'offres et • Rendre les véhicules et les infrastructures plus propres. les cahiers des charges techniques à l'utilisation de véhicules propres en zones sensibles (engins de chantier, véhicules de transport...) peuvent être mises en place. Secteur résidentiel • Renouveler en développant des actions locales d'aides financières, les appareils de chauffage individuels au bois par des • Environ 180 000 appareils fonctionnant au bois ont été recenappareils plus performants intégrant moins d'émission de sés en Alsace. particules et un meilleur rendement de combustion. • Les arrêtés du 15/09 et du 2/10/2009 relatifs aux contrôles • Développer l'information et la sensibilisation des usagers sur des chaudières de faibles puissances permettent de mettre en les contrôles réglementaires des chaudières (obligation d'enplace un suivi de sorte à améliorer la connaissance du parc et à tretien régulier) afin de garantir un rendement optimum. réduire les émissions des installations les plus défectueuses. Le brûlage à l'air libre des déchets ménagers et assimilés est • Renforcer l'interdiction du brûlage à l'air libre dans le cadre des pouvoirs de police des maires en particulier dans les interdit en vertu des dispositions de l'Art.84 du RSD, sauf dérozones sensibles. gation particulière.

EXEMPLES D'ACTIONS

COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)

Secteur de l'industrie

- Renforcer, notamment dans les zones sensibles, les études d'impact de nouvelles implantations industrielles par la modélisation de l'impact des rejets en particules et en oxydes d'azote, sur les seuils à respecter dans l'environnement.
- Les articles R512-6,7,8 du CE précisent les documents à joindre lors d'une demande d'autorisation d'exploiter qui doivent être adaptés aux enjeux identifiés. Dans les zones soumises à dépassement des seuils de pollution atmosphérique, l'impact précis de la nouvelle installation par rapport à ces dépassements, est nécessaire.
- Délivrer l'autorisation sur la base de la mise en œuvre des meilleures techniques disponibles à un coût économiquement acceptable et si nécessaire sur la prise en compte de mesures compensatoires.
- Les articles R512-28 et R512-8/4a du CE permettent d'imposer des limitations ou des compensations d'émissions
- Renforcer les contrôles des émissions de particules et d'oxydes d'azote des émetteurs les plus importants en particulier au moment des épisodes de pollution dans les grandes agglomérations.
- La vérification du respect des normes prescrites peut se faire par des contrôles inopinés ou par l'exploitation des enregistrements quand ils existent.
- Prendre en compte dans les avis rendus lors des appels d'offres et des appels à projets concernant des installations émettant des particules et des oxydes d'azote, l'aspect relatif au rendement des installations et de leur impact sur la qualité de l'air.
- Les aides financières devront être ciblées sur les projets ayant le moins d'impact sur la qualité de l'air

Secteur de l'agriculture

- Réduire les émissions atmosphériques dues aux épandages d'aérosols et de produits azotés par la mise en œuvre de techniques plus respectueuses de l'environnement.
- Le Plan Régional d'Agriculture Durable prévu par la loi du 27/07/2010 intégrera cette disposition.

Orientation Air 2

Prévenir l'exposition à la pollution atmosphérique due à l'ozone, aux métaux lourds, aux pesticides...

Contexte et enjeux locaux

- Concernant l'ozone, l'Alsace est une région régulièrement soumise aux dépassements de seuils d'information et d'alerte ainsi que de la valeur cible pour la protection de la santé humaine. Certaines années, la totalité du territoire régional peut être concerné par ces dépassements. L'ozone est un polluant secondaire qui se forme par l'action du rayonnement solaire (UV) sur les polluants précurseurs que sont principalement les oxydes d'azote et les composés organiques volatils. Cependant, de par sa nature, l'ozone est un polluant pour lequel il est difficile de prédire, à l'échelle infra-urbaine, les effets des mesures de réduction d'émission des polluants primaires. En revanche, des études menées dans le cadre du projet transfrontalier INTERREG III ont montré les effets des réductions de COVNM (anthropiques) et des NOx sur les maxima d'ozone dans la vallée du Rhin supérieur (au centre-ville et dans le panache d'une agglomération)
- Le bilan de la qualité de l'air montre la présence de mercure dans la vallée de la Thur sous forme d'une pollution très localisée.
- Par ailleurs, l'Alsace ne dispose pas encore d'un suivi précis des émissions de produits phytosanitaires.

Objectifs visés et résultats attendus

- Concernant l'ozone dont les concentrations estivales ont globalement augmenté ces dix dernières années, en plus des mesures visant les oxydes d'azote, la réduction déjà engagée des émissions de composés organiques volatils, devra être poursuivie.
- Pour le mercure dans la vallée de la Thur, l'objectif doit être à la fois de réduire les émissions industrielles mais aussi d'intégrer une démarche préventive de protection de la population.
- Les produits phytosanitaires utilisés pour les traitements devront faire l'objet d'un inventaire détaillé et de campagnes de mesures spécifiques dans l'environnement afin d'en évaluer précisément les impacts.

Démarche

- Les actions en vue de réduire les niveaux de pollution à l'ozone, devront coordonner les mesures visant les oxydes d'azote et les composés organiques volatils. Comme les gains attendus par ces mesures complémentaires sont difficilement chiffrables, des mesures de protection des populations seront à mettre en place de manière temporaire lors des pics de pollution.
- Concernant les produits phytosanitaires et le mercure, la priorité doit être donnée à la réduction des émissions diffuses et canalisées sur la base de l'amélioration des connaissances. Les sources précisément identifiées et leur suivi assuré, une démarche de protection préventive des populations exposées doit être assurée.
- La démarche globale traitant de ces polluants est à coordonner avec la mise en place du Plan Régional Santé Environnement 2, dont l'objectif est de traiter plus particulièrement des impacts sanitaires de l'exposition aux polluants atmosphériques.

- Respect de la valeur cible pour la protection de la santé humaine (120 µg/m³ – maximum journalier de la moyenne 8h à ne pas dépasser plus de 25 jours dans l'année)
- Nombre d'études spécifiques/campagnes de mesures particulières liées à ces polluants.

Pistes de réflexion à mettre en œuvre en région

EXEMPLES D'ACTIONS

COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)

Sensibilisation

- Faire prendre conscience de l'enjeu sanitaire lié à la qualité de l'air.
- L'information sur les enjeux liés à la qualité de l'air doit être plus largement dispensée auprès de tous les acteurs.

Secteur des transports

- Réguler la mobilité lors des pics et épisodes de pollution à l'ozone
- L'article L223-1 du CE permet la mise en place de mesures d'urgence en cas de pics de pollution.

Secteur résidentiel

- Intégrer l'exposition locale à certains polluants dans les règles de construction ou de rénovation.
- Dans les zones exposées à des polluants spécifiques et lorsque les mesures visant leur diminution ne s'avèrent pas suffisantes, des mesures de protection supplémentaires dans la construction peuvent être envisagées.

Secteur de l'industrie

- Délivrer l'autorisation sur la base de la mise en œuvre des meilleures techniques disponibles à un coût économiquement acceptable et si nécessaire sur la prise en compte de mesures compensatoires..
- Les articles R512-28 et R512-8/4a du CE permettent d'imposer des limitations ou des compensations d'émissions
- Renforcer les contrôles des émissions de composés organiques volatils des émetteurs les plus importants en particulier au moment des épisodes de pollution dans les grandes agglomérations.
- La vérification du respect des normes prescrites peut se faire par des contrôles inopinés ou par l'exploitation des enregistrements quand ils existent.

Secteur de l'agriculture

- Réduire les émissions atmosphériques dues à l'emploi de produits phytosanitaires
- Le Plan Régional d'Agriculture Durable prévu par la loi du 27/07/2010 intégrera cette disposition en lien aussi avec le plan Eco-Phyto.
- Mettre en place un inventaire de l'utilisation des produits phytosanitaires (matières actives).
- Définir la liste des produits les plus utilisés et les plus émis à l'atmosphère dans la région et suivre son évolution pour cibler les actions du Plan Régional Santé Environnement 2 (PRSE2) notamment sur les enjeux prioritaires.
- Réaliser des campagnes de mesures dans l'environnement ciblées sur les substances importantes issues de l'inventaire et de la liste des substances interdites.
- Le but est de suivre l'évolution des concentrations des substances utilisées par le passé et aujourd'hui interdites afin de cibler les actions du PRSE2 sur les enjeux prioritaires.

Moderniser la production d'hydro-électricité en cohérence avec la restauration des milieux aquatiques

Contexte/enjeu

- L'hydroélectricité représente, avec 70 % en 2009, la part la plus importante de production d'énergie renouvelable, en Alsace.
- Le réseau hydrographique alsacien, particulièrement dense, est formé de trois systèmes: Rhin, III et Sarre. La production hydraulique est variable en fonction des hauteurs de chute et des débits, celui du Rhin étant bien plus élevé que celui des autres cours d'eau.
- Le développement de l'hydroélectricité doit pouvoir se poursuivre en étant compatible avec le respect des exigences environnementales mais également le maintien de la sureté hydraulique.
- L'essentiel de la production est assurée par les centrales situées sur le Rhin avec une puissance installée de 1 470 MW. Les autres cours d'eau sont également équipés mais présentent une production bien moins significative (moins de 1 % de la production d'énergie renouvelable de la région)

Objectifs visés

- La priorité sera accordée à la modernisation et à la rénovation du parc existant, que ce soit pour la petite ou la grande hydraulique.
- La remise en état de seuils existants et la construction de nouveaux équipements devront respecter une haute qualité environnementale (directive cadre sur l'eau, continuité écologique, espèces protégées...) en apportant toutes les garanties concernant la compensation des impacts.
- Par ailleurs, la station de transfert d'énergie par pompage (STEP) du lac Blanc lac Noir devrait être reconstruite. Consommatrice d'énergie pour remonter l'eau, elle n'est pas considérée comme productrice d'énergie renouvelable, elle présente cependant un intérêt fort pour le lissage de la « pointe » électrique.

Objectifs quantitatifs

- Production hydraulique moyenne entre 2006 et 2009: 650 ktep (647,5 ktep pour la grande hydraulique et 2,5 ktep pour la petite) équivalent à la production des douze centrales situées sur le Rhin et d'une centaine de petites installations sur les autres cours d'eau.
- Production hydraulique estimée en 2020: 660 ktep (656,5 ktep pour la grande hydraulique et 3,5 ktep pour la petite, en fonction également du débit des cours d'eau) équivalent à la production des douze centrales situées sur le Rhin et de cent vingt petites installations sur les autres cours d'eau.
- Production hydraulique estimée en 2050: 685 ktep

Objectifs qualitatifs et territoriaux

- Grande hydraulique: La modernisation de l'aménagement du Rhin (suréquipement, modernisation, optimisation), entre Kembs et Lauterbourg, reste le principal potentiel de développement de la région pour la grande hydraulique.
- Petite hydraulique: La rénovation des centrales situées sur les autres cours d'eau présente un potentiel, faible par rapport à la grande hydraulique. Les possibilités de nouveaux équipements se répartissent sur une vingtaine d'ouvrages / seuils situés sur (à lister et carte à obtenir) et doivent être compatibles avec le schéma directeur d'aménagement et de gestion des eaux et le classement des cours d'eau.

- Production annuelle hydraulique en GWh et en ktep pour la petite et la grande hydraulique
- Nombre d'installations de petite hydraulique situées sur les autres cours d'eau que le Rhin et production annuelle associée

PROPOSITIONS GRANDE HYDRAULIQUE

- Identifier les améliorations possibles des performances énergétiques des installations sur le Rhin (suréquipement, modernisation, optimisation) en chiffrant, si possible, pour chacune d'elles les investissements nécessaires rapportés à l'augmentation de la production.
- Intégrer les améliorations possibles lors des renouvellements de concessions hydroélectriques.

COMMENTAIRES

La connaissance technique et économique précise du potentiel d'optimisation des performances de chaque installation, est à discuter avec les exploitants. Cette optimisation est estimée aujourd'hui à (voir si EDF peut fournir un chiffre grosse maille).

PROPOSITIONS PETITE HYDRAULIQUE

- Affiner l'état des lieux de la petite hydraulique et notamment les installations en fonctionnement.
- Mieux identifier et évaluer les possibilités techniques d'équipement des ouvrages existants sur les cours d'eau alsaciens en tenant compte du SDAGE, du classement des cours d'eau et plus globalement des exigences environnementales.
- Une analyse fine des différents cours d'eau doit permettre d'identifier les seuils exploitables qui pourraient être à équiper.

PROPOSITIONS AUTRES DOMAINES

- Réaliser un benchmarking et, si possible, expérimenter sur d'autres types d'installations considérées comme innovantes telles que l'aménagement des écluses des canaux, le micro turbinage des réseaux d'eau ou les hydroliennes.
- Les potentiels sur ce volet restent faibles mais sont à étudier.

Optimiser la gestion de la filière biomasse-bois à destination de la production d'énergie

Contexte/enjeu

- Le bois-énergie représente, en 2009, 23 % de la production d'énergie renouvelable en Alsace.
- La superficie et la productivité élevées de la forêt alsacienne permettent de répondre en 2011, en quasi totalité, aux besoins locaux de la filière bois, dont la filière bois-énergie. Un import de bois est tout de même nécessaire.
- La gestion de la forêt présente des enjeux importants et parfois contradictoires: disponibilité de la ressource, maintien de la qualité des sols et de la biodiversité, concurrence entre les usages du bois, chasse...
- De nombreuses unités de production d'énergie à partir de biomasse bois (les ¾ concerne le bois bûche), individuelles ou collectives, sont déjà installées en Alsace. D'autres sont en cours de réalisation.

Objectifs visés

- La ressource forestière locale est déjà largement mobilisée et doit bénéficier d'une gestion équilibrée, prenant en considération l'ensemble des enjeux.
- La poursuite de son développement passe par une mobilisation supplémentaire à trouver, en lien avec le plan pluriannuel de développement régional forestier. Cela pourrait se faire aussi au travers de la mobilisation des feuillus, l'amélioration du rendement des équipements de combustion existants (ou à installer) ou encore le développement de cultures énergétiques dédiées.
- Une amélioration des connaissances est encore nécessaire pour mieux maîtriser la problématique du bois énergie, en particulier pour le bois bûche.

Objectifs quantitatifs

- Production bois -énergie en 2009: 214 ktep équivalent aux 169000 installations individuelles et aux 350 installations collectives (communes, entreprises, collectifs privés)
- Production bois-énergie estimée en 2020: 266 ktep intégrant des nouvelles installations industrielles et l'optimisation des rendements des installations individuelles existantes.
- Production bois-énergie estimée en 2050: 300 ktep à partir de bois alsacien sans tenir compte d'éventuels apports extérieurs ou modifications de fonctionnement de la filière

Objectifs qualitatifs et territoriaux

 La récolte de la biomasse forestière est susceptible d'être mise en œuvre sur les 2/3 du territoire alsacien, sous réserve du respect des contraintes réglementaires. La qualité des sols, la pollution de l'air par la combustion ou les questions liées au transport des matières sont à étudier au cas par cas.

- · Production annuelle bois énergie en GWh en en ktep
- · Nombre d'installations collectives et production annuelle associée
- · Nombre d'installations industrielles et production annuelle associée

PROPOSITIONS	COMMENTAIRES
 Consolider l'observatoire régional de la filière biomasse bois. 	 L'observation doit pouvoir s'effectuer de matière pérenne et permettre des bilans réguliers (annuel). Les modalités de gou- vernance de l'observatoire doivent être définies précisément et la CREA est l'instance dans laquelle se font les différents rendus. Les principales tâches à effectuer sont: le suivi de la disponibilité de la ressource, la connaissance des projets exis- tants et de leur approvisionnement, le suivi des prix et des conflits d'usage, le développement d'une vision extra fronta- lière.
 Inciter à l'amélioration des rendements des appareils de chauf- fage au bois, en particulier les appareils individuels utilisant du bois en bûches. 	 Environ 169000 appareils existent en Alsace. Leur consommation avoisine 985000 stères de bois (données CEREN) par an. L'amélioration des performances permettrait de diminuer la consommation de bois ou d'augmenter le nombre d'appareils installés.
 Limiter les émissions de polluants atmosphériques 	 La combustion du bois, lorsqu'elle n'est pas maîtrisée, peut constituer une source importante de polluants atmosphéri- ques notamment les particules fines, les hydrocarbures aro- matiques polycycliques et les composés organiques volatils.

Valoriser l'énergie provenant de l'incinération de la fraction résiduelle de la biomasse des déchets

Contexte/enjeu

- Les unités d'incinération alsaciennes produisent en 2009 environ 3,5 % de l'énergie renouvelable de la région.
- L'énergie produite lors de l'incinération de la fraction biodégradable des déchets est reconnue comme source d'énergie renouvelable au sens des directives européennes. L'énergie produite par une usine d'incinération d'ordures ménagères est considérée comme renouvelable compte tenu de la part réelle en biomasse des déchets incinérés.
- Le fonctionnement d'installations d'incinération de déchets ne doit pas remettre en cause l'objectif prioritaire de diminution et de recyclage des déchets ainsi que la qualité de l'air à leur proximité.

Objectifs visés

- Plus de la moitié des déchets ménagers alsaciens sont incinérés dans quatre unités principales. L'énergie de récupération issue des déchets (chaleur ou électricité), est dans certains cas encore à optimiser.
- Par ailleurs, la valorisation énergétique des déchets banals issus des entreprises, actuellement mis en décharges, pourrait être initiée.

Objectifs quantitatifs

- Production énergétique des déchets en 2009: 32 ktep équivalent principalement à la production d'énergie issue des usines d'incinération d'ordures ménagères, dont les ¾ en chaleur.
- Production énergétique des déchets estimée en 2020: 50 ktep équivalent à la production d'énergie optimisée issue des usines d'incinération d'ordures ménagères, dont les ¾ en chaleur, et la valorisation énergétique des déchets banals des entreprises.
- Production énergétique des déchets estimée en 2050: 50 ktep, chiffre stable ou à la baisse du fait de la valorisation matière attendue ces prochaines années.

Objectifs qualitatifs et territoriaux

 Tout en privilégiant la réduction de la production des déchets à la source, le recours à l'incinération doit s'accompagner d'une valorisation énergétique optimisée au sein des usines existantes, avec le strict respect des exigences réglementaires de traitement des fumées.

Indicateurs de suivi et d'évaluation de l'objectif:

 Production annuelle énergétique des déchets en électricité et en chaleur en GWh et en ktep

PROPOSITIONS	COMMENTAIRES
 Etablir un bilan énergétique de chaque unité d'incinération de déchets afin d'optimiser (si ce n'est pas déjà le cas) leur pro- duction d'énergie (chaleur et électricité). 	 Les performances de chaque unité d'incinération sont différentes en fonction des matériels installés et des possibilités de valorisation de l'énergie à proximité. L'optimisation est à
 Favoriser la mise en place des équipements nécessaires au sein de chaque unité d'incinération. 	envisager sur la base d'un bilan spécifique à chaque usine.
 Inciter à la valorisation énergétique des déchets banals des entreprises actuellement mis en décharges ou à la valorisation matière. 	• Les plans départementaux d'élimination des déchets ména- gers et assimilés envisagent la valorisation des déchets banals des entreprises sous forme de combustibles de substitution.

Développer de nouvelles perspectives dans la filière biomasse agricole pour la production d'énergie et d'agrocarburants

Contexte/enjeu

- Le biomasse agricole n'engendre pas en 2011 de production énergétique en Alsace. Seules les rafles de maïs, sarment de vignes ou quelque tonnes de céréales secondaire sont utilisées marginalement dans le cadre d'installations individuelles.
- Le territoire Alsacien compte 40 % de surface agricole utilisée (SAU), soit 337 749 ha. La surface toujours en herbe occupe près de 40 % de la SAU alsacienne et les cultures céréalières plus de la moitié, pour les trois quarts en maïs et le reste essentiellement en blé. Le vignoble alsacien représente 4,6 % des surfaces cultivées et les cultures industrielles (houblon, tabac, betteraves industrielles) contribuent à la diversification de l'agriculture régionale, notamment dans le Bas-Rhin.
- La mobilisation de la biomasse agricole pour la production d'énergie doit se faire en intégrant la disponibilité de la ressource et les éventuels conflits d'usage associés.

Objectifs visés

- La biomasse agricole, même si elle est renouvelable, n'est pas forcément disponible immédiatement et en quantités suffisantes. Il convient donc de connaître à court terme quelles matières pourront, et dans quels délais, être mobilisées.
- Le développement de cultures énergétiques dédiées peut aussi être une possibilité sous réserve de respect des contraintes réglementaires et de manière à maintenir la qualité des sols concernés.

Objectifs quantitatifs

- Production biomasse agricole en 2009: 0 ktep
- Production biomasse agricole estimée en 2020: 5 ktep
- Production biomasse agricole estimée en 2050 : 20 ktep
- Production agrocarburants en 2009: 23 ktep
- Production agrocarburants en 2020: 30 ktep
- Production agrocarburants en 2050: 50 ktep

Objectifs qualitatifs et territoriaux

 La récolte de la biomasse agricole est susceptible d'être mise en œuvre sur tout le territoire alsacien, sous réserve du respect des contraintes réglementaires. La qualité des sols, la pollution de l'air par la combustion, l'impact sur la nappe phréatique ou les questions liées au transport des matières sont à étudier au cas par cas.

- · Production annuelle biomasse agricole en GWh en en ktep
- · Nombre d'installations de combustion utilisant au moins une part de biomasse agricole
- · Production annuelle d'agrocarburants en tonnes et en ktep

PROPOSITIONS	COMMENTAIRES
 Inclure un volet spécifique sur l'étude de la biomasse agricole au sein de l'observatoire régional de la filière biomasse bois 	 L'observation doit pouvoir s'effectuer de matière pérenne et permettre des bilans réguliers (annuel). Les modalités de gou- vernance de l'observatoire doivent être définies précisément et la CREA est l'instance dans laquelle se font les différents rendus. Les principales tâches à effectuer sont: le suivi de la disponibilité de la ressource, la connaissance des projets exis- tants et de leur approvisionnement, le suivi des prix et des conflits d'usage, le développement d'une vision extra fronta- lière.
 Étudier les potentialités régionales en matière d'utilisation de sous-produits de l'agriculture ou de cultures dédiées pour la production d'énergie ou de agrocarburants. 	 Le développement de cultures à vocation énergétique ou l'utilisation de sous-produits issus de l'agriculture peut être envisagé tout en maintenant la priorité à la production alimentaire humaine et animale. L'organisation d'une telle filière doit se concevoir à l'échelle des territoires pour optimiser l'utilisation des matières en restreignant les transports.
• Limiter les émissions de polluants atmosphériques	 La combustion de biomasse agricole, si elle n'est pas maî- trisée, peut constituer une source importante de polluants atmosphériques notamment les particules fines.

Exploiter les potentialités géothermiques peu profondes de très basse température nécessitant une pompe à chaleur pour la production de chaleur

Contexte/enjeu

- La géothermie de très basse température représente à l'heure actuelle un peu plus de 1 % de la production d'énergie renouve-lable en Alsace (hors aérothermie).
- La nappe phréatique alluviale rhénane confère au sous-sol alsacien des potentialités de production énergétique dans la très basse énergie. Les systèmes de capteurs horizontaux ou verticaux (sondes ou pieux) complètent cette offre dans les secteurs ou l'accès et/ou l'exploitation de la nappe pose problème.
- Le développement de nouvelles installations doit être compatible avec la préservation de la nappe phréatique et avec l'intégrité du sous-sol dans le cas des sondes verticales.

Objectifs visés

- L'équipement en pompes à chaleur alimentées par une ressource géothermique de très basse température (t < 30 °C) doit être poursuivi dans le cadre de constructions individuelles ou collectives neuves et dans la rénovation quand cela s'avère pertinent et sans risque pour la nappe phréatique et le sous-sol à court terme comme à long terme.</p>
- Sur la base des retours d'expérience sur les projets existants, le développement de la géothermie très basse température sur sondes verticales doit se consolider notamment pour l'alimentation de projets collectifs (réseaux de chaleur) avec des profondeurs potentiellement plus importantes. Une attention devra également être apportée au coefficient de performance (COP) des pompes à chaleur qui doit être le plus élevé possible, pour améliorer les bilans énergétiques globaux.

Objectifs quantitatifs

- Production géothermie de très basse température en 2009 (dont pompes à chaleur aquathermiques et géothermiques): 12 ktep
- Production géothermie de très basse température en 2020 (dont pompes à chaleur aquathermiques et géothermiques): 26 ktep
- Production géothermie de très basse température en 2050: 48
 ktep

Objectifs qualitatifs et territoriaux

- Le sous-sol alsacien a déjà fait l'objet d'une cartographie générale permettant d'identifier les potentialités de la nappe phréatique alluviale rhénane (Aquapac) pour la très basse température dans les années 1980. Cette cartographie mériterait une actualisation en profitant des dernières données collectées grâce aux ouvrages réalisés depuis.
- Son développement passe notamment par la maîtrise des contraintes techniques et environnementales liées à la préservation des nappes. Le caractère universel des capteurs horizontaux et verticaux exige moins de précautions mais leur mise en œuvre demande néanmoins un minimum d'investigations au niveau du sous-sol pour en vérifier la compatibilité et les capacités thermiques.

Indicateurs de suivi et d'évaluation de l'objectif:

· Production annuelle géothermie de surface en chaleur en GWh et en ktep

PROPOSITIONS	COMMENTAIRES
 Tirer les expériences des projets pilotes (Kriegsheim) pour aborder les nouveaux projets avec des critères environnemen- taux et économiques. 	
 Réaliser une campagne de recensement d'ouvrages récents et d'exploration du sous-sol 	 L'exploitation de ces données servira à évaluer la faisabilité techniques de l'aquathermie et des sondes verticales géother- miques
 Etablir une concertation régulière sur la géothermie en Alsace regroupant l'ensemble des professionnels et institutionnels concernés 	

Exploiter les potentialités géothermiques profonde du sous-sol pour la production d'électricité et de chaleur directe

Contexte/enjeu

- La géothermie profonde ne contribue à l'heure actuelle à la production d'énergie renouvelable en Alsace que par le biais de la centrale électrique de Soultz-sous-Forêts encore en phase de mise au point et dont l'exploitation à l'échelle industrielle est prévue pour la fin 2012.
- La géologie et la tectonique régionale du fossé Rhénan confèrent au sous-sol alsacien des potentialités de production énergétique dans la haute énergie. La géothermie basse et moyenne température, soit de 30 à 120 °C, exploitable en Alsace, est à confirmer par des recherches complémentaires.
- Le développement de nouvelles installations géothermiques profonde doit être compatible avec la préservation de la nappe phréatique et du sous-sol. Le risque sismique est à prendre en considération pour la géothermie profonde et notamment par rapport aux techniques de stimulation envisagées.

Objectifs visés

- Sur la base des retours d'expérience des projets existants, la géothermie profonde destinée à la production d'électricité doit pouvoir continuer voire accélérer son développement en Alsace.
 Les techniques de cogénération avec valorisation de la chaleur, permettant d'améliorer les rendements, doivent également être testées.
- La géothermie basse et moyenne température doit être encouragée pour pouvoir déboucher sur une réalisation concrète de manière à confirmer sa faisabilité en Alsace et notamment pour l'alimentation de projets collectifs (réseaux de chaleur).

Objectifs quantitatifs

- Production géothermie profonde en 2009: 0 ktep
- Production géothermie profonde en 2020: 20 ktep
- Production géothermie profonde en 2050 : 37 ktep

Objectifs qualitatifs et territoriaux

- Le projet Interreg GEORG produira en fin d'année 2012 une cartographie actualisée des potentialités du fossé Rhénan pour la moyenne et haute température
- Son développement passe notamment par la maîtrise des contraintes techniques et environnementales liées à la préservation des nappes, aux remontées d'eaux polluées ou aux risques sismiques.

Indicateurs de suivi et d'évaluation de l'objectif:

· Production annuelle géothermie profonde en électricité et en chaleur en GWh et en ktep

PROPOSITIONS	COMMENTAIRES
 Tirer les expériences des projets pilotes (Soultz-sous-Forêts, Rittershoffen) pour aborder les nouveaux projets sur la base de critères techniques, environnementaux et économiques récents et fiables. 	
 Exploiter les campagnes d'exploration du sous-sol alsacien réalisées, et notamment celles issues du projet GEORG 	 L'exploitation des données permettra notamment d'établir une carte des potentiels géothermiques dans les grandes profon- deurs
 Etablir une concertation régulière sur la géothermie en Alsace regroupant l'ensemble des professionnels et institutionnels concernés. 	

Accélérer le développement de l'énergie solaire thermique destinée à la production de chaleur

Contexte/enjeu

- La production d'énergie solaire thermique (chaleur) représente en 2009 moins de 1 % de la production d'énergies renouvelables alsacienne.
- Les performances des installations « solaire thermique » dépendent de l'orientation et de l'inclinaison des panneaux solaires, ainsi que du type de matériel et des zones d'ensoleillement dans lesquelles elles sont situées. L'Alsace, au nord, bénéficie de conditions d'ensoleillement moins bonnes que les régions du sud de la France mais tout de même satisfaisantes pour rentabiliser des projets.
- De nombreux projets « solaire thermique » individuels ou collectifs, dans tous les secteurs, sont déjà en fonctionnement en Alsace.

Objectifs visés

- Le développement de l'énergie solaire thermique doit se pour suivre, en particulier pour les constructions neuves (ou rénovation) individuelles ou collectives et en lien avec la RT 2012.
- Elles présentent également un intérêt sur le bâti existant ou pour des utilisations spécifiques (piscine par exemple).

Objectifs quantitatifs

- Production solaire thermique en 2009:
 3 ktep équivalent à 89000 m² de panneaux répartis sur 11000 installations individuelles et 600 installations collectives.
- Production solaire thermique estimée en 2020:
 24 ktep équivalent à 770000 m² de panneaux.
- Production solaire thermique estimée en 2050:
 96 ktep

Objectifs qualitatifs et territoriaux

- Le développement des installations « solaire thermique » doit se réaliser de manière à obtenir un rendement optimal, une fiabilité technique sur la durée et une bonne intégration au bâti.
 Des précautions doivent également être prises quant à l'impact patrimonial ou paysager.
- L'ensemble de la région est concerné par les installations de solaire thermique.

- · Production annuelle solaire thermique en GWh et en ktep
- · Nombre d'installations individuelles et production annuelle associée
- · Nombre d'installations collectives et production annuelle associée

PROPOSITIONS	COMMENTAIRES
 Renforcer l'animation de la filière, sensibiliser et accompagner les porteurs de projet dans les réalisations. 	 Ces actions comprennent à la fois la sensibilisation, l'information et l'intégration des retours d'expérience. Sur les installations proprement dites, une vigilance devra être accordée au dimensionnement, maintenance et suivi des installations. La RT 2012 devrait également pouvoir contribuer à cet accompagnement.
 Maintenir des aides régionales pour le solaire individuel et col- lectif conditionnées à une réflexion globale relative à la maî- trise de l'énergie sur les bâtis considérés. 	

Poursuivre le développement de l'énergie solaire photovoltaïque destinée à la production d'électricité

Contexte/enjeu

- La production d'énergie solaire photovoltaïque (électricité) représente en 2009 moins de 1 % de la production d'énergies renouvelables alsacienne.
- Les performances des installations photovoltaïques dépendent de l'orientation et de l'inclinaison des
- panneaux solaires, ainsi que du type de matériel et des zones d'ensoleillement dans lesquelles elles sont situées. L'Alsace, au nord, bénéficie de conditions d'ensoleillement moins bonnes que les régions du sud de la France mais tout de même satisfaisantes pour réaliser des projets.
- De nombreux projets « solaire photovoltaïque », dans tous les secteurs, sont déjà en fonctionnement en Alsace.

Objectifs visés

- Le développement de l'énergie solaire photovoltaïque doit se poursuivre, en privilégiant le bâti individuel ou collectif et en lien avec la RT 2012.
- Des opportunités peuvent également exister pour des centrales au sol, exclusivement sur des zones à faibles enjeux environnementaux.

Objectifs quantitatifs

- Production solaire photovoltaïque en 2009: 1 ktep équivalent à 150000 m² de panneaux et 850 installations.
- Production solaire photovoltaïque estimée en 2020: 10 ktep équivalent à 1500000 m² de panneaux.
- Production solaire photovoltaïque estimée en 2050: 50 ktep

Objectifs qualitatifs et territoriaux

- Le développement des installations « solaire photovoltaïque » doit se réaliser de manière à obtenir un rendement optimal, une fiabilité technique sur la durée et une bonne intégration au bâti.
 Des précautions doivent également être prises quant à l'impact patrimonial ou paysager.
- L'ensemble de la région est concerné par les installations de solaire photovoltaïque. Pour les centrales au sol, seules quelques zones sont susceptibles d'être utilisées et sont à définir.

- · Production annuelle solaire photovoltaïque en GWh et ktep
- · Nombre d'installations individuelles et production annuelle associée
- · Nombre d'installations collectives et production annuelle associée
- · Nombre de centrales solaires au sol et production annuelle associée

PROPOSITIONS GRANDE HYDRAULIQUE	COMMENTAIRES
 Renforcer l'animation de la filière, sensibiliser et accompagner les porteurs de projet dans les réalisations. 	 Cela pourra notamment se faire par le biais du groupe de tra- vail solaire photovoltaïque déjà en place dans le cadre du pro- gramme Energivie
 Poursuivre la logique d'appel à projet régional permettant de financer les projets photovoltaïques innovants. 	
 Identifier les zones propices à l'installation de centrales solai- res au sol. 	

Valoriser les matières organiques disponibles sous forme de biogaz

Contexte/enjeu

- La production de biogaz est, en 2009, très faible en Alsace avec moins de 1 % de la production d'énergie renouvelable.
- La présence en Alsace d'importantes unités industrielles de l'agro-alimentaire, de stations d'épuration, dues à une forte densité de population, et d'élevages permet de proposer un gisement intéressant de matières organiques végétales et animales valorisables pour la production de biogaz.

Objectifs visés

- La création de nouvelles installations de biogaz grâce aux coproduits et effluents de l'agriculture, aux boues de stations d'épuration des eaux urbaines ou industrielles, apparaît comme prometteur et doit être étudiée. Une priorité est accordée à l'injection dans le réseau ou aux installations de cogénération qui permettent d'optimiser les rendements.
- Cette filière assez nouvelle doit être structurée avec la sensibilisation de tous les acteurs et en bénéficiant des premiers retours d'expérience sur les projets alsaciens déjà en fonctionnement (industrie) ou en cours de montage (agriculture).
- Le développement de nouvelles installations valorisant le biogaz doit être réalisé tout en assurant la disponibilité des substrats à d'autres fins et en maîtrisant les risques d'exploitation liés à la présence de gaz.

Objectifs quantitatifs

- Production biogaz en 2009: 3 ktep exclusivement issue des industries agro alimentaires
- Production estimée 2020: 12 ktep incluant les industries agro alimentaires, les installations agricoles et les stations d'épuration
- Production estimée en 2050: 40 ktep

Objectifs qualitatifs et territoriaux

- La production de boues valorisables en biogaz est répartie de manière assez homogène dans la plaine d'Alsace avec des centres plus importants auprès des grandes agglomérations.
- La priorité doit être donnée aux projets collectifs de territoire atteignant une taille critique et permettant une valorisation directe des matières disponibles.

- · Production annuelle biogaz en GWh et ktep:
- · Nombre d'installations biogaz hors industrie agro alimentaire:

PROPOSITIONS	COMMENTAIRES
 Créer et animer un observatoire de la filière biogaz en Alsace. 	 Les études existantes sur le gisement de matières organiques disponibles doivent être actualisées. Une sensibilisation tech- nique et économique des acteurs est à initier sur la base du suivi et retour d'expérience sur les projets en fonctionnement et en cours de lancement.
 Structurer techniquement et économiquement la mobilisation de la ressource et les installations de production. 	 Un juste dimensionnement des installations de production de biogaz doit être recherché de manière à rendre optimal leur fonctionnement (taille, rendement, substrats utilisés, trans- port) et pouvoir bénéficier de l'énergie à proximité des lieux de consommation.

Planifier un développement harmonieux de l'énergie éolienne prenant en compte les différents enjeux du territoire

Contexte/enjeu

- L'Alsace ne compte, en 2011, aucune éolienne installée sur son territoire. Seules quelques petites éoliennes ont été installées à titre expérimental.
- Malgré une densité de population élevée, des enjeux environnementaux et patrimoniaux importants et un vent relativement modéré, la région présente tout de même des zones propices pour le développement de l'énergie éolienne.
- Six projets existent à ce jour, cinq dans le Bas-Rhin et un dans le Haut-Rhin. La puissance potentielle de ces projets est d'environ 70 MW. Le projet de Dehlingen dans le Bas-Rhin est le seul autorisé pour une puissance de 11,5 MW, Les travaux ont démarré mi 2011.

Objectifs visés

- Le développement de l'éolien le petit éolien et le grand éolien.
- Pour ce qui est du grand éolien, le développement des installations devra pouvoir se faire en respectant la logique « du bon projet au bon endroit » de manière à bien concilier tous les enjeux liés au développement durable. Le principe directeur est de localiser les projets dans les endroits jugés les plus favorables.
- Même si à ce jour les perspectives de développement apparaissent limitées, l'Alsace devrait pouvoir proposer des capacités à horizon 2020 – 2050.

Objectifs quantitatifs

- Production éolienne en 2009: 0 ktep
- Production éolienne estimée en 2020: 20 ktep soit l'équivalent de 50 machines de 2 MW
- Production éolienne estimée en 2050: 60 ktep soit l'équivalent de 150 machines de 2 MW

Objectifs qualitatifs et territoriaux

- Grand éolien: les zones les plus favorables sont situées en Alsace bossue, sur la partie montagneuse à l'Ouest en limite avec la Lorraine, mais également au nord est dans le secteur de Wissembourg. D'autres possibilités existent plus ponctuellement sur d'autres secteurs de la plaine d'Alsace.
- Petit éolien: le petit éolien peut se développer partout dans la région sous réserve de respect des contraintes réglementaires.

- · Production annuelle éolienne en GWh et en ktep pour le grand et le petit éolien
- Nombre d'installations de petit éolien (moins de 50 m) et production annuelle associée

PROPOSITIONS GRAND ÉOLIEN	COMMENTAIRES
 Valider et faire partager la stratégie de définition des zones favorables du schéma régional éolien par tous les acteurs régionaux. 	• L'idée est que l'ensemble des acteurs régionaux (y compris les différents organismes et commissions susceptibles d'être consultés) puissent s'approprier la définition des zones favora- bles de manière à favoriser ensuite ensemble la mise en œuvre de projets au sein de ces zones, sous réserve que les études à l'échelle du projet ne remettent pas en cause leur définition.
 Créer un comité régional éolien permettant d'organiser la concertation entre acteurs (publics et privés) dès l'amont des projets et durant toute leur durée. 	 La concertation entre acteurs, dès l'amont, doit être optimale pour tous les projets de manière simplifier la réalisation de ces projets.
PROPOSITIONS PETIT ÉOLIEN	
 Recenser et obtenir un premier retour d'expérience sur les projets en cours de petit éolien et en poursuivre les études et l'expérimentation. 	• Les potentiels sur ce volet restent faibles mais sont à étudier.

Orientation transversale 1

Évaluer la mise en œuvre du SRCAE au travers d'un suivi et d'une gouvernance appropriés

Contexte et enjeux locaux

- La démarche d'élaboration du schéma a conduit à l'engagement d'une forte mobilisation et d'un intérêt marqué de nombreux acteurs alsaciens.
- L'Alsace dispose depuis plusieurs années de structures et d'initiatives répondant en partie aux enjeux portés par le schéma comme la Conférence Régionale Énergie Atmosphère (CREA), le Comité Régional Concertation Électricité (CRCE), Energivie. info...
- L'appropriation et le partage de la stratégie sur le long terme définie par le schéma sont nécessaires pour la réussite de l'atteinte des objectifs affichés dans les orientations.

Objectifs visés et résultats attendus

- La mise en œuvre du schéma doit s'appuyer sur une bonne connaissance des enjeux du territoire et de leur évolution. D'où la nécessité de disposer de structures permettant l'accès à des données stabilisées et communes ainsi qu'un partage des objectifs régionaux et de leur suivi.
- La cohérence avec les autres démarches régionales notamment le schéma régional de cohérence écologique ou le plan régional santé environnement, doit être également recherchée.
- Le suivi du schéma doit être réalisé le plus possible dans des structures existantes comme la CREA ou le CRCE, en assurant une cohérence entre elles et en renforçant leur légitimité.

Démarche

- Le SRCAE doit servir de guide aux acteurs régionaux pour l'élaboration de leur politique climat, air, énergie. En ce sens, le partage, l'approfondissement ou la mise à jour des connaissances doivent permettre une vision commune de l'ensemble de ces acteurs. Les PCET réglementaires introduits par la loi Grenelle devront être compatibles avec le SRCAE.
- Les actions fondées sur les hypothèses faites dans le cadre du schéma, nécessitent d'être suivies de manière à s'assurer de leur pertinence en particulier au travers des indicateurs accompagnant chaque orientation.
- Dans cette optique, la CREA doit être le lieu privilégié de suivi et d'évaluation du schéma au travers d'un ou de plusieurs groupes de travail dédiés à des thématiques spécifiques ou transversales.

Pistes de réflexion à mettre en œuvre en région

EXEMPLES D'ACTIONS	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)
 Donner un mandat à la CREA comme organe de suivi du comité de pilotage pour la mise en œuvre du SRCAE. 	 En fonction de thématiques identifiées comme pertinentes, des groupes de travail dédiés pourront être mis en place.
 Actualiser les données disponibles, approfondir les connais- sances 	 La pérennité de la mise à jour régulière des bases de données relatives à l'énergie, aux gaz à effet de serre doit être assurée.
 Diffuser et faire connaître les données disponibles 	 Le profil environnemental établi à l'initiative de l'État doit servir d'observatoire régional permettant un accès à des données validées et communes pour l'ensemble des acteurs régionaux.
 Soutenir l'élaboration de stratégies territoriales en relation avec le SRCAE 	 Les PCET réglementaires introduits par la loi Grenelle devront être compatibles avec le SRCAE. Le travail d'établissement de Plans Climat Énergie Territoriaux (PCET) volontaristes à l'échelle des pays alsaciens doit être poursuivi afin d'assurer la transcription des orientations du SRCAE dans l'ensemble des territoires alsaciens.
 Développer le partage et le retour d'expérience des actions proposées dans les PCET. 	 Le suivi du SRCAE doit être enrichi des expériences des PCET qui pourront servir par la suite pour proposer de nouvelles orientations.

Orientation transversale 2

Sensibiliser les citoyens et favoriser leur appropriation des enjeux Climat - air - énergie

Contexte et enjeux locaux

- La compréhension et l'appropriation par tous, et particulièrement par le grand public des enjeux du schéma régional climat air énergie, sont des leviers indispensables à l'évolution des réflexions, des attitudes et des comportements en matière d'économie d'énergie. Les gains d'une telle évolution sont estimés à environ 15 %.
- La sensibilisation des décideurs est le moyen privilégié de déclencher de réels changements dans les choix collectifs.

Objectifs visés et résultats attendus

- Le développement de la formation, de la sensibilisation et de l'information aux évolutions prévisibles en matière de changements économiques et de nouvelles techniques, est un des contributeurs à la prise en compte du développement durable.
- L'amélioration apportée par l'usage de matériels plus performants pour réduire la consommation d'énergie ou la production de polluants atmosphériques ne doit pas être absorbée par un effet rebond⁽¹⁾.
- L'orientation des politiques d'achat de l'État, des collectivités et des entreprises vers des produits et des services plus favorables en termes d'impact sur l'environnement, s'inscrit dans la consommation durable.

Démarche

- Une contribution accrue des acteurs de la formation professionnelle doit être sollicitée pour accompagner tous les secteurs d'activité dans la prise en compte et la mise en œuvre des orientations du schéma régional climat air énergie avec en priorité: le bâtiment, l'énergie et l'agriculture.
- L'exemplarité des acteurs publics dans leur gouvernance et leurs achats doit être un accélérateur de changement.
- Un encouragement des entreprises à s'engager dans des démarches d'économie d'énergie, de réduction des gaz à effet de serre, doit être trouvé de manière à en faire des partenaires actifs et engagés.
- Les relais d'information et de sensibilisation vers le grand public au travers des associations, des espaces d'information... doivent être développés ou réinventés. Cette sensibilisation doit permettre la compréhension, l'appropriation et la réussite des actions mis en place dans la continuité du schéma.

- · Nombre de chartes CO2 signées
- · Définition d'une stratégie de communication

⁽¹⁾ Est défini comme « l'augmentation de consommation liée à la réduction des limites à l'utilisation d'une technologie, ces limites pouvant être monétaires, temporelles, sociales, physiques, liées à l'effort, au danger, à l'organisation... »

Pistes de réflexion à mettre en œuvre en région

EXEMPLES D'ACTIONS	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)		
Informer			
 Mettre à disposition de tous les publics, les données issues du schéma et favoriser l'appropriation des orientations. 			
 Promouvoir les principes de l'éco-mobilité, notamment l'éco- conduite entrainant environ 10 % d'économie de carburant à distance parcourue équivalente 			
Sensi	biliser		
 Encourager un comportement sobre et performant (réglages et entretien des installations, usages de la domotique, usage des transports doux, achat de matériels performants) 			
 Intégrer dans les marchés publics des critères de développe- ment durable. 	 Les acteurs publics doivent rendre visibles dans leurs mar- chés, leur volonté d'économiser l'énergie et de réduire les gaz à effet de serre de manière à entraîner de façon progressive leurs fournisseurs. 		
 Accompagner la modification de l'aménagement du territoire 	 Les travaux des collectivités sur la rationalisation du mode rou- tier, sur la promotion des modes actifs, sur la planification de l'urbanisme doivent être accompagnés par une sensibilisation du grand public pour être pleinement efficace. 		
For	mer		
• Former les artisans et les entreprises du bâtiment aux nouveaux matériaux et aux nouvelles façons de travailler			
• Former les professionnels de l'immobilier	 Une formation de ces professionnels permettrait notamment un meilleure usage des diagnostics énergétiques obligatoires dans le cadre des ventes de biens, mais aussi pourrait permet- tre de sensibiliser différemment les copropriétés aux travaux de rénovation. 		
• Former les professionnels de la maintenance des utilitaires (installation de réfrigération, de combustion)	 Des intervenants pertinents permettent lors d'interventions dans l'ensemble des entreprises qui ont recours à leur service d'attirer l'attention de leur client sur les performances éner- gétiques de ces systèmes et de réduire les émissions de gaz à effet de serre par une réduction des taux de fuite de gaz frigorigène. 		
• Former les professionnels du transport à l'éco-conduite (Chauffeur de bus et car, transporteurs routier de marchandises)	 Ce volet est d'ores et déjà développé en Alsace via les chartes d'engagement volontaire CO₂ 		

Orientation transversale 3

Développer une approche transversale des enjeux d'énergie, d'air et d'adaptation au changement climatique dans l'aménagement du territoire et l'urbanisme

Contexte et enjeux locaux

- L'Alsace est caractérisée par un territoire dense en population avec une concentration relative des activités et une dispersion relative de la fonction habitat en particulier dans les niveaux les plus bas de l'armature urbaine.
- L'organisation spatiale du territoire a un impact fort sur le climat, l'air et l'énergie. En particulier, les dynamiques d'étalement urbain ont pour conséquence d'augmenter les distances parcourues et favoriser l'usage de la voiture. Cela entraîne une augmentation des consommations énergétiques, des émisions de gaz à effet de serre et de la pollution de l'air.
- La réglementation issue du Grenelle 2, donne de nouveaux moyens d'actions pour introduire des objectifs de réduction des émissions de gaz à effet de serre, de maîtrise de la demande énergétique, de production énergétique à partir de sources renouvelables dans les documents d'urbanisme principalement les ScoT et les PLU.
- L'Alsace sera recouverte par 15 schémas de Cohérence territoriale (ScoT) actuellement à diverses phases d'élaboration.
- A l'échelle des quartiers et des projets urbains, les démarches d'écoquartiers et l'approche par l'urbanisme de projet favorisent la prise en compte du développement durable.

Objectifs visés et résultats attendus

- La prise en compte des enjeux énergétiques et climatiques doit être systématiquement intégrée dans l'élaboration des planifications territoriales et des projets urbains.
- Les objectifs sont de maîtriser l'étalement urbain :
- en favorisant le développement de la ville sur elle même, et en promouvant la compacité et la mixité des fonctions urbaines, en développant des démarches d'écoquartiers
- en renforçant l'armature urbaine régionale, et en densifiant les centralités bien desservies par les transports collectifs,
- en préservant les espaces naturels et agricoles, avec une réduction forte du rythme de consommation des espaces et le développement des trames vertes et bleues

Démarche

- La planification territoriale et les réflexions liées à l'urbanisme qui influeront sur les consommations d'énergie des territoires s'inscrivent pour l'essentiel sur le long terme, en interaction avec les changements des modes de vie et les innovations en particulier technologiques. Elles reposent sur un certain nombre de démarches :
- 1- L'organisation du territoire régional au travers de la mobilisation renforcée des outils de planification (ScoT, PLU intercommunal, PLU, PLH, PDU...) qui intègrent des orientations de plus en plus liées entre l'urbanisation, la mobilité, la consommation et les besoins en énergies. Les SCOTs devront être prendre en compte les Plans Climats Energie Territoriaux (PCET) réglementaires introduits par la loi Grenelle, qui eux-même doivent être comlpatbles avec le SRCAE.
- 2- La développement de projets urbains (quartiers gares, écoquartiers, réutilisation des friches, etc) qui mettent en oeuvre sur le terrain les principes de réduction des gaz à effet de serre, de maîtrise de l'énergie, de déploiement des énergies renouvelable, de gestion économe de l'espace, de compacité des formes urbaines, de prise en compte de la nature en ville, etc
- 3- L'articulation des différentes politiques publiques en particulier celles liées à l'urbanisme, l'habitat, les déplacements, l'énergie, la maîtrise de la consommation d'espace ... qui nécessite une approche globale.

Orientation transversale 3

Développer une approche transversale des enjeux d'énergie, d'air et d'adaptation au changement climatique dans l'aménagement du territoire et l'urbanisme

Pistes de réflexion à mettre en œuvre en région

EXEMPLES D'ACTIONS	COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)			
Actions transversales				
 Favoriser la prise en compte de la limitation des émissions de gaz à effet de serre (GES) dans les documents d'urbanisme 	L'article L110 du code de l'urbanisme pose l'objectif de réduction des émissions de GES et des consommations d'énergie, d'économie des ressources fossiles. L'action en matière d'urbanisme de chaque collectivité publique doit y contribuer dans le cadre de ses compétences.			
• Former et sensibiliser les maîtres d'ouvrage des documents d'urbanisme (ScoT, PLU) à une planification globale de l'urbanisme				
Développer une démarche de cohérence entre les différents documents d'urbanisme	 Les enjeux dépassent les limites territoriales (déplacement, amé- nagement des espaces) et nécessitent une lecture globale. 			
 Promouvoir la mise en oeuvre d'écoquartiers 				
Performance énergétique				
 Définir des secteurs à performance énergétique dans les ScoT. 	 Le document d'orientations et d'objectifs (DOO) peut définir des secteurs dans lesquels l'ouverture à l'urbanisation est subordonnée au respect de performances énergétiques ren- forcées. Des objectifs de performances environnementales peuvent être fixés dans le DAC (document d'aménagement commercial). 			
 Intégrer la performance énergétique en relation avec la densité d'occupation des sols 	 La fixation de règles spécifiques relatives à la prise en compte de performances énergétiques particulières est possible dans un plan local d'urbanisme (PLU). 			
 Imposer le respect de performances énergétiques et environ- nementales dans les PLU 	 Le PLU peut imposer aux constructions, travaux, installations ou aménagement, notamment dans les secteurs ouverts à l'ur- banisation, le respect de performances énergétiques et envi- ronnementales renforcées 			

EXEMPLES D'ACTIONS

COMMENTAIRE (OPÉRATEUR, RÉGLEMENTATION, etc.)

Urbanisation et transports en commun

- Encourager l'urbanisation dans les secteurs desservis par les transports en commun
- Le DOO peut par exemple subordonner l'ouverture à l'urbanisation de certains secteurs à leur desserte en transport en commun (TC), ou imposer une densité minimale dans des secteurs proches de TC existants ou programmés.
- Il peut également subordonner l'aménagement des zones d'aménagement commercial à certaines conditions comme la desserte en TC, le stationnement, la livraison des marchandises...
- Fixer une densité minimale de construction dans des secteurs situés à proximité des transports collectifs dans les PLU
- Les articles L.123·1·5 à 13 bis du code de l'urbanisme permettent de fixer un nombre maximum d'aires de stationnement à réaliser lors de la construction de bâtiments à usage autre que l'habitation, lorsque la desserte par les transports publics réguliers, le permet.

Compacité et mixité des fonctions urbaines

- Promouvoir la compacité et mixité des fonctions urbaines
- La compacité urbaine (en lien avec l'objectif de limitation/ modération de la consommation foncière) et la mixité des fonctions urbaines, permettent le recours aux modes actifs pour les déplacements (« la ville des courtes distances »), la mise en place de services collectifs (transports collectifs haut niveau de service, réseaux collectifs de distribution d'énergie, réseaux de chaleur...) et facilitent la construction de bâtiments performants.

Schéma régional Climat Air Énergie Alsace

Annexes

Annexe 1: Cadre réglementaire

- 1. LOI n° 2010-788 du 12 juillet 2010 portant engagement national pour l'environnement – article 68
- I. La section 1 du chapitre II du titre II du livre II du code de l'environnement est ainsi rédigée:

Section 1 - « Schémas régionaux du climat, de l'air et de l'énergie »

Art.L. 222·1.-I. · Le préfet de région et le président du conseil régional élaborent conjointement le projet de schéma régional du climat, de l'air et de l'énergie, après consultation des collectivités territoriales concernées et de leurs groupements.

Ce schéma fixe, à l'échelon du territoire régional et à l'horizon 2020 et 2050:

- 1° Les orientations permettant d'atténuer les effets du changement climatique et de s'y adapter, conformément à l'engagement pris par la France, à l'article 2 de la loi n° 2005-781 du 13 juillet 2005 de programme fixant les orientations de la politique énergétique, de diviser par quatre ses émissions de gaz à effet de serre entre 1990 et 2050, et conformément aux engagements pris dans le cadre européen. À ce titre, il définit notamment les objectifs régionaux en matière de maîtrise de l'énergie;
- 2° Les orientations permettant, pour atteindre les normes de qualité de l'air mentionnées à l'article L. 221-1, de prévenir ou de réduire la pollution atmosphérique ou d'en atténuer les effets. À ce titre, il définit des normes de qualité de l'air propres à certaines zones lorsque les nécessités de leur protection le justifient;
- 3° Par zones géographiques, les objectifs qualitatifs et quantitatifs à atteindre en matière de valorisation du potentiel énergétique terrestre, renouvelable et de récupération et en matière de mise en œuvre de techniques performantes d'efficacité énergétique telles que les unités de cogénération, notamment alimentées à partir de biomasse, conformément aux objectifs issus de la législation européenne relative à l'énergie et au climat. À ce titre, le schéma régional du climat, de l'air et de l'énergie vaut schéma régional des énergies renouvelables au sens du III de l'article 19 de la loi n° 2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l'environnement.

- II. À ces fins, le projet de schéma s'appuie sur un inventaire des émissions de polluants atmosphériques et de gaz à effet de serre, un bilan énergétique, une évaluation du potentiel énergétique, renouvelable et de récupération, une évaluation des améliorations possibles en matière d'efficacité énergétique ainsi que sur une évaluation de la qualité de l'air et de ses effets sur la santé publique et l'environnement menés à l'échelon de la région et prenant en compte les aspects économiques ainsi que sociaux.
- III. En Corse, le projet de schéma est élaboré par le président du conseil exécutif. Les services de l'État sont associés à son élaboration.

Art.L. 222-2.-Après avoir été mis pendant une durée minimale d'un mois à la disposition du public sous des formes, notamment électroniques, de nature à permettre sa participation, le projet de schéma régional du climat, de l'air et de l'énergie est soumis à l'approbation de l'organe délibérant du conseil régional. Le schéma est ensuite arrêté par le préfet de région.

En Corse, le schéma est adopté par délibération de l'Assemblée de Corse sur proposition du président du conseil exécutif et après avis du représentant de l'État.

Les régions peuvent intégrer au schéma régional du climat, de l'air et de l'énergie le plan climat-énergie territorial défini par l'article L. 229-26 du présent code. Dans ce cas, elles font état de ce schéma dans le rapport prévu par l'article L. 4310-1 du code général des collectivités territoriales.

Au terme d'une période de cinq ans, le schéma fait l'objet d'une évaluation et peut être révisé, à l'initiative conjointe du préfet de région et du président du conseil régional ou, en Corse, à l'initiative du président du conseil exécutif, en fonction des résultats obtenus dans l'atteinte des objectifs fixés et, en particulier, du respect des normes de qualité de l'air.

Art.L. 222-3.-Chaque région se dote d'un schéma régional du climat, de l'air et de l'énergie dans un délai d'un an à compter de l'entrée en vigueur de la loi n° 2010-788 du 12 juillet 2010 portant engagement national pour l'environnement.

Un décret en Conseil d'État fixe les modalités d'application de la présente section et détermine, notamment, les collectivités territoriales, les groupements de collectivités territoriales, les instances et les organismes consultés sur le projet de schéma régional du climat, de l'air et de l'énergie soit lors de son élaboration, soit préalablement à son adoption, ainsi que les modalités de leur consultation. Pour la Corse, le décret en Conseil d'État fixe, en outre, les conditions dans lesquelles le représentant de l'État arrête le schéma, lorsque l'Assemblée de Corse, après y avoir été invitée, n'a pas procédé à son adoption dans un délai de deux ans »

- II. Les articles L. 222-1 à L. 222-3 du code de l'environnement, dans leur rédaction antérieure à la date d'entrée en vigueur de la présente loi, demeurent applicables aux projets de plans régionaux pour la qualité de l'air en cours d'élaboration qui ont fait l'objet d'une mise à la disposition du public dans les conditions prévues à l'article L. 222-2 du même code.
- Décret n° 2011-678 du 16 juin 2011 relatif aux schémas régionaux du climat, de l'air et de l'énergie

Article 1

La section 1 du chapitre II du titre II du livre II du code de l'environnement est remplacée par les dispositions suivantes:

Section 1 - « Schémas régionaux du climat, de l'air et de l'énergie Art. R. 222-1.-Le schéma régional du climat, de l'air et de l'énergie prévu à l'article L. 222-1 comprend un rapport, un document d'orientations assorti de documents cartographiques indicatifs et un volet annexé intitulé "schéma régional éolien".

Art. R. 222-2.-l. · Le rapport du schéma régional présente et analyse, dans la région, et en tant que de besoin dans des parties de son territoire, la situation et les politiques dans les domaines du climat, de l'air et de l'énergie et les perspectives de leur évolution aux horizons 2020 et 2050.

À ce titre, il comprend:

- 1° Un inventaire des émissions directes de gaz à effet de serre pour les secteurs résidentiel, tertiaire, industriel, agricole, du transport et des déchets;
- 2° Une analyse de la vulnérabilité de la région aux effets des changements climatiques, qui identifie les territoires et les secteurs d'activités les plus vulnérables et définit les enjeux d'adaptation auxquels ils devront faire face;
- 3° Un inventaire des principales émissions des polluants atmosphériques, distinguant pour chaque polluant considéré les

- différentes catégories de sources, ainsi qu'une estimation de l'évolution de ces émissions;
- 4° Une évaluation de la qualité de l'air au regard notamment des objectifs de qualité de l'air mentionnés à l'article L. 221-1 et fixés par le tableau annexé à l'article R. 221-1, de ses effets sur la santé, sur les conditions de vie, sur les milieux naturels et agricoles et sur le patrimoine ainsi qu'une estimation de l'évolution de cette qualité;
- 5° Un bilan énergétique présentant la consommation énergétique finale des secteurs résidentiel, tertiaire, industriel, agricole, du transport et de la branche énergétique et l'état de la production des énergies renouvelables terrestres et de récupération;
- 6° Une évaluation, pour les secteurs résidentiel, tertiaire, industriel, agricole, du transport et des déchets, des potentiels d'économie d'énergie, d'amélioration de l'efficacité énergétique et de maîtrise de la demande énergétique ainsi que des gains d'émissions de gaz à effet de serre correspondants;
- 7° Une évaluation du potentiel de développement de chaque filière d'énergie renouvelable terrestre et de récupération, compte tenu de la disponibilité et des priorités d'affectation des ressources, des exigences techniques et physiques propres à chaque filière et des impératifs de préservation de l'environnement et du patrimoine.
- II. Sur la base de ce rapport, un document d'orientations définit, compte tenu des objectifs nationaux résultant des engagements internationaux de la France, des directives et décisions de l'Union européenne ainsi que de la législation et de la réglementation nationales, en les assortissant d'indicateurs et en s'assurant de leur cohérence:
- 1° Des orientations ayant pour objet la réduction des émissions de gaz à effet de serre portant sur l'amélioration de l'efficacité énergétique et la maîtrise de la demande énergétique dans les secteurs résidentiel, tertiaire, industriel, agricole, du transport et des déchets ainsi que des orientations visant à adapter les territoires et les activités socio-économiques aux effets du changement climatique;
- 2° Des orientations destinées à prévenir ou à réduire la pollution atmosphérique afin d'atteindre les objectifs de qualité de l'air mentionnés aux articles L. 221·1 et R. 221·1. Le cas échéant, ces orientations reprennent ou tiennent compte de celles du plan régional pour la qualité de l'air auquel le schéma régional du climat, de l'air et de l'énergie se substitue.

Ces orientations sont renforcées dans les zones où les valeurs limites de la qualité de l'air sont ou risquent d'être dépassées et dites sensibles en raison de l'existence de circonstances particulières locales liées à la protection des intérêts définis à l'article L. 220-2, pour lesquelles il définit des normes de qualité de l'air lorsque les nécessités de cette protection le justifient;

3° Des objectifs quantitatifs de développement de la production d'énergie renouvelable, à l'échelle de la région et par zones infrarégionales favorables à ce développement, exprimés en puissance installée ou en tonne équivalent pétrole et assortis d'objectifs qualitatifs visant à prendre en compte la préservation de l'environnement et du patrimoine ainsi qu'à limiter les conflits d'usage.

Le schéma identifie les orientations et objectifs qui peuvent avoir un impact sur les régions limitrophes et les mesures de coordination nécessaires.

Il formule toute recommandation, notamment en matière de transport, d'urbanisme et d'information du public, de nature à contribuer aux orientations et objectifs qu'il définit.

III. Le rapport et les orientations sont assortis, en tant que de besoin, de documents graphiques ainsi que de documents cartographiques dont la valeur est indicative.

Les documents cartographiques sont établis, pour les régions métropolitaines, à l'échelle de 1/500000.

IV. Le volet annexé au schéma régional du climat, de l'air et de l'énergie, intitulé "schéma régional éolien", identifie les parties du territoire régional favorables au développement de l'énergie éolienne compte tenu d'une part du potentiel éolien et d'autre part des servitudes, des règles de protection des espaces naturels ainsi que du patrimoine naturel et culturel, des ensembles paysagers, des contraintes techniques et des orientations régionales.

Il établit la liste des communes dans lesquelles sont situées ces zones. Les territoires de ces communes constituent les délimitations territoriales du schéma régional éolien au sens de l'article L. 314-9 du code de l'énergie.

Il peut comporter des documents cartographiques, dont la valeur est indicative, établis à l'échelle prévue au III.

Art. R. 222-3.-I. - Le préfet de région et le président du conseil régional s'appuient pour l'élaboration du schéma régional du climat, de l'air et de l'énergie sur un comité de pilotage, qu'ils président conjointement, auprès duquel est placé un comité technique. Ils en arrêtent ensemble la composition, l'organisation et le fonctionnement.

II. Au sein du comité de pilotage, les membres représentant le conseil régional et ceux représentant l'État et ses établissements publics sont en nombre égal.

La liste des membres du comité de pilotage est publiée simultanément au recueil des actes administratifs de la préfecture de région et au recueil des actes administratifs du conseil régional.

Le comité de pilotage propose le projet de schéma au président du conseil régional et au préfet de région. À ce titre, il suit et coordonne la réalisation des études nécessaires à l'état des lieux et aux évaluations définies à l'article R. 222-2 et propose les orientations, les objectifs. Après l'adoption du schéma, il est chargé du suivi de son avancement et de sa mise en œuvre.

III Les membres du comité technique sont nommés par le préfet de région et le président du conseil régional.

À la demande du comité de pilotage, le comité technique prépare les éléments nécessaires à la définition des orientations et des objectifs du schéma.

IV. Le préfet de région tient régulièrement informés les gestionnaires des réseaux de transport et de distribution d'électricité et de gaz de l'avancement de la procédure d'élaboration du schéma régional du climat, de l'air et de l'énergie.

Art. R. 222-4.-I. - Le préfet de région et le président du conseil régional, après avoir validé le projet de schéma, déterminent, la durée de sa mise à disposition au public et publient conjointement, au moins sept jours avant le début de cette mise à disposition, dans deux journaux régionaux ou locaux diffusés dans la région concernée, un avis faisant connaître la date d'ouverture de cette consultation et ses modalités. Cet avis est également publié sur les sites internet du conseil régional et de la préfecture de région.

Le projet de schéma est mis à la disposition du public aux sièges du conseil régional, de la préfecture de région, des préfectures de départements et des sous-préfectures. Les observations du public sur le projet de schéma sont consignées sur des registres ouverts à cet effet.

Le projet de schéma est également mis à la disposition du public par voie électronique sur les sites internet de la préfecture de région et du conseil régional. Le public dispose de la possibilité de faire part de ses observations par voie électronique.

- II. Dès le début de la mise à disposition au public, le préfet de région et le président du conseil régional soumettent le projet de schéma pour avis:
- 1° Aux conseils généraux des départements de la région;
- 2° Aux conseils municipaux des communes de la région;
- 3° Aux organes délibérants des établissements publics de coopération intercommunale participant à l'élaboration d'un plan climat-énergie territorial ou ayant approuvé un Agenda 21;
- 4° Aux organes délibérants des établissements publics de coopération intercommunale compétents pour l'élaboration d'un schéma de cohérence territoriale;
- 5° Au conseil économique et social environnemental régional;
- 6° Aux autorités organisatrices de réseau public de distribution d'électricité et de gaz;
- 7° Aux gestionnaires des réseaux de transport et de distribution d'électricité et de gaz concernés;
- 8° Aux autorités organisatrices des transports urbains concernées;
- 9° A l'Autorité de contrôle des nuisances aéroportuaires;
- 10° Aux conseils départementaux compétents en matière d'environnement, de risques sanitaires et technologiques;
- 11° Aux commissions départementales de la consommation des espaces agricoles;
- 12° A la commission régionale de la forêt et des produits forestiers;
- 13° A la chambre régionale d'agriculture;
- 14° A la chambre régionale du commerce et de l'industrie;
- 15° A la chambre régionale des métiers et de l'artisanat;
- 16° A la commission régionale du patrimoine et des sites;
- 17° Aux commissions départementales de la nature, des paysages et des sites;
- 18° A l'agence régionale de santé;
- 19° Au commandant de région terre compétent;
- 20° A la direction de l'aviation civile territorialement compétente;
- 21° A la direction interrégionale de la météorologie territorialement compétente;
- 22° Aux comités de bassins territorialement compétents;
- 23° A la commission régionale de l'économie agricole et du monde rural;
- 24° S'il y a lieu, au comité de massif, à l'établissement public du parc national, au syndicat mixte chargé de l'aménagement et de la gestion du parc naturel régional.

La transmission du projet de schéma est faite par voie électronique, sauf opposition expresse de la collectivité ou de l'organisme consulté. L'avis peut être transmis par voie électronique. À défaut de réponse dans le délai de deux mois à compter de la réception de la demande d'avis, celui-ci est réputé favorable.

Art. R. 222-5.-Le projet de schéma régional du climat, de l'air et de l'énergie est, le cas échéant, modifié conjointement par le préfet de région et le président du conseil régional pour tenir compte des observations et des avis recueillis.

Le schéma arrêté par le préfet de région après l'approbation par l'organe de délibération du conseil régional est publié au recueil des actes administratifs de la préfecture de région. Un avis de publication est inséré conjointement par le préfet de région et le président du conseil régional dans deux journaux régionaux ou locaux diffusés dans les départements concernés.

Le schéma régional du climat, de l'air et de l'énergie est mis à la disposition du public par voie électronique sur les sites internet de la préfecture de région et du conseil régional.

Art. R. 222-6.-L'évaluation de la mise en œuvre du schéma régional du climat, de l'air et de l'énergie au terme d'une période de cinq années après la publication de l'arrêté du préfet de région prévu à l'article R. 222-5 est réalisée par le comité de pilotage à la demande conjointe du préfet de région et du président du conseil régional.

La synthèse de cette évaluation fait l'objet d'un rapport publié sur les sites internet de la préfecture de région et du conseil régional.

À l'issue de cette évaluation, le préfet de région et le président du conseil régional peuvent décider de mettre le schéma régional du climat, de l'air et de l'énergie en révision, selon une procédure identique à celle suivie pour son élaboration. Lorsque les indicateurs de suivi de la mise en œuvre des orientations font apparaître que tout ou partie des objectifs ne pourra être raisonnablement atteint à l'horizon retenu, le préfet de région et le président du conseil régional engagent la révision du schéma, sur tout ou partie de celui-ci.

Art. R. 222-7.-l. - En Corse, le schéma régional du climat, de l'air et de l'énergie est élaboré, adopté, suivi et révisé selon la procédure prévue par le III de l'article L. 222-1, les deuxième et quatrième alinéas de l'article L. 222-2 et les articles R. 222-1 à R. 222-6, sous réserve des dispositions suivantes:

- 1° Le président du conseil exécutif de Corse exerce les attributions dévolues au préfet de région et au président du conseil régional aux articles R. 222-2 à R. 222-6;
- 2° Le comité de pilotage associe les services déconcentrés de l'État et ses établissements publics intéressés par les domaines de compétence du schéma régional du climat, de l'air et de l'énergie;
- 3° Les formalités de publication prévues sont effectuées sur les seuls recueils des actes administratifs de la collectivité territoriale de Corse et site internet de cette collectivité;
- 4° La mise à disposition du projet de schéma est faite au siège de l'Assemblée de Corse;
- 5° Le projet de schéma est transmis pour avis au préfet de région, dans les conditions prévues par le II de l'article R. 222-4.
- II. Si, dans les deux ans à compter de l'entrée en vigueur de la loi n° 2010-788 du 12 juillet 2010 portant engagement national pour l'environnement, l'Assemblée de Corse n'a pas adopté le schéma régional du climat, de l'air et de l'énergie, le préfet de région l'invite à y procéder dans un délai qu'il fixe et qui ne peut être supérieur à six mois.

Si l'Assemblée de Corse n'a pas adopté le schéma dans ce dernier délai, le préfet de région est substitué au président du conseil exécutif de Corse dans les attributions qui lui sont confiées par le l pour poursuivre la procédure d'élaboration engagée par celui-ci. Les études et documents réalisés et l'ensemble des informations nécessaires lui sont transmis à cet effet.

Article 2

Lorsque le schéma régional du climat, de l'air et de l'énergie n'a pas été publié au 30 juin 2012, le préfet de région exerce seul, selon le cas, les compétences attribuées au comité de pilotage, au président du conseil régional et à l'organe délibérant du conseil régional par les articles R. 222-3 à R. 222-5 du code de l'environnement pour poursuivre l'élaboration du volet « schéma régional éolien » annexé au schéma régional du climat, de l'air et de l'énergie, selon la procédure prévue pour celui-ci par lesdits articles, jusqu'à la publication de ce volet annexé.

Le schéma régional du climat, de l'air et de l'énergie ultérieurement adopté intègre le volet « schéma régional éolien » ainsi publié.

Article 3

Les articles R. 222·1 à R. 222·7 du code de l'environnement, dans leur rédaction antérieure à l'entrée en vigueur du présent décret, demeurent applicables aux projets de plans régionaux pour la qualité de l'air en cours d'élaboration qui ont été mis à disposition du public avant la publication de la loi du 12 juillet 2010 susvisée.

Le cas échéant, les orientations de ces plans régionaux pour la qualité de l'air sont reprises ou prises en compte par les schémas régionaux du climat, de l'air et de l'énergie qui se substituent à ces plans, dans les conditions prévues par le 2° du II de l'article R. 222-2 du code de l'environnement.

Article 4

Le code de l'environnement est ainsi modifié:

- 1° A l'article R. 222-24, après les mots: « résumé non technique du plan régional pour la qualité de l'air » sont insérés les mots: « s'il existe, et du schéma régional du climat, de l'air et de l'énergie prévu à l'article L. 222-1 et suivants »;
- 2° A l'article R. 222-31, après les mots: « pour chaque polluant par le plan de protection de l'atmosphère et » sont insérés les mots: « par le schéma régional du climat, de l'air et de l'énergie prévu à l'article L. 222-1 et suivants et, s'il existe, »;
- 3° A l'article R. 331-14, les mots: « 9° Le schéma régional éolien prévu par l'article L. 553-4 » sont remplacés par les mots: « 9° Le schéma régional du climat, de l'air et de l'énergie prévu par l'article L. 222-1 »;
- 4° A l'article R. 333-15, les mots: « 3° Le schéma régional éolien prévu par l'article L. 553-4; » sont remplacés par les mots: « 3° Le schéma régional du climat, de l'air et de l'énergie prévu par l'article L. 222-1; ».

Article 5

La ministre de l'écologie, du développement durable, des transports et du logement, la ministre de l'économie, des finances et de l'industrie et le ministre auprès de la ministre de l'économie, des finances et de l'industrie, chargé de l'industrie, de l'énergie et de l'économie numérique, sont chargés, chacun en ce qui le concerne, de l'exécution du présent décret, qui sera publié au Journal officiel de la République française.

3. Composition du comité de pilotage

ARRETE

portant constitution du comité de pilotage et nomination des membres du comité technique pour l'élaboration du schéma régional du climat, de l'air et de l'énergie

Le Préfet de la région Alsace,

Le Président du Conseil Régional d'Alsace,

Vu le code de l'environnement, et notamment ses articles L.222-1 à L.222-3 ainsi que son article R.222-3;

Arrêtent :

Article 1:

Il est créé un comité de pilotage, présidé conjointement par le préfet de la région Alsace et le président du conseil régional d'Alsace en vue de l'élaboration du schéma régional du climat, de l'air et de l'énergie prévu à l'article L.222-1 du code de l'environnement.

Article 2:

La composition du comité de pilotage est fixée comme suit :

- 1) Représentants de l'État
- Le secrétaire général pour les affaires régionales et européennes ou son représentant ;
- Le directeur régional de l'alimentation, de l'agriculture et de la forêt ou son représentant ;
- Le directeur régional de l'environnement, de l'aménagement et du logement ou son représentant;
- Le directeur régional de l'agence de l'environnement et de la maîtrise de l'énergie ou son représentant;
- Le directeur général de l'agence régionale de la santé ou son représentant ;

.../...

2

Représentants de la Région

- Mme Monique JUNG, vice-présidente du Conseil Régional, présidente de la commission « environnement, habitat »;
- Mme Nicole THOMAS, Conseillère régionale ;
- M. Jean-Paul OMEYER, vice-président du Conseil Régional et vice-président de la commission « environnement, habitat »;
- Mme Cléo SCHWEITZER, Conseillère régionale ;
- M. Jacques FERNIQUE, Conseiller régional;

3) Représentants des collectivités

- Le président du conseil général du Bas-Rhin ou son représentant ;
- Le président du conseil général du Haut-Rhin ou son représentant ;
- Le président de l'association des maires du Bas-Rhin ou son représentant;
- Le président de l'association des maires du Haut-Rhin ou son représentant;
- Le président de la communauté d'agglomération de Colmar ou son représentant;
- Le président de la communauté urbaine de Strasbourg ou son représentant ;
- Le président de Mulhouse Alsace Agglomération ou son représentant ;

4) Représentants du monde économique

- Le président du conseil économique, social et environnemental régional ou son représentant;
- Le président de la chambre régionale de métiers ou son représentant ;
- Le président de la chambre régionale d'agriculture ou son représentant;
- Le président de la chambre régionale du commerce et de l'industrie ou son représentant;
- Le président de la fédération française du bâtiment d'Alsace ou son représentant;
- Le directeur de GRT Gaz Nord-Est ou son représentant ;
- Le directeur de l'unité régionale Est de réseau transport d'électricité ou son représentant;

Représentants des associations et personnes qualifiées

- Le président de l'association Alsace Nature ou son représentant ;
- Le président de l'association Alter Alsace Énergie ou son représentant ;
- Le président de l'association pour la prévention de la pollution atmosphérique ou son représentant;
- Le président de l'association pour la surveillance et l'étude de la pollution atmosphérique en Alsace ou son représentant;
- Le président de la chambre des consommateurs d'Alsace ou son représentant;
- Le directeur du laboratoire de physicochimie de l'atmosphère de l'université de Strasbourg ou son représentant;
- Le président du parc naturel régional des Vosges du Nord ou son représentant;

3

6) Représentants des salariés

- Le secrétaire général de l'union régionale interprofessionnelle des syndicats C.F.D.T. ou son représentant;
- Le président de l'union régionale de la C.F.E.-C.G.C. ou son représentant ;
- Le président de l'union régionale C.F.T.C. ou son représentant ;
- Le secrétaire régional du comité régional de la C.G.T. ou son représentant ;
- Les secrétaires généraux des unions départementales des syndicats FO du Bas-Rhin et du Haut-Rhin ou leur représentant;
- Le secrétaire régional de la F.S.U ou son représentant;
- Le secrétaire régional de l'union régionale Alsace de l'U.N.S.A. ou son représentant.

Article 3:

Le comité de pilotage propose le projet de schéma au préfet de région et au président du conseil régional. À ce titre, il suit et coordonne la réalisation des études nécessaires à l'état des lieux et aux évaluations définies à l'article R. 222-2 du code de l'environnement et propose les orientations, les objectifs. Après l'adoption du schéma, le comité de pilotage est chargé du suivi de son avancement et de sa mise en oeuvre.

Article 4:

Le comité de pilotage se réunit à l'initiative conjointe du préfet de région et du président du conseil régional. La convocation peut être envoyée par tous moyens, dont par courrier électronique. Il en est de même des pièces ou documents nécessaires à la préparation de la réunion ou établis à l'issue de celle-ci.

Le secrétariat du comité de pilotage est assuré par les chefs de projet désignés au sein des services de la direction régionale de l'environnement, de l'aménagement et du logement (DREAL) d'une part, et des services du conseil régional d'autre part.

Article 5:

Il est créé un comité technique, chargé par le comité de pilotage de préparer les éléments nécessaires à la définition des orientations et des objectifs du schéma.

La composition du comité technique est fixée comme suit :

- Le préfet de région ou son représentant ;
- Le président du conseil régional ou son représentant ;
- Le directeur régional de l'agence de l'environnement et de la maîtrise de l'énergie ou son représentant;
- Le directeur régional de l'alimentation, de l'agriculture et de la forêt ou son représentant;
- Le directeur régional de l'environnement, de l'aménagement et du logement ou son représentant;
- Le président de l'association Alter Alsace Énergie ;
- Le président de l'association pour la surveillance et l'étude de la pollution atmosphérique en Alsace ou son représentant;

4

- Le président du parc naturel régional des Vosges du Nord ou son représentant ;
- Le président de la fédération française du bâtiment d'Alsace ou son représentant.

Aux fins d'exercice de ses missions, le comité technique, en particulier, donne un avis sur les cahiers des charges des études à réaliser, assure la coordination des travaux menés dans les ateliers thématiques, définit, en tant que de besoin, toutes propositions techniques préparatoires à la validation du comité de pilotage en matière de suivi du plan et de communication.

Le secrétariat du comité technique est assuré par les chefs de projet visés à l'article 4.

Article 6:

Le comité technique se réunit à l'initiative conjointe des chefs de projets, sur la base d'un ordre du jour concerté. La convocation peut être envoyée par tous moyens, dont par courrier électronique. Il en est de même des pièces ou documents nécessaires à la préparation de la réunion ou établis à l'issue de celle-ci.

Article 7:

Le secrétaire général pour les affaires régionales et européennes, le directeur régional de l'environnement, de l'aménagement et du logement, le directeur général des services du conseil régional, la directrice de l'environnement et de l'aménagement du conseil régional sont chargés, chacun pour ce qui le concerne, de l'application du présent arrêté, qui sera publié aux recueils des actes administratifs de la préfecture de la région Alsace et du conseil régional d'Alsace.

15 DEC. 2011

Le Préfet de la Région Alsace

Pierre-Étienne BISCH

Le Président du Conseil Régional d'Alsace

Philippe RICHERT

4. Mandats des ateliers

4.1. Atelier « Énergies renouvelables »

4.1. 1. Nature de la mission et objectifs

Il s'agit de traiter, dans le cadre du schéma Régional Climat Air Energie, la partie relative aux énergies renouvelables. Les objectifs de l'atelier seront de répondre aux attentes de l'article 68 de la loi Grenelle 2 qui demande notamment que le schéma fixe, à l'échelon du territoire régional et à l'horizon 2020 et 2050 [...], les objectifs qualitatifs et quantitatifs à atteindre en matière de valorisation du potentiel énergétique de récupération [...] conformément aux objectifs issus de la réglementation européenne relative à l'énergie et au climat et que le projet de schéma s'appuie sur [...] un bilan énergétique, une évaluation du potentiel énergétique, renouvelable et de récupération menés à l'échelon de la région et prenant en compte les aspects économiques ainsi que sociaux.

Les objectifs de l'atelier seront donc:

d'établir le bilan énergétique régional (volet: production) en ventilant par filière énergétique (filières solaire thermique, photovoltaïque, aérothermique, hydrothermique, géothermique, éolienne, hydroélectrique ainsi que pour l'énergie issue de la biomasse, du gaz de décharge, du gaz de stations d'épuration d'eaux usées et du biogaz);

d'évaluer le potentiel de développement de chaque filière d'énergie renouvelable et de récupération. Elle prend en compte également les exigences techniques et physiques propres à chaque filière, la préservation de l'environnement et notamment des milieux physiques, des espaces naturels ainsi que du patrimoine naturel et culturel

de réfléchir sur des objectifs quantitatifs de développement de la production d'énergie renouvelable. Ils sont exprimés en puissance installée ou en tonne équivalent pétrole, et sont assortis d'objectifs qualitatifs visant à prendre en compte la préservation de l'environnement et notamment des milieux physiques, des espaces naturels ainsi que du patrimoine naturel et culturel et à limiter les conflits d'usage

Les travaux déjà réalisés en région notamment dans le cadre de la Conférence Régionale pour l'Énergie en Alsace (CREA), du programme Energivie de la Région Alsace serviront de base à l'élaboration des rendus de l'atelier.

4.2.1. Participants à l'atelier

Les participants seront les structures suivantes:

ADEME

Alter Alsace Energie

ASPA

BRGM

Chambre régionale d'agriculture

CG67

CG68

DDT 67

DDT68

DRAAF

BRAL

ES Energie

Fibois

Région Alsace

SGARE

Pour élargir le sujet, il pourra être envisagé d'associer certains groupes de travail ou autres instances existantes ou de consulter tout acteur (éventuellement hors région si nécessaire).

4.1.4. Planning prévisionnel de réalisation

La réalisation de la mission respectera les échéances suivantes:

Étape 1:

- état des lieux (présentation de la filière, spécificités alsaciennes, études réalisées, avantages inconvénients et contraintes pour chaque filière)
- formalisation du bilan énergétique de la région (installations et production):

Étape 2:

- inventaire des potentiels:
- objectifs de développement à l'horizon 2020 :

4.1.4. Pilotage

Le pilotage de l'atelier sera assuré par le comité technique du schéma régional Climat Air Énergie. Le rapporteur de l'atelier, Alter Alsace Energie, est membre de droit de ce comité technique.

4.2. atelier « Maitrise de la consommation énergétique »

4.2.1. Nature de la mission et objectifs

Il s'agit de traiter, dans le cadre du schéma Régional Climat Air Energie, la partie relative à la maitrise de la consommation régionale énergétique. Les objectifs de l'atelier seront de répondre aux attentes de l'article 68 de la loi Grenelle 2 qui demande notamment que le schéma fixe, à l'échelon du territoire régional et à l'horizon 2020 et 2050 [...], les objectifs qualitatifs et quantitatifs à atteindre en matière de valorisation du potentiel énergétique de récupération et en matière de mise en œuvre de techniques performantes d'efficacité énergétique [...] conformément aux objectifs issus de la réglementation européenne relative à l'énergie et au climat et que le projet de schéma s'appuie sur un bilan [...] énergétique, une évaluation des améliorations possibles en matière d'efficacité énergétique menés à l'échelon de la région et prenant en compte les aspects économiques ainsi que sociaux.

Les objectifs de l'atelier seront donc:

- d'établir le bilan énergétique régional (volet: consommation) et son évolution si possible depuis 1990 en ventilant suivant les secteurs et par filière énergétique;
- d'établir un inventaire des émissions directes des Gaz à Effet de Serre (GES) par secteur,
- d'évaluer le potentiel d'économie d'énergie et de maitrise de la demande énergétique,
- de réfléchir sur les orientations pour mobiliser ces gisements et réduire les émissions de GES.

L'atelier s'attachera principalement à traiter des consommations énergétiques du bâtiment (résidentiel privé et public, du bâtiment tertiaire dont celui des collectivités publics et de l'État et des bureaux de l'industrie), de l'industrie (process industriels et process des commerces et artisanat). L'aspect comportemental est un sujet complémentaire traité par l'atelier. La partie des consommations liées aux transports sera traitée par l'atelier « Qualité de l'Air ».

Les travaux déjà réalisés en région notamment dans le cadre de la Conférence Régionale pour l'Énergie en Alsace (CREA), du programme Energivie de la Région Alsace et du Plan Régional pour le Climat et la Qualité de l'Air serviront de base à l'élaboration des rendus de l'atelier.

4.2.2. Participants à l'atelier

Les participants seront les structures suivantes:

ASPA	FFB (rapporteur de l'atelier)
ADEME	MEDEF 67
ALME	MEDEF 68
Alter Alsace Energie	Objectif climat.
CAPEB	pôle Energivie
CG67	Région Alsace
CG68	Syndicat des architectes
CRCI	UIBR
DREAL	

Pour élargir le sujet, il pourra être envisagé d'associer certains groupes de travail ou autres instances existantes ou de consulter tout acteur (éventuellement hors région si nécessaire).

Planning prévisionnel de réalisation

La réalisation de la mission respectera les échéances suivantes:

Étape 1:	
 formalisation du bilan énergétique de la région (consommation): 	
 mise en forme de l'inventaire des programmes de maitrise déjà menés sur le territoire alsacien: 	novembre 2010
 inventaire des émissions directes des GES par secteur d'activités: 	
Étape 2:	
 inventaire des potentiels d'économies énergétiques: 	janvier 2011
• évaluation de ces potentiels:	
Étape 3:	février 2011
 définition d'orientations pour la réduction d'émissions de GES; 	.55. 2311

4.2.4 Pilotage

Le pilotage de l'atelier sera assuré par le comité technique du schéma régional Climat Air Énergie. Le rapporteur de l'atelier, la FFB, est membre de droit de ce comité technique.

4.3 Atelier « Qualité de l'air »

4.3.1. Nature de la mission et objectifs

Il s'agit de traiter, dans le cadre du schéma Régional Climat Air Energie, la partie relative à la qualité de l'air. Les objectifs de l'atelier seront de répondre aux attentes de l'article 68 de la loi Grenelle 2 qui demande notamment que le schéma fixe, à l'échelon du territoire régional et à l'horizon 2020 et 2050 [...], les orientations permettant, pour atteindre les normes de qualité de l'air mentionnées à l'article L. 221·1, de prévenir ou de réduire la pollution atmosphérique ou d'en atténuer les effets et que le projet de schéma s'appuie sur un inventaire des émissions de polluants atmosphériques [...] sur une évaluation de la qualité de l'air et de ses effets sur la santé publique et l'environnement menés à l'échelon de la région et prenant en compte les aspects économiques ainsi que sociaux.

Les objectifs de l'atelier seront donc:

- d'établir un inventaire des principales émissions des polluants atmosphériques: Les polluants visés sont a minima les oxydes d'azote, les particules (PM10 et 2,5), le dioxyde de souffre, l'ammoniac et les composés organiques volatils. A cette liste pourront être rajoutés les polluants réglementés qui posent un problème dans la région. Des estimations des apports extérieurs en particules seront réalisées et éventuellement déclinées par saison.;
- d'établir une évaluation de la qualité de l'air dans la région: cet état de lieux servira à définir les zones sensibles pour lesquelles des dépassements de valeurs objectifs et valeurs limites réglementaires sont déjà constatées ou à craindre. La population exposée à des dépassements sera identifiée. Un état des connaissances sanitaires de la pollution de l'air et des conséquences sur l'environnement et le bâti sera réalisé de la même façon que pour le PRCQA.;
- d'établir un bilan des émissions suivant deux scénarios (fruit du travail des autres ateliers en plus de celui de la qualité de l'air), un tendanciel et un « grenelle » aux horizons 2020 et 2050. À noter que pour les oxydes d'azote et les particules les scénarios devront être aussi évalués à l'horizon 2015 pour s'assurer du respect de la réglementation à cette échéance. La simulation prospective de l'impact des abattements d'émissions sur la qualité de l'air (le cas échéant en terme de mesures d'accompagnement de l'application du SRCAE plutôt que de son élaboration) prendra au possible en compte l'impact du changement climatique sur la QA dans 10/20 ans: ozone, particules...

 de définir des orientations destinées à prévenir ou à réduire la pollution atmosphérique afin d'atteindre les objectifs de qualité de l'air mentionnés à l'article L222-1

L'atelier s'attachera en parallèle à traiter la partie des consommations d'énergie liées aux transports. Il abordera le plan particules pour les points non traités directement par le PRSE ou indirectement par l'atelier maîtrise de l'énergie. Il s'intéressera notamment à la contribution des sources en terme spéciation chimique, de secteurs d'activités et d'échelle de pollution (part locale, part importée notamment transfrontalière). L'atelier se focalisera également sur les pollutions spécifiques comme les phytosanitaires, les HAP et métaux lourds (dont le mercure) liés à l'industrie.

Les travaux déjà réalisés en région notamment dans le cadre du Plan Régional pour le Climat et la Qualité de l'Air serviront de base à l'élaboration des rendus de l'atelier.

Le sous-groupe transports s'intéressera notamment à la déclinaison des actions du plan particules pour son secteur. Il abordera les questions d'amélioration de la connaissance du parc roulant (et de son état de « propreté ») notamment dans les zones sensibles afin de déterminer quelles seraient les actions ciblées les plus efficaces sur des flottes captives par exemple.

Ce sous-groupe abordera aussi les questions liées aux différentes formes urbaines en lien notamment avec l'atelier maîtrise de l'énergie pour le secteur résidentiel/tertiaire afin de prendre en compte les problématiques liées aux économies d'énergie et leur possible antagonisme avec les mesures visant la diminution des émissions de polluants atmosphériques.

Enfin, ce sous-groupe traitera des thèmes de l'intermodalité ou encore de l'évolution des comportements.

4.3.2. Participants à l'atelier

Les participants seront les structures suivantes:

' '	
Académie de Strasbourg	FNAUT
ADEME	Groupe Régional des Médecins
ADEUS	d'Alsace
Agglomération de Colmar	Laboratoire d'épidémiologie et de santé publique
Alsace Nature	Laboratoire de physico-chimie
APPA	de l'atmosphère, UDS
ARS	Laboratoire Image et Ville,
ASPA	UDS
Association des maires du 67	M2A
Association des maires du 68	Météo France
Association des membres	Observatoire Régional
insuffisants respiratoires	de la Santé en Alsace
ASTUS	Office National des Forêts
Automobile Club d'Alsace	Région Alsace
Centre Anti-poison	Service Pneumologie des HUS
CG 67	SNCF
CG 68	SOLEA
Chambre d'agriculture	SPPPI
Comité des constructeurs	TRACE
français d'automobiles	UFIP
CRCI	UIC Alsace
CTS	Union régionale
CUS	des transporteurs routiers

Sous groupe transports:

Direction Régionale de

l'Alimentation, de l'Agriculture et de la Forêt d'ALSACE

DRFAL

ADEUS	cus
Agglomération de Colmar	DREAL
ASPA	FNAUT
ASTUS	M2A
Automobile Club d'Alsace	Région Alsace
CG 67	SNCF
CG 68	SOLEA
CRCI	TRACE
CTS/CTBR	Union régionale des transporteurs routiers

4.3.3. Planning prévisionnel de réalisation

La réalisation de la mission respectera les échéances suivantes:

Étape 1: • Réalisation de l'état des lieux et partage des acquis du PRCQA	Janvier 2011
Étape 2: • Élaboration de nouvelles propositions et mise à jour des actions du PRCQA	Mars 2011
Étape 3: • Synthèse des travaux	Avril 2011

4.3.4. Pilotage

Le pilotage de l'atelier sera assuré par le comité technique du schéma régional Climat Air Énergie. Le rapporteur de l'atelier, l'ASPA, est membre de droit de ce comité technique.

4.4. Atelier « Adaptation au changement climatique »

4.4.1. Nature de la mission et objectifs

Il s'agit de traiter, dans le cadre du schéma Régional Climat Air Énergie, la partie relative à l'adaptation au changement climatiaue.

L'article L222-1 du code de l'environnement, fixe les orientations du SRCAE: Ce schéma fixe notamment, à l'échelon du territoire régional et à l'horizon 2020 et 2050, les orientations permettant d'atténuer les effets du changement climatique et de s'y adapter, conformément à l'engagement pris par la France, à l'article 2 de la loi n° 2005-781 du 13 juillet 2005 de programme fixant les orientations de la politique énergétique.

Les objectifs de l'atelier seront donc:

- de fournir une analyse de la vulnérabilité de la région aux impact des changements climatiques, notamment la modification des régimes de précipitations pouvant entraîner des sécheresses et des inondations accrues mais aussi les manifestations climatiques extrêmes telles que les coulées de boue ou les canicules. Cette analyse précisera par ailleurs les territoires sur lesquels ces impacts pourront avoir les effets les plus importants;
- de définir des orientations visant à adapter les territoires et les activités socioéconomiques aux effets du changement climatique. Les secteurs les plus vulnérables devront être identifiés et les enjeux d'adaptation auxquels ils devront faire face définis.

L'atelier s'attachera principalement à traiter des données déjà existantes en terme d'études et devra se positionner sur les besoins éventuels dans ce domaine. Sur la base des études existantes et de celles que l'atelier pourrait recommander, des orientations devront être fixées afin de limiter les impacts les plus importants pour les secteurs qui seraient le plus exposés.

4.4.2. Participants à l'atelier

Les participants seront les structures suivantes:

ADEME DREAL MRN et ECLA
ADEUS Objectif climat
ADT 67 ODONAT
ADT 68 ONF Alsace

APRONA Parc des Vosges du Nord (Rapporteur de l'atelier)

CG68 Région

Chambre Université de Strasbourg

d'agriculture régionale VNF

CRCI DRAAF

Pour élargir le sujet, il pourra être envisager d'associer certains groupes de travail ou autres instances existantes ou de consulter tout acteur (éventuellement hors région si nécessaire).

Principales thématiques à traiter par l'atelier

1. La ressource en eau

- Agriculture
- · Accès à la nappe, sécheresse
- Hydraulique et énergie
- · Navigabilité du Rhin
- Tourisme hivernal

2. La biodiversité

- adaptation des cultures (céréales, vignobles, forêt...)
- évolution des espèces animales
- impact sur la santé humaine

3. Les aléas climatiques

- canicule: chaleur en ville et dans l'espace publique
- santé
- nouvelles formes d'habitats et d'urbanisme. Écocide...
- Gestion de l'eau et des espaces verts en ville
- Risques naturels (inondations, glissements de terrain, etc...)
- Développer les analyses coûts bénéfices

4. Les articulations des politiques : gouvernance et financement

- Politique d'aménagement et d'urbanisme (Attention aux contradictions: ville compacte pour les GES ne va pas avec la lutte de la chaleur en ville et le maintient d'espaces verts...)
- Conditions d'acceptabilité par la population des mesures d'adaptation
- Intégrer cette problématique aux critères d'éligibilité des investissements publics ou privés pour éviter les projets maladaptés
- Préparer l'économie locale aux changements prévus: tourisme hivernal, transport fluvial, etc.

4.4.3. Planning prévisionnel de réalisation

La réalisation de la mission respectera les échéances suivantes:

Étape 1	
 Réalisation de l'état des lieux des connaissances et des besoins en études supplémentaires. 	novembre 2010
Étape 2	
 Lancement d'(des) étude(s) identifiées à l'étape 1 	fin 2010
 Définir les orientations en fonction des données existantes 	
Étape 3	
 Présentation des résultats de l'(des) étude(s) commandée(s) Définir les orientations en fonction des nouvelles données 	février 2011
Étape 4	
 Mise en commun des connaissances Synthèse des orientations Rédaction du rapport et d'un support de communication à destination du grand public 	mars 2011

En fonction de la durée prévisible de l'étape 2 et de la réalisation d'une étude importante, l'étape 4 pourra débutée avant l'étape 3.

4.4.4. Pilotage

Le pilotage de l'atelier sera assuré par le comité technique du schéma régional Climat Air Énergie. Le rapporteur de l'atelier, le Parc Naturel Régional des Vosges du Nord, est membre de droit de ce comité technique.

Annexe 2: Définitions

ASPA: Association pour la Surveillance et l'Etude de la Pollution Atmosphérique en Alsace

Basse consommation: Pour les constructions résidentielles neuves, l'objectif de consommation maximale en énergie primaire est fixé à 50 kWh/m². an, à moduler selon les régions et l'altitude. Est alors prise en compte la consommation dite conventionnelle d'énergie primaire pour le chauffage, le refroidissement, la ventilation, les auxiliaires, la production d'eau chaude sanitaire et l'éclairage des locaux.

CMS: Combustible Minéral Solide, terme regroupant: charbon, houille, coke de houille, agglomérés et briquette de lignite, etc.

CO2: Dioxyde de Carbone

Consommation d'énergie finale: correspond à la consommation des utilisateurs finals des différents secteurs de l'économie. Cette consommation ne comprend pas les quantités perdues lors de la production ou transformation d'énergie (pertes liées aux transformateurs et perte liées au rendement: voir méthodologie d'établissement des bilans énergétiques supra). Elle ne comprend pas non plus les pertes de distribution des lignes électriques.

Densité thermique : concerne les réseaux de chaleur, correspond à la quantité de chaleur livrée par mètre de canalisation construit.

Efficacité énergétique: mesure le service rendu par rapport à la consommation d'énergie nécessaire pour l'obtenir.

Électricité spécifique: électricité nécessaire pour les services qui ne peuvent être rendus que par l'usage de l'énergie électrique. On ne prend pas en compte dans l'électricité spécifique: l'eau chaude, le chauffage et la cuisson qui peuvent utiliser différents types d'énergie. Elle comprend l'électronique, l'électro-ménager, l'éclairage, etc.

Énergie primaire: Énergie contenue dans les produits énergétiques tirés de la nature. Cette énergie est utilisée telle quelle par l'utilisateur final, ou transformée en une autre forme d'énergie (l'électricité, par exemple), ou consommée dans le processus de transformation ou d'acheminement vers l'utilisateur, ou encore utilisée à des fins non énergétiques, comme dans la fabrication de plastique à partir de pétrole.

L'énergie primaire est comptabilisée le plus en amont possible (pouvoir calorifique des énergies fossiles ou renouvelables utilisées, énergie dégagée par la réaction nucléaire) pour permettre de mesurer l'amélioration de l'efficacité énergétique. La comptabilisation se fait en multipliant les quantités par le pouvoir calorifique, ce qui donne la production primaire.

EnR: énergies Renouvelables

Équivalent-logement: est une unité de quantité d'énergie, essentiellement utilisée afin de donner une réalité "concrète" à des statistiques sur les quantités d'énergie livrées. Un équivalent-logement correspond à la consommation d'un logement de 70 m² construit selon les normes en vigueur au milieu des années 90, soit environ 12 MWh par an de chaleur utile en chauffage et eau chaude.

GES: Gaz à effet de serre

GPL: Gaz de Pétrole Liquéfié

HTB: haute tension B; concerne les installations électriques dans lesquelles la tension excède 50 000 volts en courant alternatif, ou 75 000 volts en courant continu.

IAA: Industries agro-alimentaires

Intensité énergétique: mesure de l'efficacité énergétique d'une économie. Elle est calculée comme le rapport de la consommation d'énergie au produit intérieur brut.

PRG: pouvoir de réchauffement global

RFF: Réseau Ferré de France

RT 2012 : réglementation thermique 2012 ; toutes les constructions neuves présenteront, en moyenne, une consommation d'énergie primaire inférieure à 50 kWh/m²/an contre 150 kWh/m²/an environ avec la RT2005.

SNCF: Société Nationale des Chemins de Fer Français

TEP: Tonne Équivalent Pétrole

VNF: Voies Navigables de France

Rapport de conversion

Les équivalences énergétiques et la nouvelle méthodologie d'établissement des bilans énergétiques de la France

Énergie	Unité physique	en gigajoules (GJ) (PCI)	en tep (PCI)
Charbon			
Houille	1 t	26	26/42 = 0,619
Coke de houille	1 t	28	28/42 = 0,667
Agglomérés et briquettes de lignite	1 t	32	32/42 = 0,762
Lignite et produits de récupération	1 t	17	17/42 = 0,405
Pétrole brut et produits pétroliers			
Pétrole brut, gazole/fioul domestique, produits à usages non énergétiques	1 t	42	1
GPL	1 t	46	46/42 = 1,095
Essence moteur et carburéacteur	1 t	44	44/42 = 1,048
Fioul lourd	1 t	40	40/42 = 0,952
Coke de pétrole	1 t	32	32/42 = 0,762
Électricité			
Production d'origine nucléaire	1 MWh	3,6	0,086/0,33 = 0,260606
Production d'origine géothermique	1 MWh	3,6	0,086/0,10 = 0,86
Autres types de production, échanges avec l'étranger, consommation	1 MWh	3,6	3,6/42 = 0,086
Bois	1 stère	6,17	6,17/42 = 0,147
Gaz naturel et industriel	1 MWh PCS	3,24	3,24/42 = 0,077

À noter, cette méthode distingue trois cas:

- 1. l'électricité produite par une centrale nucléaire est comptabilisée selon la méthode de l'équivalent primaire à la production, avec un rendement théorique de conversion des installations égal à 33%; le coefficient de substitution est donc 0,086/0,33 = 0,260606 tep/MWh;
- 2. l'électricité produite par une centrale à géothermie est aussi comptabilisée selon la méthode de l'équivalent primaire à la production, mais avec un rendement théorique de conversion des installations égal à 10%; le coefficient de substitution est donc 0,086/0,10 = 0,86 tep/MWh;
- 3. toutes les autres formes d'électricité (production par une centrale thermique classique, hydraulique, éolienne, marémotrice, photovoltaïque, etc., échanges avec l'étranger, consommation) sont comptabilisées selon la méthode du contenu énergétique, avec le coefficient 0,086 tep/MWh.

Schéma régional Climat Air Énergie Alsace

Contexte réglementaire	page 282
Méthodologie suivie pour l'élaboration du schéma régional éolien	page 285
État des lieux de l'existant	page 286
Étude du gisement éolien de l'Alsace	page 289
Recensement des contraintes s'opposant strictement à l'implantation d'éoliennes	page 293
Recensement et hiérarchisation des autres contraintes	page 295
Définition des zones favorables au développement de l'éolien et du potentiel régional exploitable défini en mégawatts (MW) à horizon 2020 et 2050	page 300
Synthèse	page 306

1. Contexte réglementaire

1.1. Loi Grenelle 2

La loi du 12 juillet 2010 portant engagement national pour l'environnement (dite « Loi Grenelle 2 ») prévoit l'élaboration d'un Schéma Régional du Climat, de l'Air et de l'Energie (SRCAE) par l'État et le Conseil Régional. Un schéma régional éolien (SRE), constituant un volet annexé au SRCAE, définit en cohérence avec les objectifs issus de la législation européenne relative à l'énergie et au climat, les parties du territoire favorables au développement de l'énergie éolienne.

Le SRE a ainsi pour vocation de contribuer à la planification d'un développement harmonieux de l'énergie éolienne, prenant en considération les différents enjeux du territoire. Le schéma doit permettre d'identifier la contribution régionale à l'atteinte des objectifs arrêtés au niveau national. La France s'est fixée d'avoir une puissance éolienne totale installée de 25 000 MW (19 000 MW terrestre et 6 000 MW maritime) à horizon 2020. Au 30 juin 2011, une puissance de 6253 MW était installée à l'échelon national. Aucune installation n'est l'heure actuelle mise en service en région Alsace.

La loi Grenelle 2 instaure de plus de nouvelles mesures, désormais toutes entrées en vigueur, destinées à poursuivre un développement soutenu mais maîtrisé de l'éolien:

- les nouvelles installations, à l'exception de celles d'une puissance inférieure ou égale à 250 kilowatts et dont la hauteur du mât est inférieure à 30 mètres, doivent constituer des unités composées d'au moins cinq machines;
- les installations dont la hauteur de mât dépasse 50 mètres sont soumises, depuis le 13 juillet 2011, à autorisation au titre de la législation des installations classées;
- et, pour ces dernières, une distance de 500 mètres doit être respectée par rapport aux constructions à usage d'habitation, aux immeubles habités et aux zones destinées à l'habitation définies dans les documents d'urbanisme.

1.2. Décret du 16 juin 2011 relatif aux SRCAE

Le décret n° 2011-678 du 16 juin 2011 précise que:

Le SRE « identifie les parties du territoire régional favorables au développement de l'énergie éolienne compte tenu:

- du potentiel éolien;
- des servitudes;
- des règles de protection des espaces naturels ainsi que du patrimoine naturel et culturel et des ensembles paysagers;
- des contraintes techniques;
- des orientations régionales. »

Le SRE « établit la liste des communes dans lesquelles sont situées les zones favorables. Les territoires de ces communes constituent les délimitations territoriales du schéma régional éolien au sens de l'article L 314-9 du code de l'environnement. Il peut comporter des documents cartographiques, dont la valeur est indicative, établis à l'échelle du $1/500000^{\,\varepsilon}$. »

Le guide pour la co-élaboration des SRCAE, édité par le ministère du développement durable, précise que « le dispositif des schémas régionaux éolien s'applique indistinctement à tout type d'éolien. Il n'est donc pas possible d'établir deux ou plusieurs listes de communes, selon le type de projets envisagés. Le développement du petit éolien (moins de 50 m) doit être envisagé prioritairement au sein des zones favorables. L'éolien de proximité (moins de 12 m) n'a pas vocation à faire l'objet d'un traitement spécifique au sein des schémas. Il est utile que les schémas éolien se penchent sur le recensement des projets de petit éolien et d'éolien de proximité, et les perspectives de développement au niveau régional, plutôt que sur une analyse des contraintes territoriales ».

1.3. Obligation d'achat, Zones de Développement de l'Éolien (ZDE), conditions d'achat de l'électricité produite et réglementation installations classées pour la protection de l'environnement (ICPE)

1.3.1. Mécanisme incitatif de l'obligation d'achat

Afin de développer les énergies renouvelables, l'État a mis en place depuis 2000 un dispositif incitatif: l'obligation d'achat de l'électricité produite.

Ainsi, sous réserve de préserver le fonctionnement des réseaux, et dès lors que les installations de production sont raccordées aux réseaux publics de distribution qu'ils exploitent, les distributeurs d'électricité doivent acheter l'électricité produite à partir d'installations utilisant les énergies renouvelables aux exploitants qui en font la demande, à un tarif d'achat fixé par arrêté ministériel.

L'article 10 de la loi n° 2000-108 du 10 février 2000 relative à la modernisation et au développement du service public de l'électricité précise les installations qui peuvent bénéficier de l'obligation d'achat, par EDF ou les distributeurs non nationalisés, de l'électricité qu'elles produisent. Les installations utilisant l'énergie mécanique du vent, les éoliennes, sont éligibles au dispositif.

Le décret n° 2001-410 du 10 mai 2001 relatif aux conditions d'achat de l'électricité produite par des producteurs bénéficiant de l'obligation d'achat précise quant à lui les conditions d'attribution des tarifs d'achat. Des arrêtés spécifiques à chaque énergie renouvelable fixent enfin les tarifs applicables.

Depuis le 15 juillet 2007, les producteurs d'énergie éolienne peuvent bénéficier de l'obligation d'achat si les installations de production sont situées en zone de développement de l'éolien (ZDE).

1.3.2. Définition de Zones de Développement de l'Éolien (ZDE)

Les zones de développement de l'éolien (ZDE) ont été introduites par la loi n° 2005-781 de programme fixant les orientations de la politique énergétique du 13 juillet 2005 (loi POPE). Ces zones sont définies par les préfets de département sur proposition des communes ou des établissements publics de coopération intercommunales (EPCI) à fiscalité propre.

Ces zones permettent aux infrastructures éoliennes de production d'électricité qui viennent s'y implanter de bénéficier de l'obligation d'achat.

L'instruction des dossiers de demande de création de ZDE, précisée par les circulaires du 19 juin 2006 et 25 octobre 2011 des ministres du développement durable et de l'industrie, est au sens de la loi du 10 février 2000 réalisée au regard de trois critères:

- le potentiel éolien de la zone;
- les possibilités de raccordement aux réseaux électriques;
- la protection des paysages, des monuments historiques et des sites remarquables et protégés.

En fonction de ces critères sont définis:

- un périmètre géographique;
- la puissance installée minimale et maximale de l'ensemble des installations implantées dans la ZDE.

Chaque ZDE est ainsi définie par un zonage et une puissance électrique minimale et maximale.

Concernant le potentiel éolien, les circulaires du 19 juin 2006 et 25 octobre 2011 indiquent que son évaluation est réalisée au vu des informations existantes concernant les régimes de vent observés sur l'aire d'étude. Si la vitesse de vent est inférieure à 4,5 m/s à 100 m de hauteur en tout point de la zone, le préfet peut refuser la proposition de ZDE.

La loi Grenelle 2 a par ailleurs introduit dans la loi du 10 février 2000 des critères complémentaires à ceux précédemment mentionnés pour la définition des ZDE (à savoir la prise en compte également des enjeux de préservation de la sécurité publique, de la biodiversité ainsi que du patrimoine archéologique).

1.3.3. Conditions d'achat de l'électricité produite

Avant le 15 juillet 2007, l'exploitant d'une installation éolienne de moins de 12 MW située hors ZDE bénéficie de l'obligation d'achat d'électricité, sous réserve que le préfet lui ait délivré un certificat ouvrant droit à obligation d'achat et que la demande de permis de construire (attestation à l'appui) ait été déposée avant cette date.

Pour bénéficier de l'obligation d'achat à compter du 15 juillet 2007, les installations éoliennes doivent être implantées dans une zone de développement de l'éolien (ZDE).

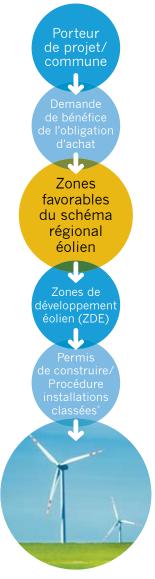
L'arrêté ministériel du 17 novembre 2008 fixe les conditions d'achat de l'électricité produite par les installations utilisant l'énergie mécanique du vent. Il s'agit d'un tarif fixe d'achat garanti pendant une durée donnée, actualisé en fonction d'un indice des coûts horaires du travail et d'un indice des prix à la production.

Pour l'éolien terrestre, les contrats sont souscrits pour une durée de 15 ans:

■ le tarif est fixé à 8,2 c€/kWh pendant 10 ans, puis entre 2,8 et 8,2 c€/kWh pendant 5 ans selon les sites;

Pour l'éolien en mer, les contrats sont souscrits pour 20 ans :

■ le tarif est fixé à 13 c€/kWh pendant 10 ans, puis entre 3 et 13 c€/kWh pendant 10 ans selon les sites.


La loi Grenelle 2 précise que les Zones de Développement Eolien (ZDE) créées ou modifiées postérieurement à la publication du schéma régional éolien devront être situées au sein des parties du territoire régional favorables au développement de l'énergie éolienne définies par ledit schéma. Le schéma régional éolien prend en compte les zones de développement de l'éolien créées antérieurement à son élaboration.

N.B.: Les zones favorables du schéma ne préjugent pas de la création d'une ZDE ni des diverses autorisations nécessaires à obtenir (permis de construire, procédure installations classées) pour la réalisation d'un projet.

1.3.4. Réglementation installations classées pour la protection de l'environnement (ICPE)

Les éoliennes sont des installations classées pour la protection de l'environnement, depuis le 14 juillet 2011, comme l'avait prévue la loi Grenelle 2. Deux décrets publiés en août 2011 permettent de fixer le cadre réglementaire. Le décret n° 2011-984 inscrit les éoliennes à la nomenclature des installations classées et les soumet aux régimes de l'autorisation (pour l'essentiel) et de la déclaration. Le décret n° 2011-985 fixe le régime de constitution des garanties financières, de responsabilité des sociétés mères, de mise à l'arrêt définitif, de démantèlement et de remise en état.

Le schéma ci dessous reprend les différentes étapes à suivre pour réaliser un projet éolien:

^{*} Ces procédures, voire d'autres comme une demande de défrichement, sont nécessaires ou non en fonction du type d'installation considérée.

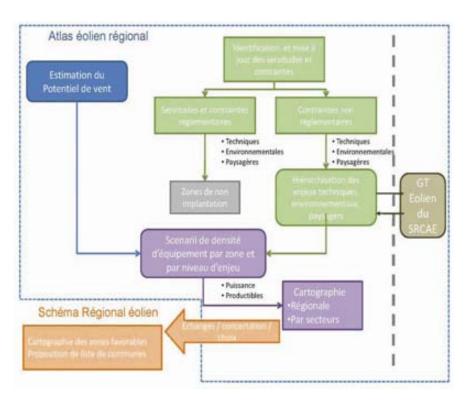
Il est à noter que des projets peuvent également se réaliser sans demander la création d'une ZDE. Dans ce cas l'électricité n'est pas rachetée par le distributeur selon le mécanisme d'obligation d'achat. Le producteur peut par contre envisager de passer un contrat de gré à gré avec un distributeur ou faire de l'autoconsommation. Les démarches relatives à la procédure d'urbanisme restent inchangées

2. Méthodologie suivie pour l'élaboration du schéma régional éolien

2.1. Contexte

Un atlas éolien avait été élaboré en 2004 par la Région Alsace et avait permis de définir des zones favorables pour le développement du grand éolien (supérieur à 50 m).

L'État et la Région Alsace ont souhaité procéder à une actualisation de cet atlas en fin d'année 2009. L'objectif de cette mise à jour était de compléter et d'affiner les informations fournies aux décideurs alsaciens lors de la première étude afin qu'ils possèdent un outil actualisé et pertinent d'aide à la décision.


Cette mise à jour, pour laquelle les travaux ont démarré en début d'année 2010, a été réalisée par un bureau d'études sous la maîtrise d'ouvrage de l'État et de la Région Alsace, avec l'appui d'un groupe de travail technique associant l'ensemble des parties prenantes de l'éolien en région (services de l'État, collectivités territoriales, branches professionnelles, associations). L'objectif, dans un premier temps, était d'actualiser la définition des zones favorables pour le grand éolien et, dans un deuxième temps, de définir les conditions et préconisations de mise en œuvre du petit éolien et de l'éolien de proximité.

Ces travaux ont été par la suite intégrés dans l'élaboration du projet de schéma régional éolien.

2.2. Méthodologie

La méthodologie suivie par le groupe de travail pour l'élaboration du projet de SRE comporte cinq phases:

- état des lieux de l'existant;
- étude du gisement éolien (niveaux de vent);
- recensement des contraintes s'opposant strictement à l'implantation d'éoliennes;
- recensement des contraintes ne s'opposant pas à l'implantation d'éoliennes mais pouvant entraîner la définition de zones incompatibles en fonction des orientations régionales;
- définition des zones favorables au développement de l'éolien et du potentiel régional exploitable défini en mégawatts (MW) à horizon 2020 et 2050, sur la base de l'actualisation de l'atlas 2004;

Bien que les travaux aient porté principalement sur les données alsaciennes, une attention particulière a été accordée aux informations provenant des régions limitrophes, françaises et étrangères (Allemagne et Suisse), pour s'assurer d'une bonne cohérence des démarches aux limites du territoire Alsacien.

Le projet de SRE est élaboré sur la base du rapport fourni par le bureau d'études, qui constitue l'actualisation de l'atlas de 2004.

Le projet de SRE définit au final les zones favorables à l'implantation d'éoliennes pour la région Alsace ainsi que la liste des communes contenues dans ces zones. Les résultats sont matérialisés par une carte de l'Alsace, établie au 1/500000°, décrivant les zones favorables ainsi qu'une annexe qui contient la liste des communes sur lesquelles une ZDE peut être demandée.

Une concertation préliminaire sur le projet de SRE a été organisée en octobre 2011 pour une durée d'un mois auprès des élus alsaciens. Les documents ont également été envoyés à la presse locale. Ce premier échange, préalable à la mise à disposition du public et à la consultation des organismes listés dans le décret du 16 juin 2011 relatif aux SRCAE, a permis de recueillir les attentes des citoyens et des élus devant les possibilités de développement de l'éolien en Alsace et un premier avis sur les travaux techniques déjà réalisés.

3. État des lieux de l'existant

3.1. Atlas éolien 2004

L'étude, réalisée par le Conseil Régional, avait pour objectif de définir et de cartographier les zones bénéficiant d'un vent moyen supérieur ou égal à 5,7 m/seconde à une hauteur de 80 m. Cette valeur constituait un seuil en dessous duquel, à l'époque, on estimait que les projets éoliens n'étaient pas économiquement rentables. Le bureau d'études avait également été chargé de lister et de cartographier les contraintes techniques (distance d'accès au réseau électrique, couloirs aériens civils et militaires, servitudes radio électriques, proximité d'habitations) ou environnementales (sites et espaces soumis à des interdictions réglementaires, à enjeux environnementaux et paysagers) qui interdisent ou qui rendent difficiles la réalisation d'un projet de grand éolien. La cartographie des résultats avait pour but premier d'informer et d'éviter à d'éventuels porteurs de projets de s'engager dans la voie de l'éolien sur des zones insuffisamment ventées ou soumises à des contraintes pouvant remettre en cause la réalisation d'un projet. L'étude et la cartographie ne possédaient aucun caractère réglementaire.

De la superposition des différentes contraintes avec une vitesse de vent supérieure à 5,7 m/s avaient émergées quatre zones favorables pour le grand éolien, ainsi désignés:

- Alsace Bossue;
- Massif du Donon Champ du Feu;
- Parc Nord du Ballon des Vosges;
- Parc Sud du Ballon des Vosges;

Des recommandations d'insertion paysagère ainsi que l'évaluation des impacts environnementaux et économiques des projets potentiels avaient également été proposées pour chacune des zones.

Depuis 2004, des évolutions réglementaires (création des ZDE, programmation pluriannuelle des investissements de production d'électricité en 2009, lois Grenelle 1 et 2) et techniques (nouvelles machines, éoliennes plus performantes par vent moyen, nouvelles contraintes à respecter pour les implantations) sont intervenues et ont justifié l'actualisation des travaux réalisés en 2004.

3.2. Projets en cours en Alsace

L'Alsace est une des trois régions françaises, avec l'Aquitaine et l'Ile de France, à n'avoir aucune installation de grand éolien sur son territoire. Six projets ont fait l'objet d'une demande de permis de construire, cinq dans le Bas Rhin et un dans le Haut Rhin.

Le tableau ci-dessous recense ces différents projets et les suites qui leur ont été réservées à la mi 2011, au titre de la procédure réglementaire de demande de permis de construire.

Lieu du projet	Zone	ZDE*	Permis de construire	Puissance totale (MW)
BAS RHIN				
Dehlingen	Alsace Bossue	non	Accordé – 01/2007 –	11.5
Grendelbruch	Champ du Feu	non	Déposé 07/2007 Permis classé sans suite	9.2
Herbitzheim	Alsace Bossue	non	Déposé 07/2007 Permis en instruction	14
Saâles	Donon/ Champ du Feu	oui	Déposé 12/2009 Permis en instruction	20
Sarrewerden et Rimsdorf	Alsace Bossue	oui	Déposé 10/2009 Permis refusé en 09/2011	14
HAUT RHIN				
Col du Bon- homme	PNR Ballon des Vosges	oui	Déposé 10/2008 - Autorisation de défrichement et permis refusés (07/2009) - Recours rejeté sur l'autorisation de défrichement par le tribunal administratif (12/2011)	10

La puissance potentielle des projets susvisés s'établit entre 70 et 80 MW.

Le projet de Dehlingen est à ce jour le seul projet autorisé. Les travaux de construction ont démarré fin d'année 2011 et le parc devrait fonctionner en 2012 avec une puissance de 11,5 MW.

^{*} Eu égard aux dates de dépôt des demandes de permis de construire, l'ensemble des installations visées dans le tableau bénéficiaient de l'obligation d'achat de l'électricité produite (cf. l-c)

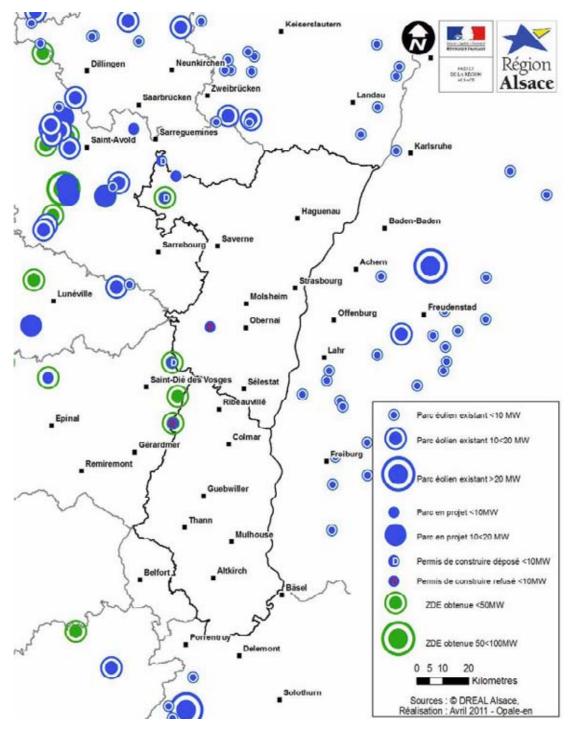


Illustration I: Carte des projets éoliens en Alsace et régions limitrophes

De nombreux projets sont implantés dans les régions limitrophes (Lorraine, Franche Comté) ou pays limitrophes (Allemagne, Suisse). Des zones restent également totalement vierges de tout projet à ce jour (plaine du Rhin, Sud Alsace, crêtes Vosgiennes).

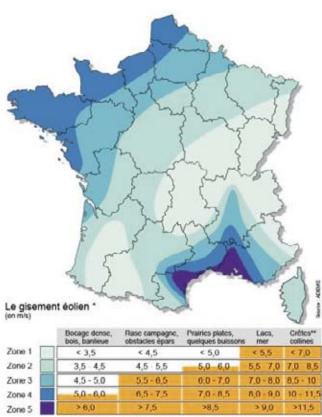
4. Étude du gisement éolien de l'Alsace


4.1. Caractéristiques géographiques de l'Alsace

L'Alsace est la plus petite région de France métropolitaine, mais également l'une des plus denses et urbanisées.

Région frontalière avec l'Allemagne et la Suisse, elle s'étend sur un territoire le long d'un axe orienté nord-sud et s'inscrit dans l'espace trinational du Rhin supérieur. Délimitée du nord au sud par les frontières Allemande puis Suisse, le Rhin y forme une frontière naturelle à l'est, sur une longueur de 190 kilomètres. À l'ouest, par-delà les crêtes vosgiennes, elle est bordée par les voisines de Lorraine et de Franche-Comté. Malgré sa petite taille, la région présente des paysages variés: la plaine d'Alsace (ried, loess, forêts), puis les collines sous-vosgiennes principalement consacrées à la viticulture, et enfin les massifs arrondis des Vosges (lacs, forêts, hautes chaumes) avec le Grand Ballon qui culmine à 1424 mètres.

En termes de vent, à l'ouest, les Vosges protègent du vent et de la pluie. Les vents d'ouest dominants perdent leur humidité sur le versant occidental des Vosges, et parviennent sous forme de vents secs et chauds, dans la plaine d'Alsace.


4.2. Gisement de vent

	fibeltore m s ⁻¹	d terrain ² Wm ⁻²	Open ma ⁻¹	plain ² War-2	At a se	w coast*	Ope ma-1			nd ridges*
	200 (8	Will "	20.6	Will "	101.6	Wes	700 0 T	Was-F	m s -1	Wm-2
	> 6.0	> 250	>7.5	> 500	> 8.5	> 700	> 9.0	> 800	>11.5	> 1800
	5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-180
=	4.5-5.0	100-150	5.5-6.5	200-300	0.0-7.0	250-400	7.0-5.0	400-600	8.3-10.0	700-120
	3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 5.5	400-70
	< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400

Illustration II: Carte des vitesses de vent en Europe

La France est le second gisement éolien d'Europe, après le Royaume-Uni, grâce notamment à ses façades littorales. Les zones les plus ventées sont la façade ouest de la Vendée au Pas-de-Calais, le littoral Languedocien et la vallée du Rhône.

*Vitesse du vent à 50 mêtres au dessus du soi en fonction de la topographie
*Les zones montagneuses nécessitent une étude de cisement a nécessitent une étude de cisement a nécessitent une étude de cisement a nécessite

Illustration III: Carte des vitesses de vent en France

À l'échelle nationale, l'Alsace est une région faiblement ventée au regard notamment des autres régions françaises. Elle dispose tout de même de zones suffisamment ventées, notamment grâce à l'influence locale du relief, permettant la réalisation de projets éoliens.

Carte des vitesses de vent en Alsace

Les données de vent obtenues dans le projet de SRE sont issues de plusieurs sources (Météo-France, Météo Blue et Vortex) qui ont été compilées pour fiabiliser au maximum les résultats et validées par comparaison avec les atlas éoliens des régions limitrophes et des mesures in situ. La multiplication de sources de données permet de réduire l'erreur sur l'estimation des vitesses moyennes de vent. Cependant, seules les études locales à l'aide d'un mât de mesure permettront de définir avec précision le potentiel éolien d'un secteur donné.

Le critère minimal de vent requis pour la validation administrative de ZDE, soit 4,5 m/s à 100 m de hauteur, a été retenu pour déterminer les zones favorables. Les zones ne respectant pas ce critère ne pourront donc pas être considérées comme des zones favorables à l'implantation de ZDE.

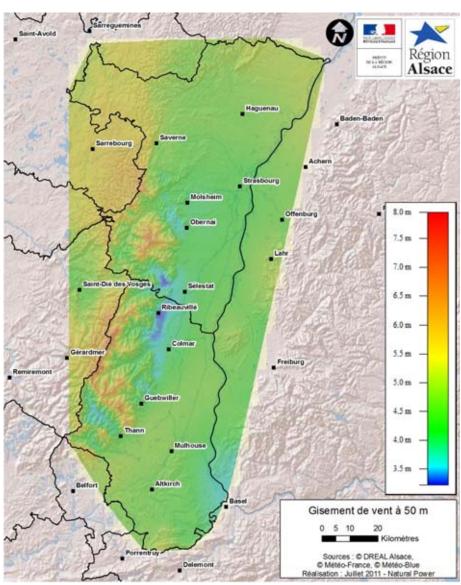


Illustration IV: Carte de gisement de vent à 50 m de hauteur

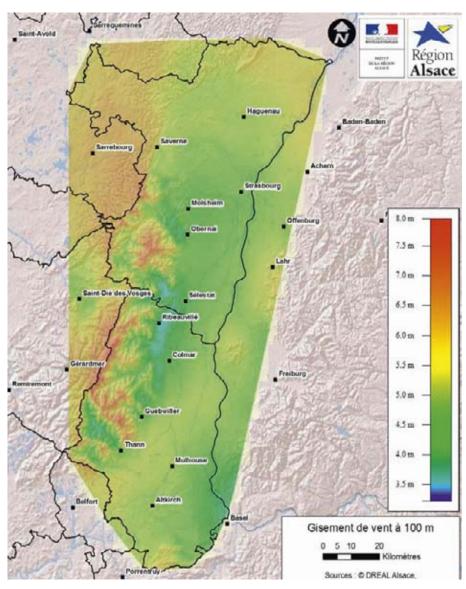


Illustration V: Carte du gisement de vent à 100 m de hauteur

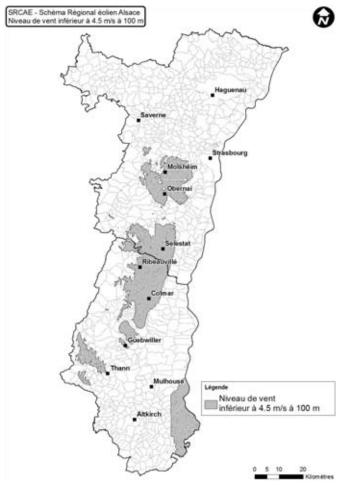


Illustration VI: Carte des zones ne respectant pas le critère ZDE de 4,5 m/s à 100 m de hauteur

Une grande partie de territoire Alsacien respecte donc le critère de vent requis pour une proposition de ZDE.

Seules les zones de Molsheim, de Selestat / Colmar, de Thann / Saint Amarin et de Sierentz / Ottmarsheim se situent en dessous de ce seuil.

Il est à noter que le critère indicatif de rentabilité des projets communément admis et, constaté à ce jour par les professionnels de l'éolien, se situe quant à lui à 5,2 m/s à 100 m.

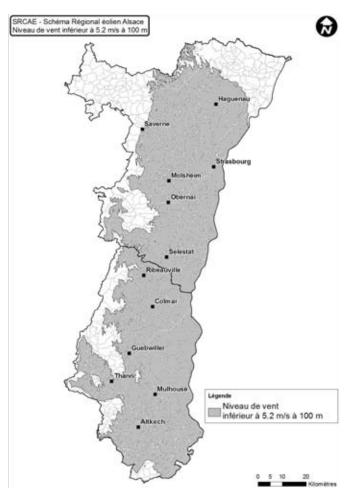


Illustration VII: Carte des zones n'atteignant pas le critère de vent indicatif de rentabilité des projets de 5,2 m/s à 100 m de hauteur

Le critère de 5,2 m/s est beaucoup plus sélectif, comme en atteste la carte ci dessus.

5. Recensement des contraintes s'opposant strictement à l'implantation d'éoliennes

L'ensemble des contraintes réglementaires, rendant impossible l'installation d'éoliennes, ont été recensées pour élaborer le projet de SRE. Elles sont listées ci dessous et ont été fournies par les services régionaux compétents dont l'indication est précisée:

- contraintes aéronautiques civiles et militaires (Direction Générale de l'Aviation Civile -DGAC-, Zone Aérienne de Défense Nord de l'Armée de l'Air et Directions Départementales des Territoires -DDT- du Bas Rhin et du Haut Rhin);
- contraintes hertziennes (DDT du Bas Rhin et du Haut Rhin);
- contraintes liées aux radars météorologiques (Météo France et service météorologique Allemand);
- contraintes liées aux réseaux de transport d'énergie (Réseau de Transport d'électricité -RTE-, Électrice de Strasbourg et Direction Régionale de l'Environnement de l'aménagement et du logement -DREAL-);
- contraintes liées aux réseaux de transport routier et ferroviaire (DREAL);
- contraintes environnementales (DREAL);
- contraintes paysagères (Services Territoriaux de l'Architecture et du Patrimoine -STAP- du Haut Rhin et du Bas Rhin);
- contraintes liées aux monuments historiques (STAP);
- contraintes liées à l'urbanisme (DDT du Haut Rhin et du Bas Rhin et Base de Données TOPO de l'Institut Géographique National et de la Base de Données d'Occupation des Sols -BDOCS-).

Chacune de ces contraintes fait l'objet d'une carte spécifique jointe dans le rapport du bureau d'études en annexe.

La carte présentée par la suite est une synthèse qui reprend l'ensemble de ces contraintes pour les zones dans lesquelles l'installation d'éoliennes est impossible.

Remarques méthodologiques:

- pour une meilleure lisibilité, les contraintes hertziennes et les réseaux de transport d'énergie, routiers et ferroviaires n'ont pas été cartographiés dans la carte de synthèse. Leurs cartographies sont également jointes dans le rapport du bureau d'études:
- les contraintes liées à l'urbanisme sont données à titre indicatif (pour le grand éolien) et devront être affinées à l'échelle du projet pour traiter des zones destinées à l'habitation prévues dans les POS et PLU, qui ne peuvent être retranscrites à cette échelle:
- les zones dans lesquelles la vitesse de vent est inférieure à 4,5 m/s à 100 m ont également été considérées comme « s'opposant » à l'implantation puisqu'elles ne respectent pas le critère fixé pour obtenir une ZDE.

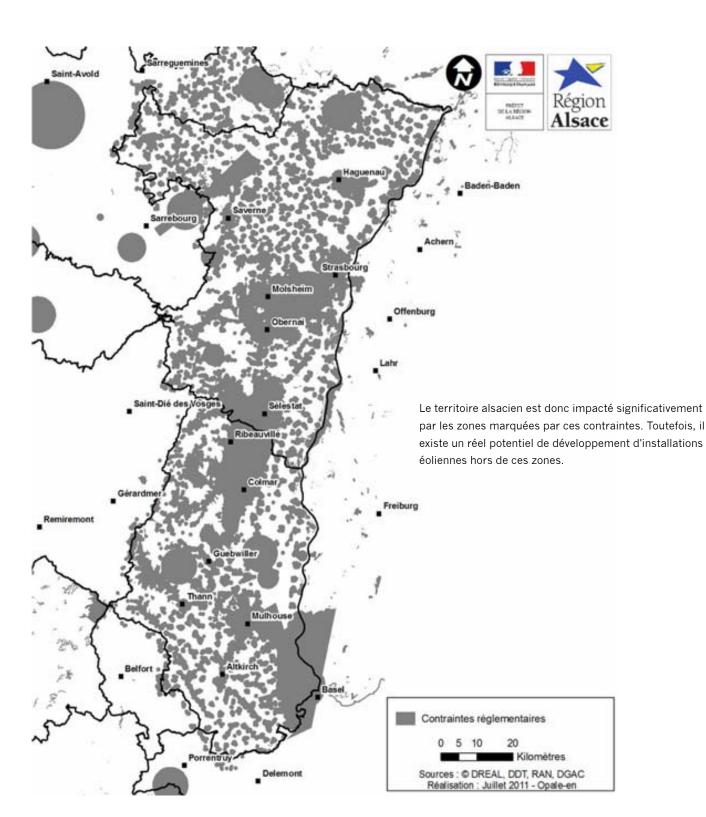


Illustration VII: Carte de synthèse des contraintes s'opposant strictement à l'implantation d'éoliennes

6. Recensement et hiérarchisation des autres contraintes

6.1. Méthode

D'autres contraintes, pouvant remettre en cause l'implantation d'éoliennes et ne constituant pas à la base des interdits stricts, ont également été recensées. Les thématiques et sujets suivants ont été retenus:

- Espaces naturels et faune: zonages environnementaux, avifaune et chiroptères;
- Paysage et patrimoine: ensembles paysagers et patrimoine;
- Contraintes techniques et physiques: sécurité aérienne civile et militaire.

Le recensement des informations sur les différentes thématiques a été possible grâce à la réalisation d'études spécifiques réalisées par différents experts au niveau régional:

- les zonages environnementaux ont été proposés par le service Milieux et Risques Naturels de la DREAL;
- l'avifaune a fait l'objet d'une étude spécifique de la Ligue de Protection des Oiseaux (LPO);
- les chiroptères ont fait l'objet d'une étude spécifique du Groupement d'Etude et de Protection des Mammifères d'Alsace (GEPMA);
- les ensembles paysagers ont été caractérisés par une paysagiste conseil mandatée par la DREAL;
- le patrimoine a été étudié par les STAP et la même paysagiste conseil que pour les ensembles paysagers;
- la sécurité aérienne (civile et militaire) a été étudiée par la DGAC et l'Armée de l'Air.

L'ensemble de ces contraintes a fait l'objet de discussions au sein du groupe de travail technique permettant d'aboutir à leur hiérarchisation, en tenant compte des priorités régionales. Cette hiérarchisation se matérialise au travers d'une « matrice de hiérarchisation des enjeux », constituée sur la base des études citées ci dessus.

Plusieurs niveaux de sensibilité ont ainsi été définis pour définir des priorités régionales :

- « Incompatible avec l'implantation d'éoliennes » : zones qui ne permettent pas l'implantation de ZDE ;
- « Très Fort » et « Fort » : zones dans lesquelles l'implantation de ZDE est possible sous réserve de prise en compte, à l'échelle du projet, des enjeux régionaux signalés comme très forts et forts. Dans ces zones, une attention particulière devra alors être apportée à la justification des projets au regard des enjeux identifiés, au stade aussi bien des propositions de ZDE, que des procédures préalables à la réalisation des installations éoliennes.

Il est à noter que des niveaux de sensibilité « moyen » et « faible » ont également été identifiés dans les études. Ils devront être pris en compte et se trouvent dans le rapport du bureau d'études.

La constitution de la matrice se fait sur la base des éléments fournis dans les études et des priorités régionales sont définies en matière de zones à privilégier en matière de développement éolien.

Matrice des sensibilités relatives aux autres contraintes

Autres contraintes	Esp	paces naturels et fa	une	Paysage et patrimoine		Techiques et physiques
Niveaux de sensibilité	Zonage environ- nemental	Avifaune	Chiroptères	Ensembles paysagers	Patrimoine	Sécurité
Source des données	Carmen	Etude LPO	Etude GEPMA	Etude paysagiste conseil	STAP	Armée et DGAC
1: Incompatible avec l'implanta- tion d'éoliennes	 Natura 2000: ZPS Grand Tetras et espè- ces avifaune/ chiroptères prioritaires au niveau national 	 Milan Royal (rayon 1 km autour de nid)* Couloirs de migration de la bande Rhénane et du Jura alsacien* 	Gîtes à chirop- tères (rayon 1 km autour du gîte pour espèces patri- moniales)*	 Zones de chau- mes sur les crêtes Vosgien- nes* 	 Sites inscrits et sites classés Monuments et sites emblé- matiques dans un rayon de 500 m 	
2: Très fort	Natura 2000 ZSC, SIC et ZPSZICO	 Zones enjeux très forts* Couloirs de migration sur les crêtes Vosgiennes* 	• Gîtes à chirop- tères (rayon de 1 à 3 km autour du gîte pour espèces patrimoniales)*	 Zones à sensibilité très forte* Périmètre de 10 km autour des sites emblématiques* 	 Périmètre de protection des monuments historiques dans un rayon de 500 m Périmètre entre 500 m et 10 km autour des monuments et sites emblématiques 	 Zones de contrôle élargie autour des aéroports Zones d'éloignement de 30 km autour des radars primaires et de 15 km autour des radiobalises Zones d'exclusion des radars militaires dans un rayon de 5 à 20 km Zones d'éloignement de 20 km autour des radars de bande 'C'
3: Fort	 ZNIEFF type 1 hors Natura 2000 ZNIEFF type 2 hors Natura 2000 	Zones enjeux forts*Corridors enjeux forts*	• Gîtes à chirop- tères (dans rayon de 0·1 et 1·3 et 3·7 km autour du gîte pour les autres espèces que patrimoniales)*	Zones à sensi- bilité forte*	 Périmètre entre 10 et 20 km autour des monuments et sites embléma- tiques Périmètre de 5 km autour des monu- ments histori- ques à enjeux et sites (Loi de 1930) 	 Zones de coor- dination des radars militai- res (entre 5 et 30 km en fonction de la taille des éoliennes)

^{*}Les informations détaillées, quant aux zones considérées, se trouvent dans les études LPO, GEPMA et paysagiste conseil jointes en annexe dans les cahiers techniques du SRCAE.

6.2. Synthèse

6.2.1. Zonage environnemental

Les éléments issus de Natura 2000, fournis par la DREAL, ont été pris en compte pour définir les zones à classer dans le niveau « incompatible avec l'implantation d'éoliennes » de la matrice.

Les zones retenues comme incompatibles sont:

- les Zones de Protection Spéciale (ZPS) Grand Tétras en tant qu'espèce faisant l'objet de mesures spéciales de conservation en particulier en ce qui concerne son habitat;
- les zones Natura 2000 contenant des espèces présentant une priorité de conservation au niveau national:
 - Pour l'avifaune: Milan Royal, Busard des Roseaux, Courlis Cendré, Grand Tetras;
 - Pour les chiroptères: Minoptère de Schreibers,
 Noctule commune, Noctule de Leisler, Grand Murin,
 Pipistrelle pygmée, Sérotine commune.

Les autres zonages environnementaux identifiés comme à enjeux « très fort » et « fort » par la DREAL sont classés sur les niveaux « très fort » et « fort » de la matrice. Les zonages à enjeux « moyen » et faible » se trouvent dans le rapport du bureau d'études.

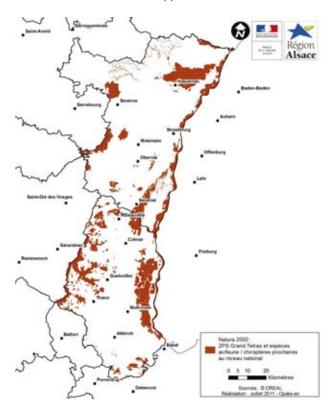


Illustration VIII: La carte ci dessous permet de visualiser les zones incompatibles

6.2.2. Avifaune

Les éléments fournis par l'étude de la LPO ont été utilisés pour définir les zones à classer dans le niveau « incompatible avec l'implantation d'éoliennes » de la matrice.

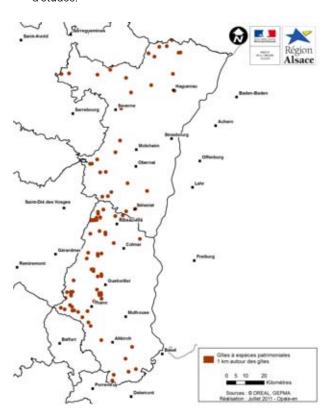
Les zones retenues comme incompatibles sont:

- les surfaces de 1 km de rayon autour des sites de nidification de Milan Royal qui constitue une espèce rare à protéger et du fait qu'une mortalité avérée a déjà été constatée à proximité d'éoliennes;
- le couloir de migration de la bande Rhénane en raison du risque de collision et de l'effet barrière pour de nombreuses espèces (canards, oies, mouettes...).

Le Jura alsacien a également été défini par la LPO comme une zone constituant un couloir principal de migration européen. Cette zone va cependant nécessiter des observations complémentaires pour mieux la caractériser. Dans l'attente de ces éléments, il a été décidé de la retenir comme incompatible à ce stade au regard des connaissances disponibles.

Les autres zonages identifiés comme à enjeux « très fort » et « fort » par la LPO sont classés sur les niveaux « très fort » et « fort » de la matrice. Les zonages à enjeux « moyen » et faible » se trouvent dans le rapport du bureau d'études.

Illustration IX: La carte ci dessous permet de visualiser les zones incompatibles



6.2.3. Chiroptères

Les éléments fournis par l'étude du GEPMA ont été utilisés pour définir les zones à classer dans le niveau « incompatible avec l'implantation d'éoliennes » de la matrice.

Les zones retenues comme incompatibles sont:

- les surfaces de 1 km, autour des gîtes regroupant des espèces « patrimoniales » telles que le Petit Rhinolophe, le Murin à oreilles échancrées, le Murin de Bechstein, le Grand Murin, la Barbastelle d'Europe et le Minioptère de Schreibers
- Les autres zonages identifiés à enjeux « très fort » et « fort » par le GEPMA sont classés sur les niveaux « très fort » et « fort » de la matrice. Les zonages à enjeux « moyen » et faible » se trouvent dans le rapport du bureau d'études.

 ${\it Illustration X: La \ carte \ ci \ dessous \ permet \ de \ visualiser \ les \ zones \ incompatibles}$

6.2.4. Patrimoine

Les éléments fournis par l'étude des STAP et de la paysagiste conseil ont été utilisés pour définir les zones à classer dans le niveau « incompatible avec l'implantation d'éoliennes de la matrice ».

Les zones retenues comme incompatibles sont:

- les sites classés, les sites inscrits, les secteurs sauvegardés, les Zone de Protection du Patrimoine Architectural Urbain et Paysager (ZPPAUP) et les sites UNESCO;
- les monuments emblématiques suivants dans un rayon de 500 m:
 - Le Château du Haut-Koenigsbourg (1),
 - La Cathédrale de Strasbourg (2),
 - Le Mont Saint-Odile (3),
 - Le Camp du Struthof (4),
 - Neuf-Brisach (5),
 - Le Champ de bataille du Hartmanswillerkopf (6),
 - Le centre urbain d'Altkirch (7),
 - La Petite-Pierre (8),
 - Le Château du Lichtenberg (9).

Les autres zonages identifiés comme à enjeux « très fort » et « fort » par les STAP et la paysagiste conseil sont classés sur les niveaux « très fort » et « fort » de la matrice. Les zonages à enjeux « moyen » et faible » se trouvent dans le rapport du bureau d'études. Pour l'ensemble de ces enjeux une analyse sera nécessaire à l'échelle du projet.

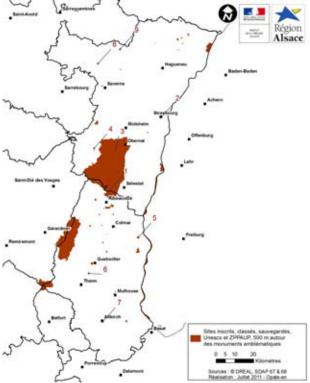


Illustration XI: La carte ci dessous permet de visualiser les zones incompatibles

6.2.5. Ensembles paysagers

Dans le cadre du schéma régional éolien, une analyse des contraintes paysagères au regard de l'éolien a été réalisée par la DREAL et sa paysagiste conseil. Un document cadre, composé d'une cartographie au 1/500000 et d'une notice explicative, a permis d'identifier les paysages emblématiques majeurs alsaciens reconnus pour leur caractère exceptionnel et unique, avec lesquels l'implantation de parcs éoliens est incompatible, et d'apprécier les paysages susceptibles d'avoir capacité à intégrer les éoliennes comme les éléments constitutifs d'une modernité assumée.

Plusieurs étapes ont été nécessaires pour parvenir à la caractérisation partagée des zones à définir comme incompatibles.

Les zones finalement retenues comme incompatibles sont:

- les espaces dégagés d'altitude constitués par les chaumes Vosgiennes.
- Les autres zonages identifiés comme à enjeux « très fort » et « fort » par la paysagiste conseil sont classés sur les niveaux « très fort » et « fort » de la matrice. Les zonages à enjeux « moyen » et faible » se trouvent dans le rapport du bureau d'études.

Illustration XII: La carte ci dessous permet de visualiser les zones incompatibles

6.2.6. Sécurité

Les éléments fournis par l'étude de la DGAC et l'Armée de l'Air ont été utilisés pour cette partie.

Aucune zone n'a été classée sur le niveau « incompatible avec l'implantation d'éoliennes ». La recommandation de la DGAC qui visait à interdire les ZDE dans les zones de contrôle élargie (CTR) des aéroports de Strasbourg et Bâle – Mulhouse n'a pas été retenue car le ministère du développement durable considère que cela ne peut pas être le seul motif conduisant à refuser une ZDE.

Deux enjeux ont été identifiés et classés dans le niveau de sensibilité « très fort » de la matrice:

- Zones de contrôle élargie autour des aéroports (CTR);
- Zones d'éloignement de 30 km autour des radars primaires et de 15 km autour des radiobalises
- Zones d'exclusion/concertation des radars militaires entre 5 et 20 km. Cette zone peut en effet être compatible ou incompatible en fonction de la taille des éoliennes, des éventuels masques topographiques et des positions des machines;
- Zones d'éloignement de 20 km autour des radars de bande 'C'

Les zones classées sur le niveau de sensibilité « fort » de la matrice sont les zones de coordination des radars militaires, entre 5 et 30 km, en fonction de la taille des éoliennes.

7. Définition des zones favorables au développement de l'éolien et du potentiel régional exploitable défini en mégawatts (MW) à horizon 2020 et 2050

7.1. Zones favorables

Les zones favorables du projet de schéma régional éolien sont les zones résultant simultanément de:

- l'exclusion des zones faisant l'objet de contraintes s'opposant strictement à l'implantation d'éoliennes;
- l'exclusion des zones retenues sur le niveau « incompatible avec l'implantation d'éoliennes » de la matrice;
- l'exclusion des zones ayant un niveau de vent inférieur à 4,5 m/s à 100 m, niveau minimum requis pour la validation administrative d'une proposition de ZDE.

Ces zones favorables sont représentées de manière indicative sur la « carte des zones favorables au développement de l'éolien en Alsace».

Deux autres cartes complémentaires sont également fournies:

- Cartes des zones favorables au développement de l'éolien avec distinction des niveaux de vent (compris entre 4.5 et 5,2 m/s à 100 m et supérieur à 5,2 m/s* à 100 m);
- Carte des zones favorables au développement de l'éolien avec distinction des niveaux de vent (compris entre 4.5 et 5,2 m/s à 100 m et supérieur à 5,2 m/s à 100 m) et signalement des zones classées dans le niveau de sensibilité « très fort » de la matrice.

Les zones favorables présentent aussi des enjeux et ne sont donc pas synonymes d'implantations systématiques d'éoliennes. Des études locales sont toujours nécessaires au regard des enjeux mesurés à l'échelle du projet. Elles sont toujours exigées réglementairement dans le cadre du droit électrique (ZDE), du droit de l'urbanisme (permis de construire) et du droit de l'environnement (installations classées), voire d'autres droits dans le cadre de demandes spécifiques (autorisation de défrichement).

^{*}seuil de rentabilité indicatif fourni par les professionnels de la filière

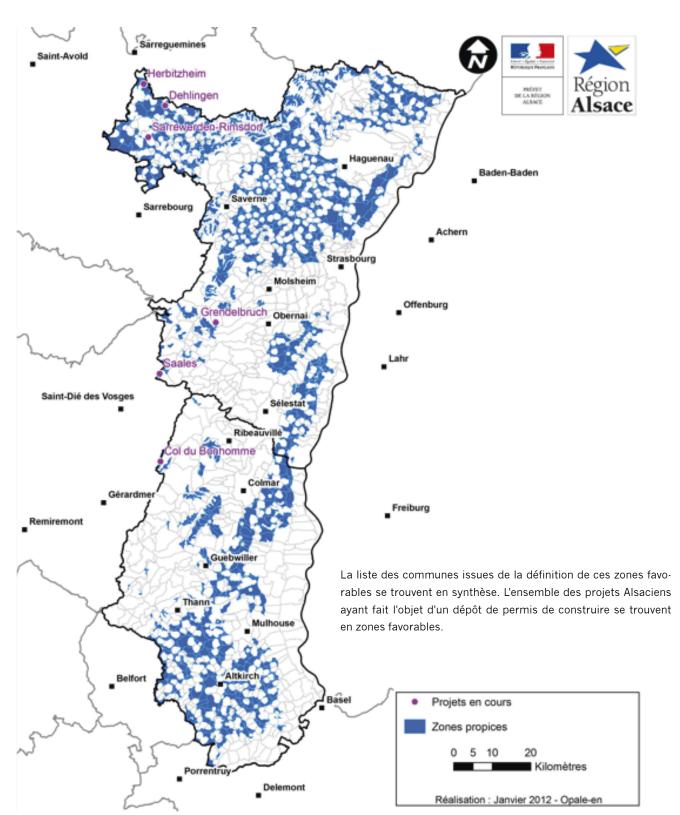


Illustration XIII: Carte des zones favorables au développement de l'éolien en Alsace

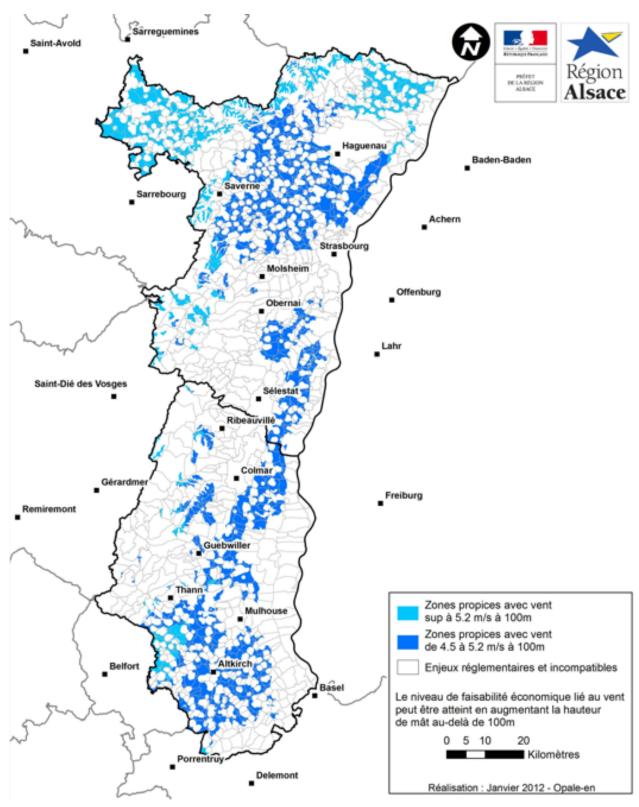


Illustration XIV: Cartes des zones favorables au développement de l'éolien en Alsace avec distinction des niveaux de vent (compris entre 4.5 et 5,2 m/s à 100 m et supérieur à 5,2 m/s à 100 m)

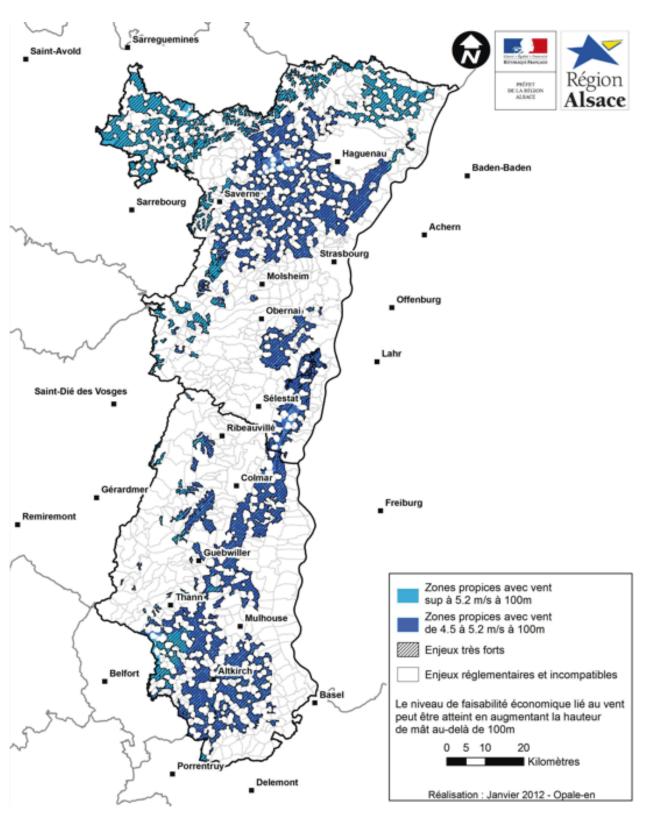


Illustration XV: Carte des zones favorables au développement de l'éolien en Alsace avec distinction des niveaux de vent (compris entre 4.5 et 5,2 m/s à 100 m et supérieur à 5,2 m/s à 100 m) et signalement des zones classées dans le niveau de sensibilité « très fort » de la matrice.

7.2. Définition du potentiel régional exploitable à 2020 et 2050

Pour définir le potentiel, un découpage de l'Alsace par secteur a été effectué par le bureau d'études. Ces secteurs ont été définis par type, en fonction de la topographie, comme suit: secteurs de plaine, secteurs de collines et secteurs de montagne.

Ce découpage permet d'étudier les potentialités localement avec les caractéristiques propres de chaque secteur en intégrant les informations obtenues précédemment concernant les contraintes réglementaires et non réglementaires auxquelles il est soumis. La carte ci dessous présente le découpage retenu.

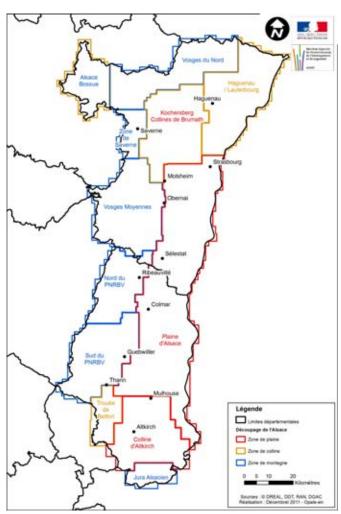


Illustration XVI: découpage de l'Alsace par secteur

Dans chaque secteur, en excluant les zones de contraintes réglementaires et les zones considérées comme « incompatibles avec l'implantation d'éoliennes », des potentiels d'installation sont estimés.

Les conditions suivantes sont retenues pour effectuer ces estimations:

- une utilisation totale de l'espace, en dehors des zones marquées par les contraintes réglementaires et des zones incompatibles, n'est pas concevable;
- les parcs sont au moins constitués de 5 machines positionnées en ligne;
- espacement de 400 m entre les machines face au vent et 800 m dans le sens du vent (pour les zones où l implantation en quinconce est possible);
- espacement entre parcs de 4 à 5 km;
- prise en compte de la topographie, des critères de vent et du type de machine (en fonction du type de zone).

Un potentiel maximal théorique est dans un premier temps défini pour chaque secteur. Ce potentiel maximal est ensuite revu au regard des zones du secteur classées sur les niveaux « très fort » et « fort » de la matrice qui peuvent compromettre la réalisation de projets éoliens. Ceci permet, dans un second temps, de définir un potentiel réaliste par secteur.

Le tableau ci-dessous reprend la définition des potentiels pour chaque secteur.

Secteur	Puissance et productibles potentiels maximalistes en dehors des zones à contraintes réglementaires et incompatibles (MW / GWh)		es puissances u d'enjeu	Puissance potentielle objective (Min/Max) par secteur (MW)	
	80 à 100 MW/ 160 à 200 GWh	très fort	fort	15 - 45	
Vosges du Nord	(de 40 à 55 machines)	76	24	(6 à 20 machines)	
	60 à 80 MW/ 120 à 160 GWh	très fort	fort	11.5 - 40	
Alsace Bossue	(30 à 40 machines)	75	5	(5 à 20 machines)	
	40 à 60 MW/ 80 à 120 GWh	très fort	fort	0 - 15	
Zone de Saverne	(20 à 30 machines)	60		(0 à 5 machines)	
	40 à 60 MW/ 80 à 120 GWh	très fort	fort	8 - 34	
Vosges Moyennes	(20 à 30 machines)	60		(4 à 17 machines)	
Nord PNR Ballons	50 à 80 MW/ 100 à 160 GWh	très fort	fort	10 - 34	
des Vosges	(25 à 40 machines)	80		(5 à 17 machines)	
Sud PNR	40 à 50 MW/ 90 à 110 GWh	très fort	fort	0 - 20	
Ballons des Vosges	(20 à 25 machines)	50		(0 à 10 machines)	
	0 à 10 MW en attente de conclusions	très fort	fort	0 · 10 (0 à 5 machines)	
Jura Alsacien	d'études additionnelles avifaune	XX	xx		
	40 à 70 MW/ 80 à 140 GWh	très fort	fort	18 - 50	
Haguenau - Lauterbourg	(20 à 35 machines)	70		(10 à 25 machines)	
Trouée de Belfort	80 à 90MW/ 160 à 180 GWh	très fort	fort	20 - 60	
Trouee de Bellort	(40 à 45 machines)	68	12	(10 à 30 machines)	
Kochersberg /	60 MW/ 120 GWh	très fort	fort	15 - 40	
Collines de Brumath	(20 à 30 machines)	46	14	(8 à 20 machines)	
Collines autour d'Altkirch	60 MW/ 120 GWh	très fort	fort	10 - 30 MW	
Connies autour d'Artkiren	(30 à 40 machines)	60	0	(5 à 15 machines)	
Secteur	Puissance potentielle maximale en dehors des zones à contraintes réglementaires et incompatibles MW / GWh	Répartition des puissances par niveau d'enjeu		Puissance potentielle Min/Max (MW)	
Synthèse Alsace	720	très fort	fort	107,5 - 378	
Synthese Misale	,20	645	55	107,3 - 376	

8. Synthèse

À l'échéance 2020, la France se donne pour objectif de disposer d'une capacité de production de 19000 MW pour l'éolien terrestre, la capacité au 31/09/2011étant de 6534 MW.

L'Alsace comptabilise 0 MW installé en 2011 mais un premier parc (Dehlingen) devrait fonctionner en 2012. Même si à ce jour les perspectives de développement apparaissent limitées, l'Alsace devrait pouvoir proposer des capacités à horizon 2020 – 2050.

Les estimations des capacités de développement de l'éolien réalistes en Alsace sont résumées ci dessous, selon la méthode exposée dans le rapport:

Année	Puissance globale cumulée	Nombre d'éoliennes
2011	0 MW	0
2012	11,5 MW	5
2020	100 MW	50
2050	300MW	150

Tableau 1 : estimation des capacités de développement de l'éolien en Alsace.

L'estimation du nombre d'éoliennes est évolutive car elle dépend de la puissance des machines qui augmente au fil du temps grâce aux évolutions technologiques. Ce développement des installations devra pouvoir se faire en respectant la logique « du bon projet au bon endroit » de manière à bien concilier tous les enjeux liés au développement durable et à éviter le mitage du territoire. Le principe directeur est de concentrer les projets dans les endroits les plus favorables.

La liste des communes contenues dans les zones favorables se trouvent ci dessous. La méthode utilisée pour arriver à cette liste a été la suivante:

Les zones favorables sont des zones de différentes tailles. Il est vérifié pour chaque zone qu'elle peut recevoir 5 machines, indépendamment des communes qui la composent, et un espacement entre machines de 400 m face au vent et de 800 m dans le sens du vent est respecté (pour les zones où l'implantation en quinconce est possible). Suite à cela, les zones trop petites pour accueillir cinq machines sont supprimées et les communes qui intersectent alors avec les zones restantes sont retenues, soit en totalité lorsque leur territoire est entièrement couvert par les zones favorablessoit pour partie dans le cas contraire. Ces différentes communes retenues sont identifiées en tant que communes « favorables» (cf. tableau ci contre).

Liste des communes favorables

Département du Bas-Rhin

CANTON	COMMUNE	INSEE
BARR	Barr	67021
BARR	Epfig	67 125
BARR	Gertwiller	67 155
BARR	Saint-Pierre	67429
BARR	Stotzheim	67481
BENFELD	Benfeld	67028
BENFELD	Boofzheim	67055
BENFELD	Friesenheim	67 146
BENFELD	Herbsheim	67 192
BENFELD	Huttenheim	67 216
BENFELD	Kertzfeld	67233
BENFELD	Kogenheim	67246
BENFELD	Matzenheim	67 285
BENFELD	Rossfeld	67412
BENFELD	Sand	67433
BENFELD	Sermersheim	67464
BENFELD	Witternheim	67545
BISCHWILLER	Bischwiller	67046
BISCHWILLER	Drusenheim	67 106
BISCHWILLER	Forstfeld	67 140
BISCHWILLER	Herrlisheim	67 194
BISCHWILLER	Kauffenheim	67231
BISCHWILLER	Leutenheim	67264
BISCHWILLER	Oberhoffen-sur-Moder	67345
BISCHWILLER	Offendorf	67356
BISCHWILLER	Rœschwoog	67405
BISCHWILLER	Rohrwiller	67407
BISCHWILLER	Roppenheim	67409
BISCHWILLER	Rountzenheim	67418
BISCHWILLER	Schirrhein	67449
BISCHWILLER	Schirrhoffen	67450

BISCHWILLER	Sessenheim	67465
BISCHWILLER	Soufflenheim	67472
BOUXWILLER	Bischholtz	67044
BOUXWILLER	Bouxwiller	67061
BOUXWILLER	Buswiller	67068
BOUXWILLER	Dossenheim-sur-Zinsel	67 103
BOUXWILLER	Ingwiller	67222
BOUXWILLER	Kirrwiller-Bosselshausen	67 242
BOUXWILLER	Menchhoffen	67 289
BOUXWILLER	Mulhausen	67 307
BOUXWILLER	Neuwiller-lès-Saverne	67322
BOUXWILLER	Niedermodern	67328
BOUXWILLER	Niedersoultzbach	67333
BOUXWILLER	Obermodern-Zutzendorf	67 347
BOUXWILLER	Obersoultzbach	67352
BOUXWILLER	Pfaffenhoffen	67 372
BOUXWILLER	Schalkendorf	67441
BOUXWILLER	Schillersdorf	67446
BOUXWILLER	Uttwiller	67503
BRUMATH	Bernolsheim	67033
BRUMATH	Bietlenheim	67038
BRUMATH	Bilwisheim	67039
BRUMATH	Brumath	67067
BRUMATH	Donnenheim	67 100
BRUMATH	Eckwersheim	67 119
BRUMATH	Gambsheim	67 151
BRUMATH	Geudertheim	67 156
BRUMATH	Gries	67 169
BRUMATH	Hœrdt	67205
BRUMATH	Kilstett	67 237
BRUMATH	Krautwiller	67 249
BRUMATH	Kriegsheim	67250
BRUMATH	Kurtzenhouse	67 252
BRUMATH	Mittelschaeffolsheim	67298
BRUMATH	Mommenheim	67 301

BRUMATH	Olwisheim	67361
BRUMATH	Rottelsheim	67417
BRUMATH	Vendenheim	67 506
BRUMATH	La Wantzenau	67519
BRUMATH	Weyersheim	67529
DRULINGEN	Adamswiller	67002
DRULINGEN	Asswiller	67013
DRULINGEN	Baerendorf	67017
DRULINGEN	Berg	67029
DRULINGEN	Bettwiller	67036
DRULINGEN	Burbach	67 070
DRULINGEN	Bust	67071
DRULINGEN	Diemeringen	67095
DRULINGEN	Drulingen	67 105
DRULINGEN	Durstel	67 111
DRULINGEN	Eschwiller	67 134
DRULINGEN	Eywiller	67 136
DRULINGEN	Gærlingen	67 159
DRULINGEN	Gungwiller	67 178
DRULINGEN	Hirschland	67 201
DRULINGEN	Kirrberg	67 241
DRULINGEN	Mackwiller	67278
DRULINGEN	Ottwiller	67369
DRULINGEN	Rauwiller	67 386
DRULINGEN	Rexingen	67396
DRULINGEN	Siewiller	67467
DRULINGEN	Thal-Drulingen	67488
DRULINGEN	Volksberg	67509
DRULINGEN	Waldhambach	67514
DRULINGEN	Weislingen	67522
DRULINGEN	Weyer	67528
ERSTEIN	Bolsenheim	67054
ERSTEIN	Erstein	67130
ERSTEIN	Gerstheim	67154
ERSTEIN	Hindisheim	67 197

ERSTEIN	Hipsheim	67 200
ERSTEIN	Ichtratzheim	67217
ERSTEIN	Limersheim	67 266
ERSTEIN	Nordhouse	67336
ERSTEIN	Obenheim	67338
ERSTEIN	Osthouse	67364
ERSTEIN	Schaeffersheim	67438
ERSTEIN	Uttenheim	67501
ERSTEIN	Westhouse	67 526
GEISPOLSHEIM	Lipsheim	67 268
HAGUENAU	Batzendorf	67023
HAGUENAU	Berstheim	67035
HAGUENAU	Dauendorf	67087
HAGUENAU	Haguenau	67 180
HAGUENAU	Hochstett	67203
HAGUENAU	Huttendorf	67215
HAGUENAU	Morschwiller	67304
HAGUENAU	Niederschaeffolsheim	67331
HAGUENAU	Ohlungen	67 359
HAGUENAU	Schweighouse-sur-Moder	67458
HAGUENAU	Uhlwiller	67497
HAGUENAU	Wahlenheim	67510
HAGUENAU	Weitbruch	67523
HAGUENAU	Wintershouse	67540
HAGUENAU	Wittersheim	67546
HOCHFELDEN	Alteckendorf	67005
HOCHFELDEN	Bossendorf	67058
HOCHFELDEN	Duntzenheim	67 107
HOCHFELDEN	Ettendorf	67 135
HOCHFELDEN	Friedolsheim	67 145
HOCHFELDEN	Geiswiller	67153
HOCHFELDEN	Gingsheim	67 158
HOCHFELDEN	Grassendorf	67 166
HOCHFELDEN	Hochfelden	67 202
LIQQUEEL DEN		67007

Hohatzenheim

67207

HOCHFELDEN

HOCHFELDEN	Hohfrankenheim	67209
HOCHFELDEN	Ingenheim	67220
HOCHFELDEN	Issenhausen	67225
HOCHFELDEN	Lixhausen	67 270
HOCHFELDEN	Melsheim	67 287
HOCHFELDEN	Minversheim	67293
HOCHFELDEN	Mittelhausen	67 297
HOCHFELDEN	Mutzenhouse	67312
HOCHFELDEN	Ringeldorf	67402
HOCHFELDEN	Ringendorf	67403
HOCHFELDEN	Saessolsheim	67423
HOCHFELDEN	Schaffhouse-sur-Zorn	67439
HOCHFELDEN	Scherlenheim	67444
HOCHFELDEN	Schwindratzheim	67460
HOCHFELDEN	Waltenheim-sur-Zorn	67516
HOCHFELDEN	Wickersheim-Wilshausen	67530
HOCHFELDEN	Wilwisheim	67534
HOCHFELDEN	Wingersheim	67539
HOCHFELDEN	Zœbersdorf	67560
LA PETITE-PIERRE	Erckartswiller	67126
LA PETITE-PIERRE	Eschbourg	67 133
LA PETITE-PIERRE	Frohmuhl	67 148
LA PETITE-PIERRE	Hinsbourg	67 198
LA PETITE-PIERRE	Lichtenberg	67 265
LA PETITE-PIERRE	Lohr	67273
LA PETITE-PIERRE	Petersbach	67 370
LA PETITE-PIERRE	La Petite-Pierre	67371
LA PETITE-PIERRE	Pfalzweyer	67373
LA PETITE-PIERRE	Puberg	67381
LA PETITE-PIERRE	Reipertswiller	67392
LA PETITE-PIERRE	Rosteig	67413
LA PETITE-PIERRE	Schœnbourg	67454
LA PETITE-PIERRE	Sparsbach	67475
LA PETITE-PIERRE	Struth	67483
LA PETITE-PIERRE	Tieffenbach	67491

LA PETITE-PIERRE	Wimmenau	67535
LA PETITE-PIERRE	Wingen-sur-Moder	67538
LA PETITE-PIERRE	Zittersheim	67 559
LAUTERBOURG	Neewiller- près-Lauterbourg	67315
LAUTERBOURG	Niederlauterbach	67327
LAUTERBOURG	Salmbach	67432
LAUTERBOURG	Scheibenhard	67443
MARCKOLSHEIM	Artolsheim	67011
MARCKOLSHEIM	Baldenheim	67019
MARCKOLSHEIM	Bindernheim	67040
MARCKOLSHEIM	Bœsenbiesen	67053
MARCKOLSHEIM	Bootzheim	67056
MARCKOLSHEIM	Elsenheim	67 121
MARCKOLSHEIM	Heidolsheim	67 187
MARCKOLSHEIM	Hessenheim	67 195
MARCKOLSHEIM	Hilsenheim	67 196
MARCKOLSHEIM	Mackenheim	67277
MARCKOLSHEIM	Marckolsheim	67 281
MARCKOLSHEIM	Mussig	67 310
MARCKOLSHEIM	Muttersholtz	67 311
MARCKOLSHEIM	Ohnenheim	67360
MARCKOLSHEIM	Richtolsheim	67398
MARCKOLSHEIM	Saasenheim	67422
MARCKOLSHEIM	Schwobsheim	67461
MARCKOLSHEIM	Sundhouse	67486
MARCKOLSHEIM	Wittisheim	67 547
MARCKOLSHEIM	Elsenheim	67 121
MARCKOLSHEIM	Marckolsheim	67281
MARCKOLSHEIM	Ohnenheim	67360
MARMOUTIER	Allenwiller	67004
MARMOUTIER	Birkenwald	67041
MARMOUTIER	Crastatt	67 078
MARMOUTIER	Dimbsthal	67096
MARMOUTIER	Haegen	67 179

MARMOUTIER Hohengœft 67208 MARMOUTIER Jetterswiller 67229 MARMOUTIER Kleingœft 67244 MARMOUTIER Knærsheim 67245 MARMOUTIER Landersheim 67258 MARMOUTIER Lochwiller 67272 MARMOUTIER Marmoutier 67283 MARMOUTIER Marmoutier 67367 MARMOUTIER Rangen 67383 MARMOUTIER Reinhardsmunster 67391 MARMOUTIER Reutenbourg 67395 MARMOUTIER Salenthal 67431 MARMOUTIER Schwenheim 67459 MARMOUTIER Singrist 67469 MARMOUTIER Westhouse-Marmoutier 67527 MARMOUTIER Zehnacker 67555 MARMOUTIER Zeinheim 67101 MOLSHEIM Dorlisheim 67101 MOLSHEIM Heiligenberg 67386 MOLSHEIM Niederhaslach 67325 MOLSHEIM Niederhaslach 67325 MOLSHEIM Niederhaslach 67325 MOLSHEIM Still 67480 MOLSHEIM Still 67480 MOLSHEIM Still 67480 MOLSHEIM Still 67480 MOLSHEIM Still 67266 MOLSHEIM Heiligenberg 67306 MOLSHEIM Still 67480 MOLSHEIM Still 67480 MOLSHEIM Still 67480 MOLSHEIM Lutzelhoise 67309 MUNDOLSHEIM Mundolsheim 67309 MUNDOLSHEIM Mundolsheim 67309 MUNDOLSHEIM Mundolsheim 67309 MUNDOLSHEIM Mundolsheim 67339 MUNDOLSHEIM Mundolsheim 67339 MUNDOLSHEIM Oberschaeffolsheim 67389 MUNDOLSHEIM Reichstett 67389 MUNDOLSHEIM Reichstett 67389	MARMOUTIER	Hengwiller	67 190
MARMOUTIERKleingœft67244MARMOUTIERKnærsheim67245MARMOUTIERLandersheim67258MARMOUTIERLochwiller67272MARMOUTIERMarmoutier67283MARMOUTIEROtterswiller67367MARMOUTIERRangen67383MARMOUTIERReinhardsmunster67391MARMOUTIERReutenbourg67395MARMOUTIERSalenthal67431MARMOUTIERSchwenheim67459MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMHeiligenberg67388MOLSHEIMNiederhaslach67325MOLSHEIMNiederhaslach67325MOLSHEIMNiederhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67389	MARMOUTIER	Hohengæft	67 208
MARMOUTIERKnœrsheim67245MARMOUTIERLandersheim67258MARMOUTIERLochwiller67272MARMOUTIERMarmoutier67283MARMOUTIEROtterswiller67367MARMOUTIERRangen67383MARMOUTIERReinhardsmunster67391MARMOUTIERReutenbourg67395MARMOUTIERSalenthal67431MARMOUTIERSchwenheim67459MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMHeiligenberg67188MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67256MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350	MARMOUTIER	Jetterswiller	67229
MARMOUTIERLandersheim67258MARMOUTIERLochwiller67272MARMOUTIERMarmoutier67283MARMOUTIEROtterswiller67367MARMOUTIERRangen67383MARMOUTIERReinhardsmunster67391MARMOUTIERReutenbourg67395MARMOUTIERSalenthal67431MARMOUTIERSchwenheim67459MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMHeiligenberg67306MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MUNSHEIMUrmatt67500MUNDOLSHEIMIttenheim67256MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67389	MARMOUTIER	Kleingæft	67 244
MARMOUTIERLochwiller67 272MARMOUTIERMarmoutier67 283MARMOUTIEROtterswiller67 367MARMOUTIERRangen67 383MARMOUTIERReinhardsmunster67 391MARMOUTIERReutenbourg67 395MARMOUTIERSalenthal67 431MARMOUTIERSchwenheim67 459MARMOUTIERSingrist67 469MARMOUTIERWesthouse-Marmoutier67 527MARMOUTIERZehnacker67 555MARMOUTIERZeinheim67 556MOLSHEIMDorlisheim67 101MOLSHEIMHeiligenberg67 188MOLSHEIMHeiligenberg67 306MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MUNSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 389	MARMOUTIER	Knœrsheim	67 245
MARMOUTIER Marmoutier Otterswiller Otterswiller MARMOUTIER Rangen Reinhardsmunster 67 383 MARMOUTIER Reinhardsmunster 67 391 MARMOUTIER Reutenbourg MARMOUTIER Reutenbourg MARMOUTIER Salenthal 67 459 MARMOUTIER Schwenheim 67 459 MARMOUTIER Singrist MARMOUTIER MARMOUTIER Westhouse-Marmoutier 67 527 MARMOUTIER Zehnacker 67 555 MARMOUTIER Zeinheim 67 556 MOLSHEIM Dorlisheim 67 101 MOLSHEIM Heiligenberg 67 188 MOLSHEIM Mulbach-sur-Bruche 67 306 MOLSHEIM Niederhaslach 67 325 MOLSHEIM Niederhaslach 67 342 MOLSHEIM Soultz-les-Bains 67 473 MOLSHEIM MOLSHEIM MUNDOLSHEIM Lampertheim 67 226 MUNDOLSHEIM Mundolsheim 67 309 MUNDOLSHEIM Mundolsheim 67 309 MUNDOLSHEIM Mundolsheim 67 309 MUNDOLSHEIM Mundolsheim 67 350 MUNDOLSHEIM Moberhausbergen 67 343 MUNDOLSHEIM Moberhausbergen 67 343 MUNDOLSHEIM Mondolsheim 67 309 MUNDOLSHEIM Moberhausbergen 67 343 MUNDOLSHEIM Oberschaeffolsheim 67 350 MUNDOLSHEIM Oberschaeffolsheim 67 350	MARMOUTIER	Landersheim	67258
MARMOUTIEROtterswiller67 367MARMOUTIERRangen67 383MARMOUTIERReinhardsmunster67 391MARMOUTIERReutenbourg67 395MARMOUTIERSalenthal67 431MARMOUTIERSchwenheim67 459MARMOUTIERSingrist67 469MARMOUTIERWesthouse-Marmoutier67 527MARMOUTIERZehnacker67 555MARMOUTIERZeinheim67 556MOLSHEIMDorlisheim67 101MOLSHEIMHeiligenberg67 188MOLSHEIMLutzelhouse67 276MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMUrmatt67 500MUNDOLSHEIMLampertheim67 226MUNDOLSHEIMLampertheim67 226MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350	MARMOUTIER	Lochwiller	67 272
MARMOUTIERRangen67383MARMOUTIERReinhardsmunster67391MARMOUTIERReutenbourg67395MARMOUTIERSalenthal67431MARMOUTIERSchwenheim67459MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMLutzelhouse67276MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMUrmatt67500MUNDOLSHEIMLampertheim67226MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350	MARMOUTIER	Marmoutier	67283
MARMOUTIER Reinhardsmunster 67 391 MARMOUTIER Reutenbourg 67 395 MARMOUTIER Salenthal 67 431 MARMOUTIER Schwenheim 67 459 MARMOUTIER Singrist 67 469 MARMOUTIER Westhouse-Marmoutier 67 527 MARMOUTIER Zehnacker 67 555 MARMOUTIER Zeinheim 67 101 MOLSHEIM Dorlisheim 67 101 MOLSHEIM Heiligenberg 67 188 MOLSHEIM Lutzelhouse 67 276 MOLSHEIM Niederhaslach 67 306 MOLSHEIM Niederhaslach 67 325 MOLSHEIM Soultz-les-Bains 67 473 MOLSHEIM Still 67 480 MOLSHEIM Urmatt 67 500 MUNDOLSHEIM Lampertheim 67 309 MUNDOLSHEIM Mundolsheim 67 309 MUNDOLSHEIM Mundolsheim 67 309 MUNDOLSHEIM Oberhausbergen 67 343 MUNDOLSHEIM Oberschaeffolsheim 67 350	MARMOUTIER	Otterswiller	67 367
MARMOUTIERReutenbourg67 395MARMOUTIERSalenthal67 431MARMOUTIERSchwenheim67 459MARMOUTIERSingrist67 469MARMOUTIERWesthouse-Marmoutier67 527MARMOUTIERZehnacker67 555MARMOUTIERZeinheim67 556MOLSHEIMDorlisheim67 101MOLSHEIMHeiligenberg67 188MOLSHEIMLutzelhouse67 276MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMLampertheim67 226MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 350	MARMOUTIER	Rangen	67383
MARMOUTIERSalenthal67431MARMOUTIERSchwenheim67459MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMMulbach-sur-Bruche67306MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMMundolsheim67343MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MARMOUTIER	Reinhardsmunster	67 391
MARMOUTIERSchwenheim67459MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMLutzelhouse67276MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MARMOUTIER	Reutenbourg	67 395
MARMOUTIERSingrist67469MARMOUTIERWesthouse-Marmoutier67527MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMLutzelhouse67276MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMLampertheim67226MUNDOLSHEIMLampertheim67309MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MARMOUTIER	Salenthal	67431
MARMOUTIERWesthouse-Marmoutier67 527MARMOUTIERZehnacker67 555MARMOUTIERZeinheim67 556MOLSHEIMDorlisheim67 101MOLSHEIMHeiligenberg67 188MOLSHEIMLutzelhouse67 276MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 309MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 389	MARMOUTIER	Schwenheim	67459
MARMOUTIERZehnacker67555MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMLutzelhouse67276MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67226MUNDOLSHEIMLampertheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MARMOUTIER	Singrist	67469
MARMOUTIERZeinheim67556MOLSHEIMDorlisheim67101MOLSHEIMHeiligenberg67188MOLSHEIMLutzelhouse67276MOLSHEIMMuhlbach-sur-Bruche67306MOLSHEIMNiederhaslach67325MOLSHEIMOberhaslach67342MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67226MUNDOLSHEIMLampertheim67309MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MARMOUTIER	Westhouse-Marmoutier	67 527
MOLSHEIMDorlisheim67 101MOLSHEIMHeiligenberg67 188MOLSHEIMLutzelhouse67 276MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 309MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMOberschaeffolsheim67 389	MARMOUTIER	Zehnacker	67 555
MOLSHEIMHeiligenberg67 188MOLSHEIMLutzelhouse67 276MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 309MUNDOLSHEIMMundolsheim67 343MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMReichstett67 389	MARMOUTIER	Zeinheim	67 556
MOLSHEIMLutzelhouse67 276MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 256MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMReichstett67 389	MOLSHEIM	Dorlisheim	67 101
MOLSHEIMMuhlbach-sur-Bruche67 306MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 256MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMReichstett67 389	MOLSHEIM	Heiligenberg	67 188
MOLSHEIMNiederhaslach67 325MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 256MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMReichstett67 389	MOLSHEIM	Lutzelhouse	67 276
MOLSHEIMOberhaslach67 342MOLSHEIMSoultz-les-Bains67 473MOLSHEIMStill67 480MOLSHEIMUrmatt67 500MUNDOLSHEIMIttenheim67 226MUNDOLSHEIMLampertheim67 256MUNDOLSHEIMMundolsheim67 309MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMReichstett67 389	MOLSHEIM	Muhlbach-sur-Bruche	67306
MOLSHEIMSoultz-les-Bains67473MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67226MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MOLSHEIM	Niederhaslach	67 325
MOLSHEIMStill67480MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67226MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MOLSHEIM	Oberhaslach	67342
MOLSHEIMUrmatt67500MUNDOLSHEIMIttenheim67226MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MOLSHEIM	Soultz-les-Bains	67473
MUNDOLSHEIMIttenheim67226MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MOLSHEIM	Still	67480
MUNDOLSHEIMLampertheim67256MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MOLSHEIM	Urmatt	67500
MUNDOLSHEIMMundolsheim67309MUNDOLSHEIMOberhausbergen67343MUNDOLSHEIMOberschaeffolsheim67350MUNDOLSHEIMReichstett67389	MUNDOLSHEIM	Ittenheim	67226
MUNDOLSHEIMOberhausbergen67 343MUNDOLSHEIMOberschaeffolsheim67 350MUNDOLSHEIMReichstett67 389	MUNDOLSHEIM	Lampertheim	67256
MUNDOLSHEIM Oberschaeffolsheim 67 350 MUNDOLSHEIM Reichstett 67 389	MUNDOLSHEIM	Mundolsheim	67 309
MUNDOLSHEIM Reichstett 67 389	MUNDOLSHEIM	Oberhausbergen	67343
	MUNDOLSHEIM	Oberschaeffolsheim	67 350
MUNDOLSHEIM Wolfisheim 67551	MUNDOLSHEIM	Reichstett	67389
	MUNDOLSHEIM	Wolfisheim	67551

NIEDERBRONN- LES-BAINS	Bitschhoffen	67048
NIEDERBRONN- LES-BAINS	Dambach	67083
NIEDERBRONN- LES-BAINS	Engwiller	67 123
NIEDERBRONN- LES-BAINS	Gumbrechtshoffen	67 174
NIEDERBRONN- LES-BAINS	Gundershoffen	67 176
NIEDERBRONN- LES-BAINS	Kindwiller	67238
NIEDERBRONN- LES-BAINS	Mertzwiller	67291
NIEDERBRONN- LES-BAINS	Mietesheim	67292
NIEDERBRONN- LES-BAINS	Niederbronn-les-Bains	67324
NIEDERBRONN- LES-BAINS	Offwiller	67358
NIEDERBRONN- LES-BAINS	Reichshoffen	67388
NIEDERBRONN- LES-BAINS	Rothbach	67415
NIEDERBRONN- LES-BAINS	Uberach	67496
NIEDERBRONN- LES-BAINS	Uhrwiller	67498
NIEDERBRONN- LES-BAINS	Uttenhoffen	67502
NIEDERBRONN- LES-BAINS	Windstein	67536
NIEDERBRONN- LES-BAINS	Zinswiller	67 558
NIEDERBRONN- LES-BAINS	Oberbronn	67340
OBERNAI	Bourgheim	67060
OBERNAI	Goxwiller	67 164
OBERNAI	Niedernai	67329
OBERNAI	Valff	67504
OBERNAI	Zellwiller	67557

ROSHEIM	Bœrsch	67052	SAVERNE	Ed
ROSHEIM	Grendelbruch	67 167	SAVERNE	Er
ROSHEIM	Mollkirch	67299	SAVERNE	Fu
ROSHEIM	Ottrott	67368	SAVERNE	Go
ROSHEIM	Rosenwiller	67410	SAVERNE	Ha
ROSHEIM	Rosheim	67411	SAVERNE	Li
SAALES	Bourg-Bruche	67059	SAVERNE	Lu
SAALES	Colroy-la-Roche	67076	SAVERNE	М
SAALES	Plaine	67 377	SAVERNE	М
SAALES	Ranrupt	67384	SAVERNE	Of
SAALES	Saales	67421	SAVERNE	Pr
SAALES	Saint-Blaise-la-Roche	67424	SAVERNE	Sa
SAALES	Saulxures	67436	SAVERNE	Sa
SARRE-UNION	Altwiller	67009	SAVERNE	St
SARRE-UNION	Bissert	67047	SAVERNE	W
SARRE-UNION	Butten	67072	SAVERNE	W
SARRE-UNION	Dehlingen	67088	SCHIRMECK	Ва
SARRE-UNION	Diedendorf	67091	SCHIRMECK	ВІ
SARRE-UNION	Domfessel	67099	SCHIRMECK	La
SARRE-UNION	Harskirchen	67 183	SCHIRMECK	Gı
SARRE-UNION	Herbitzheim	67 191	SCHIRMECK	Na
SARRE-UNION	Hinsingen	67 199	SCHIRMECK	Ne
SARRE-UNION	Keskastel	67234	SCHIRMECK	Rı
SARRE-UNION	Lorentzen	67274	SCHIRMECK	Sc
SARRE-UNION	Oermingen	67355	SCHIRMECK	W
SARRE-UNION	Ratzwiller	67385	SCHIRMECK	W
SARRE-UNION	Rimsdorf	67401	SCHIRMECK	В
SARRE-UNION	Sarre-Union	67434	SCHIRMECK	В
SARRE-UNION	Sarrewerden	67435	SCHIRMECK	Fo
SARRE-UNION	Schopperten	67456	SCHIRMECK	W
SARRE-UNION	Siltzheim	67468	SELTZ	В
SARRE-UNION	Vællerdingen	67508	SELTZ	Ві
SARRE-UNION	Wolfskirchen	67 552	SELTZ	Cr
SAVERNE	Altenheim	67006	SELTZ	Ek
SAVERNE	Dettwiller	67089	SELTZ	Ke

SAVERNE	Eckartswiller	67 117
SAVERNE	Ernolsheim-lès-Saverne	67 129
SAVERNE	Furchhausen	67 149
SAVERNE	Gottesheim	67 162
SAVERNE	Hattmatt	67 185
SAVERNE	Littenheim	67 269
SAVERNE	Lupstein	67275
SAVERNE	Maennolsheim	67 279
SAVERNE	Monswiller	67302
SAVERNE	Ottersthal	67366
SAVERNE	Printzheim	67380
SAVERNE	Saint-Jean-Saverne	67425
SAVERNE	Saverne	67437
SAVERNE	Steinbourg	67 478
SAVERNE	Waldolwisheim	67 515
SAVERNE	Wolschheim	67553
SCHIRMECK	Barembach	67020
SCHIRMECK	Blancherupt	67050
SCHIRMECK	La Broque	67066
SCHIRMECK	Grandfontaine	67 165
SCHIRMECK	Natzwiller	67 314
SCHIRMECK	Neuviller-la-Roche	67 321
SCHIRMECK	Russ	67420
SCHIRMECK	Schirmeck	67448
SCHIRMECK	Wildersbach	67531
SCHIRMECK	Wisches	67543
SCHIRMECK	Bellefosse	67026
SCHIRMECK	Belmont	67027
SCHIRMECK	Fouday	67 144
SCHIRMECK	Waldersbach	67513
SELTZ	Beinheim	67025
SELTZ	Buhl	67069
SELTZ	Crœttwiller	67079
SELTZ	Eberbach-Seltz	67 113
SELTZ	Kesseldorf	67 235

SELTZ	Mothern	67 305
SELTZ	Niederrædern	67330
SELTZ	Oberlauterbach	67346
SELTZ	Schaffhouse-près-Seltz	67440
SELTZ	Siegen	67466
SELTZ	Trimbach	67494
SELTZ	Wintzenbach	67 541
SOULTZ-SOUS-FORETS	Drachenbronn- Birlenbach	67 104
SOULTZ-SOUS-FORETS	Hatten	67 184
SOULTZ-SOUS-FORETS	Hoffen	67206
SOULTZ-SOUS-FORETS	Hunspach	67213
SOULTZ-SOUS-FORETS	Ingolsheim	67221
SOULTZ-SOUS-FORETS	Keffenach	67 232
SOULTZ-SOUS-FORETS	Kutzenhausen	67 254
SOULTZ-SOUS-FORETS	Memmelshoffen	67288
SOULTZ-SOUS-FORETS	Merkwiller-Pechelbronn	67290
SOULTZ-SOUS-FORETS	Betschdorf	67 339
SOULTZ-SOUS-FORETS	Retschwiller	67394
SOULTZ-SOUS-FORETS	Rittershoffen	67404
SOULTZ-SOUS-FORETS	Schænenbourg	67455
SOULTZ-SOUS-FORETS	Soultz-sous-Forêts	67 474
SOULTZ-SOUS-FORETS	Surbourg	67487
SOULTZ-SOUS-FORETS	Aschbach	67012
SOULTZ-SOUS-FORETS	Oberrædern	67349
SOULTZ-SOUS-FORETS	Stundwiller	67484
TRUCHTERSHEIM	Berstett	67034
TRUCHTERSHEIM	Dingsheim	67097
TRUCHTERSHEIM	Dossenheim- Kochersberg	67 102
TRUCHTERSHEIM	Durningen	67 109
TRUCHTERSHEIM	Fessenheim-le-Bas	67 138
TRUCHTERSHEIM	Furdenheim	67150
TRUCHTERSHEIM	Gougenheim	67 163
TRUCHTERSHEIM	Griesheim-sur-Souffel	67 173

TRUCHTERSHEIM	Handschuheim	67 181
TRUCHTERSHEIM	Hurtigheim	67214
TRUCHTERSHEIM	Neugartheim-Ittlenheim	67228
TRUCHTERSHEIM	Kienheim	67236
TRUCHTERSHEIM	Kuttolsheim	67253
TRUCHTERSHEIM	Osthoffen	67363
TRUCHTERSHEIM	Pfettisheim	67 374
TRUCHTERSHEIM	Pfulgriesheim	67 375
TRUCHTERSHEIM	Quatzenheim	67382
TRUCHTERSHEIM	Rohr	67406
TRUCHTERSHEIM	Schnersheim	67452
TRUCHTERSHEIM	Stutzheim-Offenheim	67485
TRUCHTERSHEIM	Truchtersheim	67495
TRUCHTERSHEIM	Willgottheim	67532
TRUCHTERSHEIM	Wintzenheim- Kochersberg	67542
TRUCHTERSHEIM	Wiwersheim	67548
WASSELONNE	Balbronn	67018
WASSELONNE	Bergbieten	67030
WASSELONNE	Cosswiller	67077
WASSELONNE	Dahlenheim	67081
WASSELONNE	Wangenbourg-Engenthal	67 122
WASSELONNE	Kirchheim	67240
WASSELONNE	Marlenheim	67282
WASSELONNE	Nordheim	67335
WASSELONNE	Odratzheim	67354
WASSELONNE	Romanswiller	67408
WASSELONNE	Scharrachbergheim- Irmstett	67442
WASSELONNE	Traenheim	67492
WASSELONNE	Wangen	67517
WASSELONNE	Wasselonne	67520
WASSELONNE	Westhoffen	67525
WISSEMBOURG	Cleebourg	67 074
WISSEMBOURG	Climbach	67075

WISSEMBOURG	Lembach	67263
WISSEMBOURG	Niedersteinbach	67334
WISSEMBOURG	Oberhoffen- lès-Wissembourg	67344
WISSEMBOURG	Seebach	67351
WISSEMBOURG	Obersteinbach	67353
WISSEMBOURG	Riedseltz	67400
WISSEMBOURG	Rott	67416
WISSEMBOURG	Schleithal	67451
WISSEMBOURG	Steinseltz	67479
WISSEMBOURG	Wingen	67537
WISSEMBOURG	Wissembourg	67544
WOERTH	Biblisheim	67037
WOERTH	Dieffenbach-lès-Wœrth	67093
WOERTH	Durrenbach	67110
WOERTH	Eschbach	67 132
WOERTH	Forstheim	67 141
WOERTH	Fræschwiller	67 147
WOERTH	Gœrsdorf	67 160
WOERTH	Gunstett	67 177
WOERTH	Hegeney	67 186
WOERTH	Lampertsloch	67257
WOERTH	Langensoultzbach	67259
WOERTH	Laubach	67260
WOERTH	Morsbronn-les-Bains	67303
WOERTH	Oberdorf-Spachbach	67341
WOERTH	Preuschdorf	67379
WOERTH	Walbourg	67511
WOERTH	Wœrth	67550

Département du Haut-Rhin

CANTON	COMMUNE	N° INSEE
ALTKIRCH	Altkirch	68004
ALTKIRCH	Aspach	68010
ALTKIRCH	Ballersdorf	68017
ALTKIRCH	Berentzwiller	68027
ALTKIRCH	Carspach	68062
ALTKIRCH	Eglingen	68077
ALTKIRCH	Emlingen	68080
ALTKIRCH	Saint-Bernard	68081
ALTKIRCH	Franken	68096
ALTKIRCH	Fræningen	68099
ALTKIRCH	Hausgauen	68124
ALTKIRCH	Heidwiller	68127
ALTKIRCH	Heiwiller	68131
ALTKIRCH	Hochstatt	68 141
ALTKIRCH	Hundsbach	68148
ALTKIRCH	Illfurth	68152
ALTKIRCH	Jettingen	68158
ALTKIRCH	Luemschwiller	68 191
ALTKIRCH	Obermorschwiller	68245
ALTKIRCH	Schwoben	68303
ALTKIRCH	Spechbach-le-Bas	68319
ALTKIRCH	Spechbach-le-Haut	68320
ALTKIRCH	Tagolsheim	68332
ALTKIRCH	Tagsdorf	68333
ALTKIRCH	Walheim	68356
ALTKIRCH	Willer	68371
ALTKIRCH	Wittersdorf	68377
ANDOLSHEIM	Andolsheim	68007
ANDOLSHEIM	Artzenheim	68009
ANDOLSHEIM	Baltzenheim	68019
ANDOLSHEIM	Bischwihr	68038
ANDOLSHEIM	Durrenentzen	68076
ANDOLSHEIM	Fortschwihr	68095

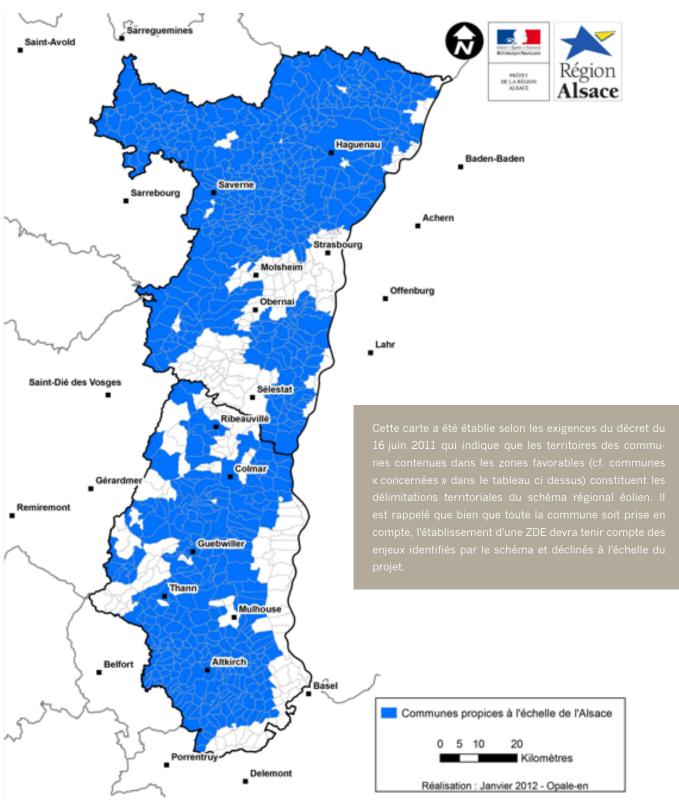
ANDOLSHEIM	Grussenheim	68110
ANDOLSHEIM	Jebsheim	68157
ANDOLSHEIM	Kunheim	68 172
ANDOLSHEIM	Muntzenheim	68227
ANDOLSHEIM	Sundhoffen	68331
ANDOLSHEIM	Urschenheim	68345
ANDOLSHEIM	Wickerschwihr	68366
ANDOLSHEIM	Widensolen	68367
ANDOLSHEIM	Grussenheim	68110
CERNAY	Aspach-le-Bas	68011
CERNAY	Bernwiller	68031
CERNAY	Burnhaupt-le-Bas	68059
CERNAY	Burnhaupt-le-Haut	68060
CERNAY	Cernay	68063
CERNAY	Schweighouse-Thann	68302
CERNAY	Staffelfelden	68321
CERNAY	Uffholtz	68342
CERNAY	Wattwiller	68359
CERNAY	Wittelsheim	68375
COLMAR	Sainte-Croix-en-Plaine	68295
DANNEMARIE	Altenach	68002
DANNEMARIE	Ammerzwiller	68006
DANNEMARIE	Balschwiller	68018
DANNEMARIE	Bellemagny	68024
DANNEMARIE	Bréchaumont	68050
DANNEMARIE	Bretten	68052
DANNEMARIE	Buethwiller	68057
DANNEMARIE	Chavannes-sur-l'Étang	68065
DANNEMARIE	Dannemarie	68068
DANNEMARIE	Diefmatten	68071
DANNEMARIE	Elbach	68079
DANNEMARIE	Eteimbes	68085
DANNEMARIE	Falkwiller	68086
DANNEMARIE	Gildwiller	68 105
DANNEMARIE	Gommersdorf	68 107

DANNEMARIE	Guevenatten	68114	FERRETTE
DANNEMARIE	Hagenbach	68119	FERRETTE
DANNEMARIE	Hecken	68125	FERRETTE
DANNEMARIE	Valdieu-Lutran	68192	FERRETTE
DANNEMARIE	Magny	68196	FERRETTE
DANNEMARIE	Manspach	68200	FERRETTE
DANNEMARIE	Montreux-Jeune	68214	FERRETTE
DANNEMARIE	Montreux-Vieux	68215	GUEBWILLER
DANNEMARIE	Retzwiller	68268	GUEBWILLER
DANNEMARIE	Romagny	68282	GUEBWILLER
DANNEMARIE	Saint-Cosme	68293	GUEBWILLER
DANNEMARIE	Sternenberg	68326	GUEBWILLER
DANNEMARIE	Traubach-le-Bas	68336	GUEBWILLER
DANNEMARIE	Traubach-le-Haut	68337	GUEBWILLER
DANNEMARIE	Wolfersdorf	68378	GUEBWILLER
ENSISHEIM	Ensisheim	68082	HABSHEIM
ENSISHEIM	Meyenheim	68205	HABSHEIM
ENSISHEIM	Munwiller	68228	HABSHEIM
ENSISHEIM	Niederentzen	68234	HABSHEIM
ENSISHEIM	Niederhergheim	68235	HIRSINGUE
ENSISHEIM	Oberentzen	68241	HIRSINGUE
ENSISHEIM	Oberhergheim	68242	HIRSINGUE
ENSISHEIM	Pulversheim	68258	HIRSINGUE
ENSISHEIM	Réguisheim	68266	HIRSINGUE
ENSISHEIM	Biltzheim	68037	HIRSINGUE
FERRETTE	Bettlach	68034	HIRSINGUE
FERRETTE	Bouxwiller	68049	HIRSINGUE
FERRETTE	Courtavon	68067	HIRSINGUE
FERRETTE	Durlinsdorf	68074	HIRSINGUE
FERRETTE	Durmenach	68075	HIRSINGUE
FERRETTE	Fislis	68092	HIRSINGUE
FERRETTE	Kœstlach	68 169	HIRSINGUE
FERRETTE	Levoncourt	68 181	HIRSINGUE
FERRETTE	Liebsdorf	68184	HIRSINGUE
FERRETTE	Linsdorf	68187	HIRSINGUE

FERRETTE	Mœrnach	68212
FERRETTE	Mooslargue	68216
FERRETTE	Muespach	68221
FERRETTE	Muespach-le-Haut	68222
FERRETTE	Roppentzwiller	68284
FERRETTE	Vieux-Ferrette	68347
FERRETTE	Werentzhouse	68363
GUEBWILLER	Bergholtz	68029
GUEBWILLER	Bergholtzzell	68030
GUEBWILLER	Buhl	68058
GUEBWILLER	Guebwiller	68112
GUEBWILLER	Lautenbach	68177
GUEBWILLER	Linthal	68188
GUEBWILLER	Orschwihr	68250
GUEBWILLER	Rimbach-près-Guebwiller	68274
HABSHEIM	Eschentzwiller	68084
HABSHEIM	Riedisheim	68271
HABSHEIM	Rixheim	68278
HABSHEIM	Zimmersheim	68386
HIRSINGUE	Bettendorf	68033
HIRSINGUE	Bisel	68039
HIRSINGUE	Feldbach	68087
HIRSINGUE	Friesen	68098
HIRSINGUE	Fulleren	68 100
HIRSINGUE	Grentzingen	68 108
HIRSINGUE	Heimersdorf	68128
HIRSINGUE	Henflingen	68133
HIRSINGUE	Hindlingen	68137
HIRSINGUE	Hirsingue	68138
HIRSINGUE	Hirtzbach	68139
HIRSINGUE	Largitzen	68176
HIRSINGUE	Mertzen	68202
HIRSINGUE	Oberdorf	68240
HIRSINGUE	Pfetterhouse	68257
HIRSINGUE	Riespach	68273

HIRSINGUE	Ruederbach	68288
HIRSINGUE	Saint-Ulrich	68299
HIRSINGUE	Seppois-le-Bas	68305
HIRSINGUE	Seppois-le-Haut	68306
HIRSINGUE	Steinsoultz	68325
HIRSINGUE	Strueth	68330
HIRSINGUE	Ueberstrass	68340
HIRSINGUE	Waldighofen	68355
HUNINGUE	Folgensbourg	68094
HUNINGUE	Hagenthal-le-Haut	68121
HUNINGUE	Knœringue	68168
HUNINGUE	Michelbach-le-Haut	68208
HUNINGUE	Ranspach-le-Bas	68263
HUNINGUE	Ranspach-le-Haut	68264
ILLZACH	Baldersheim	68015
ILLZACH	Battenheim	68022
ILLZACH	Illzach	68154
ILLZACH	Ruelisheim	68289
ILLZACH	Sausheim	68300
KAYSERSBERG	Ammerschwihr	68005
KAYSERSBERG	Kaysersberg	68 162
KAYSERSBERG	Kientzheim	68164
KAYSERSBERG	Riquewihr	68277
LAPOUTROIE	Le Bonhomme	68044
LAPOUTROIE	Orbey	68249
MASEVAUX	Bourbach-le-Haut	68046
MASEVAUX	Lauw	68179
MASEVAUX	Masevaux	68201
MASEVAUX	Mortzwiller	68219
MASEVAUX	Sentheim	68304
MASEVAUX	Soppe-le-Bas	68313
MASEVAUX	Soppe-le-Haut	68314
MULHOUSE	Bruebach	68055
MULHOUSE	Brunstatt	68056
MULHOUSE	Didenheim	68070

MULHOUSE	Flaxlanden	68093
MULHOUSE	Galfingue	68 101
MULHOUSE	Heimsbrunn	68129
MULHOUSE	Morschwiller-le-Bas	68218
MULHOUSE	Zillisheim	68384
MUNSTER	Breitenbach-Haut-Rhin	68051
MUNSTER	Eschbach-au-Val	68083
MUNSTER	Griesbach-au-Val	68 109
MUNSTER	Gunsbach	68117
MUNSTER	Luttenbach-près-Munster	68 193
MUNSTER	Metzeral	68204
MUNSTER	Muhlbach-sur-Munster	68223
MUNSTER	Sondernach	68311
MUNSTER	Soultzbach-les-Bains	68316
MUNSTER	Wasserbourg	68358
MUNSTER	Wihr-au-Val	68368
NEUF-BRISACH	Appenwihr	68008
NEUF-BRISACH	Biesheim	68036
NEUF-BRISACH	Dessenheim	68069
NEUF-BRISACH	Hettenschlag	68136
NEUF-BRISACH	Logelheim	68 189
NEUF-BRISACH	Volgelsheim	68352
NEUF-BRISACH	Weckolsheim	68360
NEUF-BRISACH	Wolfgantzen	68379
PSEUDO-CANTON	Colmar	68066
RIBEAUVILLE	Hunawihr	68 147
RIBEAUVILLE	Ribeauvillé	68269
ROUFFACH	Gueberschwihr	68111
ROUFFACH	Gundolsheim	68116
ROUFFACH	Hattstatt	68123
ROUFFACH	Osenbach	68251
ROUFFACH	Pfaffenheim	68255
ROUFFACH	Rouffach	68287
ROUFFACH	Soultzmatt	68318
ROUFFACH	Westhalten	68364



SAINT-AMARIN Husseren-Wesserling 68151 SAINT-AMARIN Mitzach 68211 SAINT-AMARIN Mollau 68213 SAINT-AMARIN Mollau 68213 SAINT-AMARIN Ranspach 68262 SAINT-AMARIN Storckensohn 68328 SAINT-AMARIN Urbès 68344 SAINTE-MARIE-AUX-MINES Rombach-le-Franc 68283 SAINTE-MARIE-AUX-MINES Sainte-Croix-aux-Mines 68294 SIERENTZ Dietwiller 68072 SIERENTZ Dietwiller 68103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Koetzingue 68170 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Schlierbach 68301 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68327			
SAINT-AMARIN Mitzach 68211 SAINT-AMARIN Mollau 68213 SAINT-AMARIN Ranspach 68262 SAINT-AMARIN Storckensohn 68328 SAINT-AMARIN Urbès 68344 SAINTE-MARIE-AUX-MINES Rombach-le-Franc 68283 SAINTE-MARIE-AUX-MINES Sainte-Croix-aux-Mines 68294 SIERENTZ Dietwiller 68072 SIERENTZ Geispitzen 68103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Koetzingue 68170 SIERENTZ Handser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Schlierbach 68301 SIERENTZ Schlierbach 68301 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68323 SIERENTZ Steinbrunn-le-Haut 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ STEIN 68324 SIERENTZ STEIN 68324 SIERENTZ STEIN 68324 SIERENTZ STEIN	SAINT-AMARIN	Fellering	68089
SAINT-AMARIN Ranspach 68262 SAINT-AMARIN Storckensohn 68328 SAINT-AMARIN Urbès 68344 SAINT-AMARIN Urbès 68344 SAINT-E-MARIE-AUX-MINES Rombach-le-Franc 68283 SAINTE-MARIE-AUX-MINES Sainte-Croix-aux-Mines 68294 SIERENTZ Dietwiller 68072 SIERENTZ Geispitzen 68103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Kappelen 68170 SIERENTZ Handser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Schlierbach 68301 SIERENTZ Schlierbach 68301 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68327 SIERENTZ Steinbrunn-le-Haut 68327 SIERENTZ Steinbrunn-le-Haut 68357 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Belrwiller 68043 SOULTZ-HAUT-RHIN Bellwiller 68088 SOULTZ-HAUT-RHIN Bellwiller 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SAINT-AMARIN	Husseren-Wesserling	68 151
SAINT-AMARIN Ranspach 68262 SAINT-AMARIN Storckensohn 68328 SAINT-AMARIN Urbès 68344 SAINTE-MARIE-AUX-MINES Rombach-le-Franc 68283 SAINTE-MARIE-AUX-MINES Sainte-Croix-aux-Mines 68294 SIERENTZ Dietwiller 68072 SIERENTZ Geispitzen 68103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Koetzingue 68170 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68301 SIERENTZ Schlierbach 68301 SIERENTZ Schlierbach 68301 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steiten 68327 SIERENTZ Steiten 68303 SIERENTZ Steiten 68327 SIERENTZ Steiten 68335 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SAINT-AMARIN	Mitzach	68211
SAINT-AMARIN Urbès 68328 SAINT-AMARIN Urbès 68344 SAINTE-MARIE-AUX-MINES Aubure 68014 SAINTE-MARIE-AUX-MINES Rombach-le-Franc 68283 SAINTE-MARIE-AUX-MINES Sainte-Croix-aux-Mines 68294 SIERENTZ Dietwiller 68072 SIERENTZ Geispitzen 68103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Koetzingue 68170 SIERENTZ Landser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Schlierbach 68301 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Stetten 68371 SIERENTZ Stetten 68363 SIERENTZ Stetten 68373 SIERENTZ Stetten 68373 SIERENTZ Stetten 68357 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088	SAINT-AMARIN	Mollau	68213
SAINT-AMARIN SAINTE-MARIE-AUX-MINES Aubure Aubure Aubure Aubure Aux-MINES Aubure Aubure Aux-MINES Aubure Aux-MINES Aubure Aux-Mines Aex-Aux-Mines Aex-Aux-Mi	SAINT-AMARIN	Ranspach	68262
SAINTE-MARIE- AUX-MINES SIERENTZ Dietwiller 68294 SIERENTZ Geispitzen 68103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Koetzingue 68170 SIERENTZ Landser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Schlierbach 68301 SIERENTZ Schlierbach SIERENTZ Sierentz Sierentz Sierentz Sierentz Sierentz Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Steinbrunn-le-Haut 68327 SIERENTZ Steinbrunn-le-Haut 68323 SIERENTZ Steinbrunn-le-Haut 68353 SIERENTZ Steinbrunn-le-Haut 68363 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SAINT-AMARIN	Storckensohn	68328
AUX-MINES SAINTE-MARIE-AUX-MINES SAINTE-MARIE-AUX-MINES SAINTE-MARIE-AUX-MINES SIERENTZ Dietwiller G8294 SIERENTZ Dietwiller G8072 SIERENTZ Geispitzen G8103 SIERENTZ Helfrantzkirch G8132 SIERENTZ Kappelen G8160 SIERENTZ Koetzingue G8170 SIERENTZ Landser G8174 SIERENTZ Magstatt-le-Bas G8197 SIERENTZ Magstatt-le-Haut G8198 SIERENTZ SIERENTZ Rantzwiller G8265 SIERENTZ Sierentz Sierentz Sierentz Sierentz Sierentz Sierentz Sierentz Steinbrunn-le-Bas G8303 SIERENTZ Steinbrunn-le-Haut G8324 SIERENTZ Stetten G8327 SIERENTZ Stetten G8353 SIERENTZ SIERENTZ Stetten G8363 SIERENTZ SIERENTZ STETENTZ STETENT	SAINT-AMARIN	Urbès	68344
AUX-MINES SAINTE-MARIE- AUX-MINES Sainte-Croix-aux-Mines 68294 SIERENTZ Dietwiller Geispitzen Gespitzen Gespitzen		Aubure	68014
AUX-MINES SIERENTZ Dietwiller G8072 SIERENTZ Geispitzen G8103 SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen G8160 SIERENTZ Kœtzingue G8170 SIERENTZ Landser G8174 SIERENTZ Magstatt-le-Bas G8197 SIERENTZ Magstatt-le-Haut G8198 SIERENTZ Rantzwiller G8265 SIERENTZ Schlierbach G8301 SIERENTZ Sierentz Sierentz Sierentz Steinbrunn-le-Bas G8323 SIERENTZ Steinbrunn-le-Haut G8324 SIERENTZ Stetten G8327 SIERENTZ Stetten G8327 SIERENTZ SIERENTZ Wahlbach G8353 SIERENTZ Waltenheim G8357 SIERENTZ SUERENTZ SUERENTZ Waltenheim G8357 SIERENTZ SOULTZ-HAUT-RHIN Bollwiller G8088 SOULTZ-HAUT-RHIN Feldkirch G8088 SOULTZ-HAUT-RHIN Hartmannswiller G8122		Rombach-le-Franc	68283
SIERENTZ Geispitzen 68 103 SIERENTZ Helfrantzkirch 68 132 SIERENTZ Kappelen 68 160 SIERENTZ Kœtzingue 68 170 SIERENTZ Landser 68 174 SIERENTZ Magstatt-le-Bas 68 197 SIERENTZ Magstatt-le-Haut 68 198 SIERENTZ Rantzwiller 68 265 SIERENTZ Schlierbach 68 301 SIERENTZ Steinbrunn-le-Bas 68 303 SIERENTZ Steinbrunn-le-Haut 68 323 SIERENTZ Steiten 68 327 SIERENTZ Stetten 68 327 SIERENTZ Wahlbach 68 353 SIERENTZ Berrwiller 68 362 SOULTZ-HAUT-RHIN Berrwiller 68 032 SOULTZ-HAUT-RHIN Bollwiller 68 043 SOULTZ-HAUT-RHIN Feldkirch 68 088 SOULTZ-HAUT-RHIN Feldkirch 68 088		Sainte-Croix-aux-Mines	68294
SIERENTZ Helfrantzkirch 68132 SIERENTZ Kappelen 68160 SIERENTZ Kœtzingue 68170 SIERENTZ Landser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Stetten 68337 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68362 SOULTZ-HAUT-RHIN Berrwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SIERENTZ	Dietwiller	68072
SIERENTZ Kappelen 68160 SIERENTZ Kœtzingue 68170 SIERENTZ Landser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Stetten 68341 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68048 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SIERENTZ	Geispitzen	68 103
SIERENTZ Kœtzingue 68170 SIERENTZ Landser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Stetten 68327 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SIERENTZ	Helfrantzkirch	68132
SIERENTZ Landser 68174 SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Stetten 68341 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68357 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68048 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SIERENTZ	Kappelen	68160
SIERENTZ Magstatt-le-Bas 68197 SIERENTZ Magstatt-le-Haut 68198 SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Feldkirch 68088	SIERENTZ	Kœtzingue	68170
SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Landser	68174
SIERENTZ Rantzwiller 68265 SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68043 SOULTZ-HAUT-RHIN Bollwiller 68048 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Magstatt-le-Bas	68197
SIERENTZ Schlierbach 68301 SIERENTZ Sierentz 68309 SIERENTZ Steinbrunn-le-Bas 68323 SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Wahlbach 68353 SIERENTZ Taessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Magstatt-le-Haut	68198
SIERENTZSierentz68309SIERENTZSteinbrunn-le-Bas68323SIERENTZSteinbrunn-le-Haut68324SIERENTZStetten68327SIERENTZUffheim68341SIERENTZWahlbach68353SIERENTZWaltenheim68357SIERENTZZaessingue68382SOULTZ-HAUT-RHINBerrwiller68032SOULTZ-HAUT-RHINBollwiller68043SOULTZ-HAUT-RHINFeldkirch68088SOULTZ-HAUT-RHINHartmannswiller68122	SIERENTZ	Rantzwiller	68265
SIERENTZSteinbrunn-le-Bas68323SIERENTZSteinbrunn-le-Haut68324SIERENTZStetten68327SIERENTZUffheim68341SIERENTZWahlbach68353SIERENTZWaltenheim68357SIERENTZZaessingue68382SOULTZ-HAUT-RHINBerrwiller68032SOULTZ-HAUT-RHINBollwiller68043SOULTZ-HAUT-RHINFeldkirch68088SOULTZ-HAUT-RHINHartmannswiller68122	SIERENTZ	Schlierbach	68301
SIERENTZ Steinbrunn-le-Haut 68324 SIERENTZ Stetten 68327 SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Sierentz	68309
SIERENTZ Stetten 68327 SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Steinbrunn-le-Bas	68323
SIERENTZ Uffheim 68341 SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Steinbrunn-le-Haut	68324
SIERENTZ Wahlbach 68353 SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Stetten	68327
SIERENTZ Waltenheim 68357 SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Uffheim	68341
SIERENTZ Zaessingue 68382 SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Wahlbach	68353
SOULTZ-HAUT-RHIN Berrwiller 68032 SOULTZ-HAUT-RHIN Bollwiller 68043 SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SIERENTZ	Waltenheim	68357
SOULTZ-HAUT-RHINBollwiller68043SOULTZ-HAUT-RHINFeldkirch68088SOULTZ-HAUT-RHINHartmannswiller68122	SIERENTZ	Zaessingue	68382
SOULTZ-HAUT-RHIN Feldkirch 68088 SOULTZ-HAUT-RHIN Hartmannswiller 68122	SOULTZ-HAUT-RHIN	Berrwiller	68032
SOULTZ-HAUT-RHIN Hartmannswiller 68122	SOULTZ-HAUT-RHIN	Bollwiller	68043
	SOULTZ-HAUT-RHIN	Feldkirch	68088
SOULTZ-HAUT-RHIN Issenheim 68156	SOULTZ-HAUT-RHIN	Hartmannswiller	68122
	SOULTZ-HAUT-RHIN	Issenheim	68156

SOULTZ-HAUT-RHIN	Merxheim	68203
SOULTZ-HAUT-RHIN	Raedersheim	68260
SOULTZ-HAUT-RHIN	Soultz-Haut-Rhin	68315
SOULTZ-HAUT-RHIN	Ungersheim	68343
SOULTZ-HAUT-RHIN	Wuenheim	68381
THANN	Aspach-le-Haut	68012
THANN	Bitschwiller-lès-Thann	68040
THANN	Bourbach-le-Bas	68045
THANN	Guewenheim	68115
THANN	Michelbach	68206
THANN	Rammersmatt	68261
THANN	Roderen	68279
THANN	Thann	68334
THANN	Vieux-Thann	68348
WINTZENHEIM	Eguisheim	68078
WINTZENHEIM	Herrlisheim-près-Colmar	68134
WINTZENHEIM	Husseren-les-Châteaux	68150
WINTZENHEIM	Turckheim	68338
WINTZENHEIM	Vægtlinshoffen	68350
WINTZENHEIM	Walbach	68354
WINTZENHEIM	Wettolsheim	68365
WINTZENHEIM	Wintzenheim	68374
WINTZENHEIM	Zimmerbach	68385
WITTENHEIM	Lutterbach	68195
WITTENHEIM	Pfastatt	68256
WITTENHEIM	Reiningue	68267
WITTENHEIM	Wittenheim	68376

Carte des délimitations des zones favorables du schéma

Direction Régional de l'Environnement de l'Aménagement et du Logement (DREAL)

Service Energie Climat Logement Aménagement 2 route d'Oberhausbergen 67070 Strasbourg cedex

www. alsace. developpement-durable. gouv. fr

Conseil Régional d'Alsace

Direction de l'Environnement et de l'Aménagement 1 Place Adrien Zeller 67000 Strasbourg

www.region-alsace.eu

srcae.dreal-alsace@developpement-durable.gouv.fr